流体力学计算公式

合集下载

流体力学公式总结

流体力学公式总结

工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。

1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。

1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。

:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。

即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。

流体力学计算公式

流体力学计算公式

1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ∙=∙-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα∙-=∙=11(v α的单位是C K ︒1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du AT (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=∆=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,ςςςv gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:hb bh R 2+=,b 为明渠宽度,h 为明渠水深) 15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρςρςρχς====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。

《流体力学》Ⅰ主要公式及方程式讲解

《流体力学》Ⅰ主要公式及方程式讲解

《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。

3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。

8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。

注意:p0为自由液面上的压力。

1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。

注意:p0为自由液面上的压力。

10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。

压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。

当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。

流体力学-公式

流体力学-公式

随体倒数()D u D ttααα∂=+⋅∇∂()()u u i v j w k i j k u v w x y z x y z ⎛⎫∂∂∂∂∂∂⋅∇=++⋅++=++ ⎪∂∂∂∂∂∂⎝⎭雷诺输运定理:对系统的随体倒数求法[()][)]VVk V VkD dv u dv D t t Ddv u dvD ttx φφφφφφ∂=+∇⋅∂∂∂=+∂∂⎰⎰⎰⎰(iji je e δ=⋅ ()i j k i jkl l jkl il jki ijke e e e e εεδεε⋅⨯=⋅===i j ijk ke e e ε⨯= ()()()()i j i j i j i j i ie e e e x x x x x x φφφφ∂∂∂∂∂∂∇⋅∇=⋅=⋅=∂∂∂∂∂∂ ()i ii ie e x x φφφ∂∂∇==∂∂ ()i i j j i ia a e a e x x ⎛⎫∂∂∇⋅=⋅=⎪∂∂⎝⎭()()j j ki j j i j ijk k ijk ii i i ja a a a e a e e e e e x x x x εε∂∂∂∂∇⨯=⨯=⨯==∂∂∂∂1、ij u x ⎡⎤∂⎢⎥∂⎢⎥⎣⎦:速度梯度张量 应变率张量:表示微团的变形运动112211221122ij u u v u w xy x z x v u v v w s x y yz y w u w v w x z y z z ⎛⎫⎛⎫∂∂∂∂∂⎛⎫++ ⎪⎪⎪∂∂∂∂∂⎝⎭⎝⎭ ⎪⎪⎛⎫⎛⎫∂∂∂∂∂⎪=++ ⎪ ⎪∂∂∂∂∂ ⎪⎝⎭⎝⎭ ⎪⎛⎫∂∂∂∂∂⎛⎫⎪++ ⎪⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭旋转张量:表示旋转32312100 0ij a ωωωωωω-⎛⎫ ⎪= ⎪ ⎪-⎝⎭-质量守恒:()0k ku t x ρρ∂∂+=∂∂0k ku D D tx ρρ∂+=∂第二那诺雷诺输运定律:VVD D dv dv D tD tαραρ=⎰⎰动量守恒定律:() u u u ftρρρ∂+⋅∇=∇⋅+∂σij i i jD u f D tx σρρ∂=+∂ij i i ji jju u u f tx x σρρρ∂∂∂+=+∂∂∂ D u f D tρρ=∇⋅+σ能量守恒定律:()1 2i i i j ij i i ii q D e u u u u f D t x x ρσρ∂∂⎛⎫+=+- ⎪∂∂⎝⎭231a ω=-312a ω=-123a ω=-ij ijk ka εω=-内能守恒:j i kijkiiu q e e u tx x x ρρσ∂∂∂∂+=-∂∂∂∂N -S 方程:22j j j jiDu u p f Dtx x ρμρ∂∂=-++∂∂ (0μ=时为欧拉方程)内能方程:kk j ju D eTp kD t x x x ρφ⎛⎫∂∂∂=-++ ⎪ ⎪∂∂∂⎝⎭φ为耗损函数,表示流体变形时粘性应力对单位体积流体的作功功率内能方程其他形式:j jD sTT kD t x x ρφ⎛⎫∂∂=+ ⎪ ⎪∂∂⎝⎭j j D h D p T k D t D t x xρφ⎛⎫∂∂=++ ⎪ ⎪∂∂⎝⎭注意这里:11Tds de pd dh dp ρρ⎛⎫=+=-⎪⎝⎭基本方程组: ()20 k kj j k i j j j k i j i k k k j j k u t x D u u u u p f D t x x x x x x u u D e T p k D t x x x x ρρρλμρρλ∂∂+=∂∂⎡⎤⎛⎫∂⎛⎫∂∂∂∂∂=-++++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫∂∂∂∂=-++ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()(), ,j j i j i i u u u x x x p p T e e T μρρ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂⎝⎭== ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ 液液分界面条件:(1)(2)12110nn nn R R σσσ⎛⎫-++= ⎪⎝⎭(1)(2n n ττσσ= 自由面的运动学边界条件: (,,,)0F x y z t = 0D F D t=定律()()i i C t C t D u D D u dr dx D tD tD tΓ=⋅=⋅⎰⎰对任何流体都成立正压流体即 密度仅仅是压力的函数:pdpρρ∇=∇⎰()0A t D ndA D tΩ⋅=⎰开尔文定律:对于正压,体积力单值有势的理想流体流动,沿任意封闭的物质周线上的速度环量和通过任一物质面的涡通量在运动过程中守恒.不努力方程沿同一根流线或者涡线:22dpuG C ρ++=⎰而且为定常势流:()2dpG f t t φφφρ∂∇⋅∇+++=∂⎰同一个瞬时全场为常数2pu u e G C ρ⋅+++= 当流动为等熵,定常且外力有势时,总能量沿流线不变。

