流体力学-公式
流体力学基本公式

使用条件:1.质量力只有重力;2.稳定流动; 3.不可压缩流体;4.缓变流;5.流量为常数
ΣF ——作用于流体段上的所有外 力,N
稳定流的动 量方程
mhtml:file://D:\Program Files\minfre\机械设计手册(软件版)V3.0\txt\W01017.mht
2009-6-2
E:\机械设计手册-液压传动\HTM\t01018.HTM
、 ——通过 任意两 断面的 流量
、 ——断面中心距离基准 面的垂直高度
——动能修正系数;一般工程 计算可取 = ≈1
——总流断面A1及A2之间单位 重力流体的平均能量损失,m
——单 位 重 力 流 体 从 流 体 机
械获得的能量( 为“+”),或 单位重力流体供给流体机械的能量
( 为“-”)m
系统中有流 体机械的伯努 利方程
Page 1 of 1
项目
公式
符号意义
雷诺数
Re
=
vd γ
层流
紊流
沿程压力 损失
局部压力 损失
Re < Re(L)
Re > Re(L)
∆p f
=
λ
l d
×
ρv 2 2
∆pr
=ζ
ρv 2 2
v──管内平均流速 d──圆管内径 γ──流体的运动粘度 Re(L)── 临 界 雷 诺 数 : 圆 形 光 滑 管, Re(L)=2000 ~
——总压力的水平分量,
——总压力的垂直分量, Ax——曲面在x方向投影面积,
——Ax的形心离液面的垂直高度,
——通过曲面周边向液面作无数垂直线而形成的体积,m³
θ——总压力与x轴夹角,(°)
流体力学公式总结

工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。
1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。
1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。
:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。
即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。
《流体力学》Ⅰ主要公式及方程式讲解

《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。
3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。
8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。
注意:p0为自由液面上的压力。
1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。
注意:p0为自由液面上的压力。
10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。
压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。
当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。
流体力学计算公式

流体力学计算公式流体力学是研究流体的运动规律和性质的一门学科,广泛应用于工程和科学领域中。
在流体力学的研究过程中,有许多重要的计算公式和方程被提出和应用。
下面是一些重要的流体力学计算公式。
1.压力力学方程:压力力学方程是描述流体力学中流体静压力分布和变化的方程。
对于稳定的欧拉流体,方程为:∇P=-ρ∇φ其中,P是压力,ρ是流体的密度,φ是流体的势函数。
2.欧拉方程:欧拉方程用于描述流体的运动,它是流体运动的基本方程之一:∂v/∂t+v·∇v=-1/ρ∇P+g其中,v是流体的速度,P是压力,ρ是流体的密度,g是重力加速度。
3.奇异体流动方程:奇异体流动是流体与孤立涡流动的一种类型,其方程为:D(D/u)/Dt=0其中,D/Dt是对时间的全导数,u是速度向量。
4.麦克斯韦方程:5.纳维-斯托克斯方程:纳维-斯托克斯方程是描述流体的动力学行为的方程,它是流体力学中最重要的方程之一:∂v/∂t+v·∇v=-1/ρ∇P+μ∇²v其中,v是速度矢量,P是压力,ρ是密度,μ是动力黏度。
