电气工程及其自动化专业英语
电气工程及其自动化专业英语(语法部分)

Specialized English for Electrical Engineering & Its Automation
戴文进 编著
电气工程及其自动化专业教研室
Introduction
• 1 Importance
• 2 Purpose Train students’ comprehension and application ability to
• 另外,专业词汇的词义普遍比较单一,词汇中前 缀和后缀出现的频率很高,缩略语使用的比较多。
电气工程及其自动化专业教研室
词汇的分类( lexical classification)
1 技术词汇(special technical words )---某个专业所特有的词汇,如 diode, substation,autotransformer,superconductivity.
Application, implementation
电气工程及其自动化专业教研室
词汇的构成( words constitution)
专业词汇构成的特征(1)有50%以上的专业词汇来 自外来语;(2)广泛地使用构词法;(3)常用词汇专业化. 1合成法( composition)
horsepower, push-pull, power utilization 2 转换法(conversion)
• Other characteristic, such as frequency, wave shape, and phase balance are seldom recognized by the consumers, but are given constant attention by electric power utility engineers.
电气工程及其自动化专业英语第一章课文翻译

第一章第一篇sectiongTwo variables u(t) and i(t) are the most basic concepts in an electric circuit, they characterize the various relationships in an electric circuitu(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
the charge e on an electron is negative and equal in magnitude to 1.60210×10 19C, while a proton carries a positive charge of the same magnitude as the electron. The presence of equal numbers of protons and electrons leaves an atom neutrally charged. 我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
我们还知道电子的电量是负的并且在数值上等于 1.602100×10-12C,而质子所带的正电量在数值上与电子相等。
质子和电子数量相同使得原子呈现电中性。
We consider the flow of electric charges. A unique feature offlow of negative charges, as Fig.l-1 illustrates. This convention was introduced by Benjamin Franklin (l706~l790), the American scientist and inventor. Although we now know that current in metallic conductors is due to negatively charged electrons, we will follow the universally accepted conventionthat current is the net flow of positive charges. Thus, Electriccurrent is the time rate of charge, measured in amperes (A).Mathematically, the relationship among current i , charge q , andtime t is 当我们把一根导线连接到某一电池上时(一种电动势源),电荷被外力驱使移动;正电荷朝一个方向移动而负电荷朝相反的方向time in several ways that may be represented by different kindsof mathematical functions 我们通过方程(1-1)定义电流的方式表明电流不必是一个恒值函数,电荷可以不同的方式随时间而变化,这些不同的方式可用各种数学函数表达出来。
电气工程及其自动化专业英语答案

第一章⚫Section1习题答案一.Choose the best answer into the blank1.B2.D3.C4.A5.B二.Answer the following questions according to the text1.No. The current need not be a constant-valued function because charge can vary with2.Time.2.The current increases when the time rate of charges is greater.3.The uab=-1V can be interpreted in two ways:①point b is 1 V higher than point a;②the Potential at point a with respect to point b is -1V.4.w=∫pdt5.Because by the passive sign convention,current enters through the positive polarity ofThe voltage,p=ui>0 implies that the element is absorbing power and p=ui<0 impliesThat the element is releasing or supplying power.⚫Section2习题答案一.Choose the best answer into the blank1.B2.A3.B4.C5.B二.Answer the following questions according to the text1.The difference between an independent source and a dependent source is: the source2.Quantity of a dependent source is controlled by another voltage or current,but the source Quantity of an independent source maintains a specified value.3.An ideal independent source is an active element that provides a specified voltage or4.Current that is completely independent of other circuit variables.3.No.The current through an independent voltage source can be calculated by the4.External circuit.4.A voltage-controlled voltage source(VCVS),A current-controlled voltage source (CCVS),A voltage-controlled current source (VCCS), A current-controlled current source (CCCS)5.No,it isn’t.三.Translate the following into Chinese(译文)在随后内容中提及的所有简单电路元件,根据通过它的电流和其两端电压之间的关系进行分类。
电气工程及其自动化专业英语 Chapter 6 Electric Power Systems

Section 1 Introduction
to acceptable levels, voltage levels had to be high for long-distance power transmission. Such high voltages were not acceptable for generation and consumption of power; therefore, a convenient means for voltage transformation became a necessity. The development of the transformer and AC transmission by L. Gaulard and J.D. Gibbs of Paris, France, led to AC electric power systems. In 1889, the first AC transmission line in North America was put into operation in Oregon between Willamette
Section 1 Introduction
The first complete electric power system (comprising a generator, cable, fuse, meter, and loads) was built by Thomas Edison – the historic Pearl Street Station in New York City which began operation in September 1882. This was a DC system consisting of a steam-engine-driven DC generator supplying power to 59 customers within an area roughly 1.5 km in radius. The load, which consisted entirely of incandescent lamps, was supplied at 110 V through an underground cable system. Within a few years similar systems were in
电气工程及其自动化专业英语介绍