流体力学计算公式

流体力学计算公式

1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ•=•-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα•-=•=11(v α的单位是C K ︒1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dydu dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=∆=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,ςςςv gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:h b bh R 2+=,b 为明渠宽度,h 为明渠水深)15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρςρςρχς====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。

流体力学计算公式

流体力学计算公式

流体力学计算公式流体力学是研究流体的运动规律和性质的一门学科,广泛应用于工程和科学领域中。

在流体力学的研究过程中,有许多重要的计算公式和方程被提出和应用。

下面是一些重要的流体力学计算公式。

1.压力力学方程:压力力学方程是描述流体力学中流体静压力分布和变化的方程。

对于稳定的欧拉流体,方程为:∇P=-ρ∇φ其中,P是压力,ρ是流体的密度,φ是流体的势函数。

2.欧拉方程:欧拉方程用于描述流体的运动,它是流体运动的基本方程之一:∂v/∂t+v·∇v=-1/ρ∇P+g其中,v是流体的速度,P是压力,ρ是流体的密度,g是重力加速度。

3.奇异体流动方程:奇异体流动是流体与孤立涡流动的一种类型,其方程为:D(D/u)/Dt=0其中,D/Dt是对时间的全导数,u是速度向量。

4.麦克斯韦方程:5.纳维-斯托克斯方程:纳维-斯托克斯方程是描述流体的动力学行为的方程,它是流体力学中最重要的方程之一:∂v/∂t+v·∇v=-1/ρ∇P+μ∇²v其中,v是速度矢量,P是压力,ρ是密度,μ是动力黏度。

6.贝努利方程:贝努利方程描述了在不可压缩流体中流体静力学的变化。

贝努利方程给出了伯努利定律,即沿着一条流线上的速度增加,压力将降低,反之亦然。

贝努利方程的公式为:P + 1/2ρv^2 + ρgh = const.其中,P是压力,ρ是密度,v是流体速度,g是重力加速度,h是流体高度。

7.流量方程:流量方程用于描述流体在管道或通道中的流动。

Q=A·v其中,Q是流量,A是截面积,v是流速。

8.弗朗脱方程:弗朗脱方程是描述管道中流体流动的方程,其中考虑了摩擦阻力的影响:hL=f(L/D)(v^2/2g)其中,hL是管道摩擦阻力头损失,f是阻力系数,L是管道长度,D 是管道直径,v是流速,g是重力加速度。