6.贝努利方程:贝努利方程描述了在不可压缩流体中流体静力学的变化。
贝努利方程给出了伯努利定律,即沿着一条流线上的速度增加,压力将降低,反之亦然。
贝努利方程的公式为:P + 1/2ρv^2 + ρgh = const.其中,P是压力,ρ是密度,v是流体速度,g是重力加速度,h是流体高度。
7.流量方程:流量方程用于描述流体在管道或通道中的流动。
Q=A·v其中,Q是流量,A是截面积,v是流速。
8.弗朗脱方程:弗朗脱方程是描述管道中流体流动的方程,其中考虑了摩擦阻力的影响:hL=f(L/D)(v^2/2g)其中,hL是管道摩擦阻力头损失,f是阻力系数,L是管道长度,D 是管道直径,v是流速,g是重力加速度。
以上是一些重要的流体力学计算公式。
这些公式和方程在流体力学中具有广泛的应用,是工程和科学领域中进行流体流动分析和计算的基础。
工程计算公式

工程计算公式
工程计算涉及的公式有很多,具体使用哪些公式取决于不同的工程问题和计算需求。
以下列举一些常见的工程计算公式:
1. 基本力学公式:
- 力 F = m * a:力等于质量乘以加速度。
- 力矩 M = F * d:力矩等于力乘以力臂。
- 压力 P = F / A:压力等于力除以面积。
2. 结构力学公式:
- 等效荷载计算:主要用于计算静力荷载、动力荷载和温度荷
载的等效荷载。
- 焊接接头计算公式:如弯曲应力、剪切应力、弯矩等。
3. 流体力学公式:
- 流量公式:Q = A * V:流量等于流动截面积乘以流速。
- 压力损失公式:ΔP = f * (L / D) * (V^2 / 2g):压力损失等于
摩阻系数乘以管长除以管径乘以流速平方除以2倍重力加速度。
4. 电子电路公式:
- 电流公式:I = V / R:电流等于电压除以电阻。
- 电阻公式:R = ρ * (L / A):电阻等于电阻率乘以导体长度除
以导体截面积。
5. 热力学公式:
- 热传导公式:Q = k * A * (T2 - T1) / L:热传导率乘以传热面
积乘以温度差除以传热距离。
- 校正公式:ΔT =α * T * ΔL:温度系数乘以温度乘以长度变化量。
以上仅为一些常见的工程计算公式,实际工程计算还涉及到更多的公式和方法。
在进行工程计算时,需要根据具体问题的性质和要求选择适当的公式进行计算。
(完整版)工程流体力学公式

(完整版)工程流体力学公式工程流体力学公式 (完整版)流体静力学公式1. 压力公式: $P = \rho \cdot g \cdot h$其中,$P$表示压力,$\rho$表示流体密度,$g$表示重力加速度,$h$表示高度差。
2. 曲面小段受力: $dF = P \cdot dA$其中,$dF$表示曲面小段受力,$P$表示压力,$dA$表示曲面小段面积。
3. 曲面上受力:$F = \int P \cdot dA$其中,$F$表示曲面上受力,$P$表示压力,$dA$表示曲面面积。
4. 静水压力公式: $P = \rho \cdot g \cdot h_1 - \rho \cdot g \cdoth_2$其中,$P$表示压力,$\rho$表示流体密度,$g$表示重力加速度,$h_1$表示液体上表面高度,$h_2$表示液体下表面高度。
5. 压力的传递公式: $P_2 = P_1 + \rho \cdot g \cdot h$其中,$P_2$表示第二点的压力,$P_1$表示第一点的压力,$\rho$表示流体密度,$g$表示重力加速度,$h$表示两点的高度差。
流体动力学公式1. 流体密度公式: $\rho = \frac{m}{V}$其中,$\rho$表示流体密度,$m$表示流体的质量,$V$表示流体的体积。
2. 流量公式: $Q = Av$其中,$Q$表示流量,$A$表示流体流动的横截面积,$v$表示流体的平均流速。
3. 根据质量守恒定律,流量公式也可以表示为: $Q = \rho \cdot Av$其中,$Q$表示流量,$\rho$表示流体密度,$A$表示流体流动的横截面积,$v$表示流体的平均流速。
4. 动量方程: $F = \rho \cdot A \cdot (v_2 - v_1)$其中,$F$表示力,$\rho$表示流体密度,$A$表示流体流动的横截面积,$v_2$表示流体出口速度,$v_1$表示流体入口速度。
流体力学流速计算公式