电气工程及其自动化专业英语介绍Introduction to Electrical Engineering and its AutomationElectrical engineering is a field of study that deals with the design, development, and maintenance of electrical systems and equipment. It involves the application of principles and theories from physics and mathematics to solve problems related to electricity and electronics. With the rapid advancements in technology, electrical engineering has become an integral part of various industries, including power generation, telecommunications, electronics, and automation.The study of electrical engineering equips students with a strong foundation in core subjects such as circuit analysis, electromagnetic theory, power systems, and control systems. These subjects provide students with the necessary knowledge and skills to design, analyze, and optimize electrical systems. Additionally, students also gain hands-on experience through laboratory work and practical projects, which enhance their problem-solving abilities and technical expertise.The specialization in automation within the field of electrical engineering focuses on the application of control systems and computer science to automate industrial processes. Automation plays a crucial role in improving efficiency, productivity, and safety in various industries. Students studying automation learn about programmable logic controllers (PLCs), human-machine interfaces (HMIs), robotics, and computer-aided design (CAD) software. They also acquire skills in programming languages such as C++, Python, and MATLAB, which are essential for designing and implementing automation systems.The curriculum for electrical engineering and its automation specialization covers a wide range of topics to provide students with a comprehensive understanding of the field. Some of the subjects typically included in the program are:1. Circuit Analysis: This subject focuses on the analysis of electrical circuits using techniques such as Ohm's Law, Kirchhoff's Laws, and network theorems. Students learnto analyze and solve complex circuits to determine voltage, current, and power distributions.2. Electromagnetic Theory: This subject deals with the study of electromagnetic fields and their interactions with electrical systems. Students learn about Maxwell's equations, electromagnetic wave propagation, and the behavior of electromagnetic devices such as transformers and motors.3. Power Systems: This subject covers the generation, transmission, and distribution of electrical power. Students learn about power generation technologies, power system components, and the design of electrical grids. They also study power system protection and control to ensure the reliable operation of power networks.4. Control Systems: This subject focuses on the analysis and design of control systems to regulate and optimize the behavior of dynamic systems. Students learn about feedback control, PID controllers, stability analysis, and system modeling. They also gain practical experience in designing and implementing control systems through laboratory experiments.5. Digital Electronics: This subject introduces students to the fundamentals of digital logic circuits and systems. They learn about Boolean algebra, logic gates, flip-flops, and sequential logic. Students also gain hands-on experience in designing and testing digital circuits using simulation software and hardware components.6. Automation and Robotics: This subject explores the principles and applications of automation and robotics in industrial processes. Students learn about industrial automation technologies, robotic manipulators, and sensor integration. They also study topics such as motion planning, trajectory control, and machine vision.7. Computer Programming: This subject provides students with the necessary programming skills to develop software for electrical engineering applications. Students learn programming languages such as C++, Python, and MATLAB. They also gain experience in algorithm development, data analysis, and simulation techniques.Upon graduation, students with a degree in electrical engineering and its automation specialization have excellent career prospects. They can work in various industries, including power generation companies, telecommunications firms, manufacturing companies, and automation solution providers. Job roles for electrical engineering graduates include electrical design engineer, control systems engineer, automation engineer, power systems engineer, and research scientist.In conclusion, electrical engineering and its automation specialization offer students a comprehensive understanding of electrical systems and their automation. The program equips students with theoretical knowledge, practical skills, and programming expertise to design, analyze, and optimize electrical systems. With the increasing demand for automation in various industries, graduates in this field have promising career opportunities.。
(最新整理)(完整版)电气工程及其自动化专业英语

电气工程及其自动化专业教研室
6
• The exciting or magnetizing current (励磁电流)can thus be very small. Further, the proportion of the total flux which is linked mutually by the two coils is greatly increased.
of two coils in close proximity. One coil of N1 turns is excited with
alternating current and therefore establishes a flux φ11 which alternates with the current (随时间交变). The other coil is linked
• the applied voltage 外施电压
• zero-power-factor 零功率因数
• the no-load power factor 空载功率因数
• formulate 用公式表示,系统地阐述
• saturation 饱和
2021/7/26
电气工程及其自动化专业教研室
4
Unit 11 The Transformer on No Load
a result (因此), is called the secondary winding.