以上是一些重要的流体力学计算公式。

这些公式和方程在流体力学中具有广泛的应用,是工程和科学领域中进行流体流动分析和计算的基础。

流体的基本计算

流体的基本计算

质量流量计算公式;1、液体压强计算计算公式;AP = pgH液体压强;在液体容器低、内壁、内部中,由液体所产生的液体压强,简称液压2、喷嘴射流速度及流量深度△ Z 液体密度P 岀口直径D 流量系数CDensity p AZ出口速度计算公式;体积流量计算公式;3、限孔流场计算入口直径Di岀口直径Do压力差△ p流体密度P入口速度计算公式;出口速度计算公式;体积流量计算公式;质量力量计算公式;4、运动粘度运动粘度卩密度P运动粘度计算公式;运动粘度;运动粘度即流体的运动粘度与同温度下该流体密度P之比。

动力粘度;M动力粘度【Pa。

s】或【N。

S/m2】或【kg/(m。

s)】;也被称为动态粘度、绝对粘度或简单粘度,定义为应力与应变速率之比,其数值上等于面积为1m2相距1m的两平板,以1m/s的速度作为相对运动时, 因之存在的流体互相作用所产生的内摩擦力。

5、雷诺数特征速度v特征长度L运动粘度V动力粘度卩密度p雷诺数;雷诺数计算公式;一种可用来表征流体流动情况的无量纲数。

利用雷诺数可区分为流体的流动是层流或湍流,也可用来确定物体在流体中流动所受的阻力。

6、韦伯数流体密度P 特征速度v特征长度L秒面张力b韦伯数计算公式;韦伯数韦伯数是流体力学中的一个无量纲数。

当不同的流体之间有交界面时,尤其在多相流中交界面的曲率较大时,它用来分析流体运动。

7、马赫数流体速度v 马赫数计算公式;马赫数;流体力学中表征流体可压缩程度的一个重要的无量纲参数,定义为流场中某点的速度v同该点的当地声速c之比。

8、水力半径和水力直径流动截面积A圆周Pw水力半径计算公式水力直径计算公式水力半径;是水力学中的一个专有名称,指某输水断面的过流面积与输水断水面和接触的边长(圆周)之比,与断面形状有关,常用于计算渠道隧道的输水能力。

水力直径;是在关内流动中引入的,其目的是为了给非圆管流动取一个合适的特征长度来计算其雷诺数。

常用表达式是;2A/P,即二倍的横截面积(A)除以圆周长度(P)。

流体的基本计算

流体的基本计算

1、液体压强计算计算公式;液体压强;在液体容器低、内壁、内部中,由液体所产生的液体压强,简称液压。

2、喷嘴射流速度及流量深度△Z 液体密度ρ出口直径D 流量系数C出口速度计算公式;体积流量计算公式;质量流量计算公式;3、限孔流场计算入口直径Di 出口直径Do 压力差△p 流体密度ρ入口速度计算公式;出口速度计算公式;体积流量计算公式;质量力量计算公式;4、运动粘度运动粘度μ密度ρ运动粘度计算公式;运动粘度;运动粘度即流体的运动粘度与同温度下该流体密度ρ之比。

动力粘度;Μ动力粘度【Pa。

s】或【N。

S/m²】或【kg/(m。

s)】;也被称为动态粘度、绝对粘度或简单粘度,定义为应力与应变速率之比,其数值上等于面积为1m²相距1m的两平板,以1m/s的速度作为相对运动时,因之存在的流体互相作用所产生的内摩擦力。