流体力学流速计算公式一、伯努利方程推导流速公式(理想不可压缩流体定常流动)1. 伯努利方程。
- 对于理想不可压缩流体作定常流动时,在同一条流线上有p+(1)/(2)ρ v^2+ρ gh = C(p是流体压强,ρ是流体密度,v是流速,h是高度,C是常量)。
- 假设水平流动(h_1 = h_2),则方程变为p_1+(1)/(2)ρ v_1^2=p_2+(1)/(2)ρ v_2^2。
- 由此可推导出流速公式v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ)。
2. 适用条件。
- 理想流体(无粘性),实际流体在粘性较小时可近似使用。
- 不可压缩流体,像水在大多数情况下可视为不可压缩流体,气体在低速流动时也可近似为不可压缩流体。
- 定常流动,即流场中各点的流速等物理量不随时间变化。
3. 示例。
- 已知水管中某点1处的压强p_1 = 2×10^5Pa,流速v_1 = 1m/s,另一点2处的压强p_2 = 1.5×10^5Pa,水的密度ρ = 1000kg/m^3。
- 根据v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ),将数值代入可得:- v_2=√(1^2)+frac{2×(2×10^{5-1.5×10^5)}{1000}}- 先计算括号内的值:2×(2×10^5-1.5×10^5)=2×5×10^4=10^5。
- 则v_2=√(1 + 100)= √(101)≈10.05m/s。
二、连续性方程推导流速公式(不可压缩流体定常流动)1. 连续性方程。
- 对于不可压缩流体的定常流动,有S_1v_1 = S_2v_2(S_1、S_2分别是流管中两个截面的面积,v_1、v_2是相应截面处的流速)。
- 由此可推导出流速公式v_2=(S_1)/(S_2)v_1。
2. 适用条件。
- 不可压缩流体,如液体或低速流动的气体。
流体力学公式及分析

流体力学1. 密度ρ: 单位体积流体所具有的质量。
SI 单位:kg/m3a) 液体密度:主要影响因素为温度和压力。
i.压力的影响较小,通常可忽略。
ii.温度升高,密度减小。
b) 气体密度:在工程中,低压、高温下的真实气体可近视为理想气体。
i. 气体密度随温度、压力的变化有明显的改变。
ii.压力升高,密度增大;温度升高,密度减小。
2. 压强p :流体垂直作用在单位面积上的力。
SI 单位:Pa 或N/m 2a) 1atm =101.3kPa =760mmHg =10.33mH 2O =1.033at = 1.033kgf/cm 21bar =105Pab) 表压=绝压-大气压 真空度=大气压-绝压★当压力用表压或真空度表示时,需注明。
例如:20kPa (表压)3. 流体静力学基本方程式:a) 等压面概念:在静止、连续的同一种流体内部,处在同一水平面上的各点的压力均相等。
(即静压强仅与垂直高度有关,而与水平位置无关。
)Vm=ρRTpM V m ==ρAFp =ghP P ρ+=0b) 传递定律:同一种流体内部,如果一点的压力发生变化,则其他各点的压力将发生同样大小和方向的变化。
c)可以改写成 即液柱高度可以用来表示静压强大小,但须注明是何种液体。
在静止、连续的同一种流体内部,任一截面的压力仅与其所处的深度有关,而与底面积无关 。
d) 方程是以不可压缩流体推导出来的,对于可压缩性的气体,只适用于压强变化不大的情况。
(±20%)4. 流量:单位时间内流过管道任一截面的流体量。
a) 体积流量:流量用体积来计量,一般用Q 表示;SI 单位:m 3/s b) 质量流量:流量用质量来计量,用W S 表示; SI 单位:kg/sc)5. 流速:单位时间内流体在流动方向上流过的距离,称为平均流速。
以u 表示,SI 单位:m/s 。