2021/7/26
电气工程及其自动化专业教研室
7
• It should not be difficult to realize that the two functions are interchangeable: if coil 2 were excited instead, a mutual e.m.f. would be induced in coil 1 which would then become the secondary winding(二次绕组).
《电气工程及其自动化》专业英语夹带

【词汇】电阻resistance;电流current;电压voltage;电容capacitance;电感inductance;电感特性exhibit inductance;频率frequency;波形waveform;绝缘体insulator;导体conductor;阻值resist;能力,性能capability;耗散dissipate;容纳accommodate;电容器capacitor;电容capacitance;电感器inductor;共振,谐振resonate;发射器emitter;整流器rectifier;波长wavelength;原子atom;质子proton;电荷,负荷charge;吸引attraction;排斥repulsion;交流发电机alternator;发电机generator;势的,位的potential终端terminal;极性polarity;正弦sine;正弦波sinewave;;周期cycle;三相threephase;偏移量offset;;电枢armature;磁场magnetic field;顶点peak;峰值peakvalue;电路ciruit;负荷,负载load;开关,电闸,转换switch;示意性的schematic;计算,考虑calculate;分子numerator;转化的invert;支流branch;混合物compound;相等的equivalent;方法method;刷新redraw;二极管diode;晶体管transistor;半导体semiconductor;制作fabricate;晶体crystal;结合物bond;四面体tetrahedron;本质的intrinsic;杂物,混杂物impurity;中等的moderate;极性polarity;交感interaction;损耗depletion;相反reverse;真空vacuum;泄漏leakage;数字的numerical;十进制decimal;阿拉伯数字digit;权重weight;幂power;二进制binary;位bit;乘multiply;余数remainder;综合integration;双极的bipolar;变极器inverter;便携式电脑laptop;描述depict;瞬间的momentary;逻辑门gate;图表的diagrammatic;方向,方位orientation;芯片chip;多路器multiplexer;定理theorem;搅拌机mixer;向量vector;摩擦力friction;扭矩torque;乘积product;半径,范围radius;杠杆lever;旋转revolution;惯性inertia;补偿compensate;功work;【短语】工业总线industrial bus;电压差voltage difference; 电压降voltage drop;串联电路series circuit; 并联电路parallel circuit; ;换向开关inverter switch;开关输入量discrete input; 正电荷positive charge;负电荷negative charge; 正向positive direction;负向negative direction;反向opposite direction;三相three-phase;磁场magnetic field;交流变量alternating current component;超时over time; 电场electric field; 峰值peak value;三角函数trigonometric function;均方根root-mean-square;等值电路equal value resistors;复合电路compound circuits; 数字转换conversion of number; 可编程控制器programmable controller;电能electrical energy;机械能mechanical energy;惯性定律law of inertia;电枢磁场armature field;右手法则right-hand rule;采样间隔sampling interval;模拟信号analog signal;数字信号digital signal;模拟量输入analog input;接近开关proximity switch;有功功率active power;放大区amplifier region;异步电动机asynchronous machine;开关量输出discrete output;三相交流电three-phase;有源滤波器active filter;在—之间between and;另一方面on the other hand;利用take advantage of;包围close in;由---组成be formed by;考虑take into account;支路by-pass;中性状态neutral state;挤出去force out;自由电子free electron;电流current flow;图示graphic representation;正弦波sine wave;;;与—有关be referable to;;最小公倍数lowest common multiple;复合电路compound circuits;并联分支parallel branch;物理类型physics types;碳族carbon family;三维的3-dimensional;外层电子outer electron;元素周期表periodic table;PN结PNjunction;N区Nregion;数字系统number system;数字值numerical value;十进制系统decimal system;二进制系统binary system;指轮开关thumb wheel switch;;超大规模集成电路very large scale integration;;真值表truth table;牵引电阻pull-up resistor;;米每秒meters per second;角速度angular speed;外力external force;转动惯量moment of inertia;蒸汽机steam engine;绕—而走walk around;欧姆定律Ohm’s law;色条代码color chart codes;国家军用规格和标准National Military specification and standard;检查和维修inspection maintenance;保修条款;limited warranty policy;原子中性状态neutral state of an atom;电中性electrically neutral;交流正弦波ACsine wave;三相交流电three-phase AC power;瞬时电压instantaneons voltage;有效值effective value;简单电路simple electric circuit;数字电路digital circuit elememts;人工布线manual routing;自动布线auto routing;静力net force;线速度linear speed;角速度angular speed;加速度acceleration;【缩写】DC(Direct Current)直流电;BCD(Binary-Coded Decimal)二进制编码的十进制;CMOS(comliementary metal oxide semiconduct)互补金属氧化物半导体;AC(Alternating Current)交流电;RPM(revolutions per minute)转/分;RF(Radio Frequency)射频,无线电频率;BCD(Binary Coded Decimal)二进制编码的十进制;CEMF(CounterElectroMotiveForce)反电动势;PID(proportional integral differential)比例积分微分;PLC (programmable logic controller)可编程逻辑控制器;ADC(analog to digital converter)·模拟/数字转换器;【翻译】1.Resistors are used to control voltagesand currents:电阻器被用于控制电压与电流2.Resistors are components that have a predetermined resistance.Resistance determines how much current will flow through a component.电阻器是预先设定好的元件。