5、雷诺数特征速度v 特征长度L 运动粘度V 动力粘度μ密度ρ雷诺数计算公式;雷诺数;一种可用来表征流体流动情况的无量纲数。

利用雷诺数可区分为流体的流动是层流或湍流,也可用来确定物体在流体中流动所受的阻力。

6、韦伯数流体密度ρ特征速度v 特征长度L 秒面张力σ韦伯数计算公式;韦伯数韦伯数是流体力学中的一个无量纲数。

当不同的流体之间有交界面时,尤其在多相流中交界面的曲率较大时,它用来分析流体运动。

7、马赫数流体速度v马赫数计算公式;马赫数;流体力学中表征流体可压缩程度的一个重要的无量纲参数,定义为流场中某点的速度v同该点的当地声速c之比。

8、水力半径和水力直径流动截面积A圆周Pw水力半径计算公式水力直径计算公式水力半径;是水力学中的一个专有名称,指某输水断面的过流面积与输水断水面和接触的边长(圆周)之比,与断面形状有关,常用于计算渠道隧道的输水能力。

水力直径;是在关内流动中引入的,其目的是为了给非圆管流动取一个合适的特征长度来计算其雷诺数。

常用表达式是;2A/P,即二倍的横截面积(A)除以圆周长度(p)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C3.6.2 达西摩擦因子
为了确定λ与Re 的关系,人们作了大量实验和理论研究,下面介绍有代表性的结果。

1.尼古拉兹实验
尼古拉兹(J.Nikuradse,1932)分析了达西的圆管沿程阻力实验数据后,发现壁面粗糙度对λ的影响很大,决定用人工粗糙度方法实现对粗糙度的控制。

他用当地黄砂砂粒经筛选后分类均匀粘贴在管内壁上,相对粗糙度ε/d 从1/30—1/1014分6种,测得λ与Re 的关系,得到尼古拉兹图(图C3.6.1)。

2. 常用计算公式
从尼古拉兹图中看到在不同Re 数和ε/d 值的区域,λ有不同的变化规律。

图C3.6.1
(1)层流区
由泊肃叶定律推导的沿程水头损失(C3.4.10)式可得
代入达西公式(C3.6.3)式,可得层流区λ的解析式
上式表明层流区λ与管壁粗糙度无关,写成常用对数形式为
上式在双对数坐标系中是一条直线,与尼古拉兹图吻合。

(2)过渡区
该区是层流向湍流的转捩区(2000<Re <4000),实验数据分散,无明确规律。

(3)湍流光滑管区
当湍流的粘性底层厚度大于壁面粗糙度(δ>ε)时(图C3.6.2)摩擦因子同壁面粗糙度无关,称为湍流光滑管区。

布拉修斯(P.Blasius,1911)运用1/ 7次指数律速度分布式,结合实验数据导出经验公式:
上式称为布拉修斯公式,适用范围为4000<Re <105,其优点是显式。

普朗特(L.Prandtl,1933)运用对数律速度分布式(C3.5.18),结合尼古拉兹的实验数据导
(C3.6.4)
(C3.6.5)
(C3.6.6)

上式称为普朗特-史里希廷公式,适用范围为3000<Re < 4×10 6,比布拉修斯公式的适用范围更宽。

(4)湍流完全粗糙管区
卡门(Von.Karman,1921)根据湍流脉动相似性假设,结合尼古拉兹的实验数据导出
上式称为冯卡门公式, 适用范围为Re > 4160 (d / 2ε) 0.85
(5)湍流过渡粗糙管区
科尔布鲁克(C.F.Colebrook,1939)将普朗特-史里希廷公式(C3.6.10)式改写为
将冯卡门公式(C3.6.11)式改写为
然后将上两式合并, 得到
△ 上式称为科尔布鲁克公式,适用范围为4000<Re <10 8 。

当ε= 0 时科尔布鲁克公式转化为普朗
(C3.6.10)
(C3.6.11)
(C3.6.12)
(C3.6.13)
(C3.6.14)
特-史里希廷公式,当Re足够大时 时则转化为冯卡门公式。

大量实验结果表明科尔布鲁克公式与实际商用圆管的阻力实验结果基本吻合,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区。

而尼古拉兹图在过渡粗糙区与实际商用管的实验结果偏差较大。

[思考题C3.6.2]。

相关文档
最新文档