质量流速:单位时间内流体流过管道单位面积的质量流量,SI 单位:kg/(m 2.S)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随体倒数()D u D ttααα∂=+⋅∇∂()()u u i v j w k i j k u v w x y z x y z ⎛⎫∂∂∂∂∂∂⋅∇=++⋅++=++ ⎪∂∂∂∂∂∂⎝⎭雷诺输运定理:对系统的随体倒数求法[()][)]VVk V VkD dv u dv D t t Ddv u dvD ttx φφφφφφ∂=+∇⋅∂∂∂=+∂∂⎰⎰⎰⎰(iji je e δ=⋅ ()i j k i jkl l jkl il jki ijke e e e e εεδεε⋅⨯=⋅===i j ijk ke e e ε⨯= ()()()()i j i j i j i j i ie e e e x x x x x x φφφφ∂∂∂∂∂∂∇⋅∇=⋅=⋅=∂∂∂∂∂∂ ()i ii ie e x x φφφ∂∂∇==∂∂ ()i i j j i ia a e a e x x ⎛⎫∂∂∇⋅=⋅=⎪∂∂⎝⎭()()j j ki j j i j ijk k ijk ii i i ja a a a e a e e e e e x x x x εε∂∂∂∂∇⨯=⨯=⨯==∂∂∂∂1、ij u x ⎡⎤∂⎢⎥∂⎢⎥⎣⎦:速度梯度张量 应变率张量:表示微团的变形运动112211221122ij u u v u w xy x z x v u v v w s x y yz y w u w v w x z y z z ⎛⎫⎛⎫∂∂∂∂∂⎛⎫++ ⎪⎪⎪∂∂∂∂∂⎝⎭⎝⎭ ⎪⎪⎛⎫⎛⎫∂∂∂∂∂⎪=++ ⎪ ⎪∂∂∂∂∂ ⎪⎝⎭⎝⎭ ⎪⎛⎫∂∂∂∂∂⎛⎫⎪++ ⎪⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭旋转张量:表示旋转32312100 0ij a ωωωωωω-⎛⎫ ⎪= ⎪ ⎪-⎝⎭-质量守恒:()0k ku t x ρρ∂∂+=∂∂0k ku D D tx ρρ∂+=∂第二那诺雷诺输运定律:VVD D dv dv D tD tαραρ=⎰⎰动量守恒定律:() u u u ftρρρ∂+⋅∇=∇⋅+∂σij i i jD u f D tx σρρ∂=+∂ij i i ji jju u u f tx x σρρρ∂∂∂+=+∂∂∂ D u f D tρρ=∇⋅+σ能量守恒定律:()1 2i i i j ij i i ii q D e u u u u f D t x x ρσρ∂∂⎛⎫+=+- ⎪∂∂⎝⎭231a ω=-312a ω=-123a ω=-ij ijk ka εω=-内能守恒:j i kijkiiu q e e u tx x x ρρσ∂∂∂∂+=-∂∂∂∂N -S 方程:22j j j jiDu u p f Dtx x ρμρ∂∂=-++∂∂ (0μ=时为欧拉方程)内能方程:kk j ju D eTp kD t x x x ρφ⎛⎫∂∂∂=-++ ⎪ ⎪∂∂∂⎝⎭φ为耗损函数,表示流体变形时粘性应力对单位体积流体的作功功率内能方程其他形式:j jD sTT kD t x x ρφ⎛⎫∂∂=+ ⎪ ⎪∂∂⎝⎭j j D h D p T k D t D t x xρφ⎛⎫∂∂=++ ⎪ ⎪∂∂⎝⎭注意这里:11Tds de pd dh dp ρρ⎛⎫=+=-⎪⎝⎭基本方程组: ()20 k kj j k i j j j k i j i k k k j j k u t x D u u u u p f D t x x x x x x u u D e T p k D t x x x x ρρρλμρρλ∂∂+=∂∂⎡⎤⎛⎫∂⎛⎫∂∂∂∂∂=-++++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫∂∂∂∂=-++ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()(), ,j j i j i i u u u x x x p p T e e T μρρ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂⎝⎭== ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ 液液分界面条件:(1)(2)12110nn nn R R σσσ⎛⎫-++= ⎪⎝⎭(1)(2n n ττσσ= 自由面的运动学边界条件: (,,,)0F x y z t = 0D F D t=定律()()i i C t C t D u D D u dr dx D tD tD tΓ=⋅=⋅⎰⎰对任何流体都成立正压流体即 密度仅仅是压力的函数:pdpρρ∇=∇⎰()0A t D ndA D tΩ⋅=⎰开尔文定律:对于正压,体积力单值有势的理想流体流动,沿任意封闭的物质周线上的速度环量和通过任一物质面的涡通量在运动过程中守恒.不努力方程沿同一根流线或者涡线:22dpuG C ρ++=⎰而且为定常势流:()2dpG f t t φφφρ∂∇⋅∇+++=∂⎰同一个瞬时全场为常数2pu u e G C ρ⋅+++= 当流动为等熵,定常且外力有势时,总能量沿流线不变。