电气工程及其自动化专业英语介绍

电气工程及其自动化专业英语介绍Introduction to Electrical Engineering and its AutomationIntroduction:Electrical Engineering and its Automation is a specialized field of study that combines the principles of electrical engineering with automation technologies. This field focuses on the design, development, and implementation of electrical systems and automation solutions for various industries. In this introduction, we will explore the key aspects of this discipline, including its curriculum, career prospects, and the skills required to excel in this field.Curriculum:The curriculum of Electrical Engineering and its Automation program is designed to provide students with a comprehensive understanding of electrical engineering principles and automation technologies. The coursework includes a combination of theoretical knowledge and practical applications. Some of the core subjects covered in this program are:1. Electrical Circuit Analysis: This course introduces students to the fundamentals of electrical circuits, including Ohm's Law, Kirchhoff's Laws, and network theorems. Students learn how to analyze and solve electrical circuits using various techniques.2. Power Systems: This course focuses on the generation, transmission, and distribution of electrical power. Students study power system components, such as transformers, generators, and transmission lines, and learn about power flow analysis and fault analysis.3. Control Systems: This course covers the principles of control systems and their applications in automation. Students learn about feedback control, PID controllers, and system modeling. They also gain hands-on experience with control system design and implementation.4. Digital Electronics: This course introduces students to digital logic circuits and their applications. Students learn about Boolean algebra, logic gates, flip-flops, and sequential circuits. They also gain practical knowledge of digital circuit design using software tools.5. Industrial Automation: This course focuses on the automation of industrial processes. Students learn about programmable logic controllers (PLCs), human-machine interfaces (HMIs), and industrial communication protocols. They also gain practical experience in designing and programming automation systems.6. Electromagnetic Fields and Waves: This course covers the principles of electromagnetic fields and their applications. Students study Maxwell's equations, electromagnetic wave propagation, and antenna theory. They also gain knowledge of electromagnetic compatibility and electromagnetic interference.Career Prospects:Graduates of the Electrical Engineering and its Automation program have a wide range of career opportunities in various industries. Some of the potential career paths include:1. Electrical Engineer: Graduates can work as electrical engineers, designing and implementing electrical systems for buildings, power plants, or transportation systems. They may be involved in projects related to power distribution, lighting systems, or renewable energy sources.2. Control Systems Engineer: Graduates can pursue a career in control systems engineering, where they design and optimize control systems for industrial processes. They may work on projects related to robotics, manufacturing automation, or process control.3. Automation Engineer: Graduates can work as automation engineers, developing and implementing automation solutions for industries such as manufacturing, oil and gas, or pharmaceuticals. They may be involved in projects related to PLC programming, HMI design, or industrial networking.4. Research and Development: Graduates can also choose to pursue a career in research and development, working on cutting-edge technologies in the field of electrical engineering and automation. They may be involved in developing new control algorithms, improving