()0u Ω⋅∇=2()u t ν∂Ω+⋅∇Ω=∇Ω∂ 在压强场未知情况下求解速度场和涡量场。
2221()()2pu u u u ρ∇=Ω⋅Ω+⋅∇-∇⋅已知速度场可利用以下方程求解压强W 二维势流与方向无关,是点的函数:dF F ΦΨW (z)===+idzxxx∂∂∂∂∂∂笛卡儿:()W z u iv =- 圆柱坐标: -i θR θW =(u -i u )e均匀流:1)F(z)= c z W(z) = c = u - i v2)F(z) =- i c z W(z)=- i c = u- i v 3)F -i (z)=Vez α(α度角)源:::F ln (z)=c z=i θz =x +i y R eR θc u =R u =0⎧⎪⎨⎪⎩ 取 m c =2π ()F()ln 0m z z -z 2π=(强度为m ,中心点为z0)涡:F()ln zln()ln i θz ic ic Re ic R=-=-=-cθ ln Φ=c θΨ=- c R⎧⎨⎩ R θu =0c u =R⎧⎪⎨⎪⎩ 取Γc =2πF ()l n ()l n ()00ΓΓz -iz -z z -z 2π2π i== (逆时针为正) 绕角流动F ()n z U z= F ()c o s n s i n cs ni nθnnnnz U R eU R i U R Φ=U R Ψ=U R θ==+⎧⎪⎨⎪⎩nθcos sin n -1R n -1θu =n U R n θu =-n U R n θ⎧⎪⎨⎪⎩ R R θπ0<θ<, u >0, u <02n ππ<θ<, u <0, u <02n2θ偶极子:F()ln ε+m zz ε2π-z1=10m l i m m ε=πμε→→∞得F(z)0μz -z =速度:cos sin R 2θ2μu =-θR μu =-θR⎧⎪⎪⎨⎪⎪⎩ 流线方程:2()22μμx +y +=2Ψ2Ψ⎛⎫ ⎪⎝⎭圆柱无环量绕流(均匀来流和偶极子叠加)2μ=U aF(z)2aU z +z=()有环量圆柱绕流 (均匀来流和偶极子叠加)F(z)ln 2a i Γz U(z +)+z 2πa = 速度:()cos ()sin 2R 22θ2au =U 1-θ Ra Γu =-U 1+θ-R 2πR ⎧⎪⎪⎨⎪⎪⎩θ=升力和阻力2C ρX -iY =iW dz2⎰02c ρM =-R e zW dz 2⎡⎤⎢⎥⎣⎦⎰留数的求法: 1)在0z 的留数:()()F() (2)2101020200b b z ++a +a (z -z )+a (z -z )z -z z -z =++中的1b2)在曲线c 中的积分()12n CF(z) dz =2 π i R +R +...+R ⎰ 等于区域中奇点留数和乘以2i π例如:有环量圆柱绕流的升力和阻力2C ρX -i Y =iW δz 2⎰W()2224222224322U a U a iU ΓiUΓa Γz =U -++--zzπzπzπz24只有奇点0,留数为iU Γπ,所有ρiU ΓX -i Y =i2 π i =-i ρU 2π⎛⎫Γ ⎪⎝⎭镜像法:()()()F z f z f z =+ 实轴为界()()()F z f z f z =+- 虚轴为界2()()()aF z f z f z=+ 圆保角变换:1)()()()()dF z dF d d W z W dzdzd dzζζζζζ===3)点涡、点源经保角变换后强度保持不变茹柯夫斯基变换:2cz ζζ=+z ζζ→∞⇒→(无穷远处恒等变换) 0dz d ζζ→⇒→∞ 0ζ=奇点 c ζ=±为临界点,不是保角轴对称流动2sin r r u ψθθ∂=∂ sin r u rθψθ∂=-∂ ψ自动满足连续方程,称为Stoks 流函数。
性质:()22BB A AQ d πψπψψ==-⎰ 1r r r u e e u e u e r r θθθφφφθ∂∂=∇=+=+∂∂。