energy efficiency, or exploring advanced automation techniques.Skills Required:To excel in the field of Electrical Engineering and its Automation, students need to develop a range of technical and soft skills. Some of the key skills required are:1. Strong Analytical Skills: Electrical engineers need to analyze complex electrical systems and troubleshoot any issues that may arise. Strong analytical skills are essential for identifying problems and finding efficient solutions.2. Technical Knowledge: A solid understanding of electrical engineering principles, automation technologies, and programming languages is crucial for success in this field. Students should continuously update their knowledge to keep up with the latest advancements.3. Problem-Solving Abilities: Electrical engineers often encounter challenges while designing or implementing electrical systems. The ability to think critically and come up with innovative solutions is vital for overcoming these challenges.4. Communication Skills: Effective communication is essential for collaborating with colleagues, presenting ideas, and explaining complex concepts to clients or stakeholders. Strong written and verbal communication skills are highly valued in the industry.5. Teamwork: Many projects in electrical engineering and automation require collaboration with multidisciplinary teams. The ability to work well in a team, share ideas, and contribute to the overall project goals is crucial for success.Conclusion:Electrical Engineering and its Automation is a dynamic and rapidly evolving field that offers exciting career opportunities. The curriculum of this program equips students with the necessary knowledge and skills to design, implement, and optimize electricalsystems and automation solutions. Graduates of this program can pursue careers as electrical engineers, control systems engineers, automation engineers, or research and development professionals. With the right blend of technical expertise, problem-solving abilities, and effective communication skills, students can thrive in this field and contribute to the advancement of technology and automation.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业英语电路基础characterize描绘…的特征,塑造人物,具有….的特征property 性质,财产equal in magnitude to 在数量(数量级)上等同于convert 转换 converter 转换器time rate 时间变化率mathematically 从数学上来讲differen tiate v 区分,区别in honor of 为纪念某人 name in honor of为纪念某人而以他命名electromotive force ( e m f )电动势voltaic battery 伏打电池,化学电池an element 一个电器元件interpret 口译,解释,说明the potential at point a with respect to point b is点a关于点b的电势Potential difference/voltage 电势差/电压expend 花费,消耗instantaneous 瞬时的,促发的passive sign convention 关联参考方向the law of conservation of energy 能量守恒定律reference polarity 参考极性electron 电子 electronic 电子的 electric 电的,电动的time-varying 时变的 constant-valued 常量的metal lic 金属的be due to 是因为,由于,归功于building block 模块Coulomb库伦,Ampere安培,joule焦耳,V olt伏特,Watt瓦特,work 功变量u(t),i(t)是电路中最基本的概念。
他们描述了电路中的各种关系。
电荷量的概念是解释电现象的基本原理,电荷量也是电路中最基本的量。
电荷也是构成物质的原子的电器属性,量纲是库伦。
我们从初等物理可以得知所有物质是由基本组成部分原子组成,而原子又包括电子(electron),质子(proton)和中子(neutron)我们都知道电荷e是带负电的电子,在数量上等于1.60210*1019 C,而质子携带同等电荷量的正电荷,相同数量的质子,电子使原子呈现电中性(neutrally charged)。
我们细想一下电荷的流动,电荷或电流的一个特征就是它是可移动的,就是说从一个地方以能量转换的形式转移到另外一个地方。
当一根导线与电池相连,电荷被迫移动,正负电荷朝相反方向移动,这种移动形成电流,通常把正电荷移动的方向当成电流移动的方向,也就是负电荷移动的反方向。
这个规定是由美国科学家本杰明-富兰克林提出的。
尽管我们现在知道金属导体中的电流是由负电荷运动引起的,我们还是遵从“电流是正电荷的正向移动”这个普遍接受的规定。
所以,电流时电荷的时间变化率。
数学上来讲,电流,电量,时间的关系是i=d q/dt ,t0到t时间内转移的电荷量可以通过等式两端积分得到。
我们定义电流的方式表明电流是一个恒量函数,电荷随时间以各种形式的变化可用不同的数学函数来表现。
要让电子在导体中按特定方向移动需要做功或有能量转移。
这功被当成是(electromotiveforce)外部电动势,这个电动势也被称作电压降或者电势差,电路中a,b两点间的电压就是把单位电荷从a移到b所需要的能量,从数学的角度讲,U=d w/d q,,式中w表示功,单位是焦,q表示电荷,单位是库伦,u表示电压,单位是伏,是为纪念第一个制造出化学电池的意大利物理学家亚历山大-安东尼奥-伏特而以他命名。
所以,电压(电势)就是让单位电荷通过一个元件所需的能量,量纲是伏特。
图展示了连接于a,b两点间元件两端的电压,加号和减号用来表示参考方向或电压极性。
电压可以用两种方式解释:1.a点电势高于b点电势2.点a关于点b的电压。
它遵循的逻辑关系一般这样表示U a b=-U b a。
尽管电压,电流是电路中两个基本的变量,单靠它们是不够的。
出于实用目的,我们要知道功率和能量。
要把功率和能量和电压,电流联系起来,我们回想一下物理可知,功率是消耗或吸收能量的时率,量纲是瓦特。
我们把这种关系记作p=d w/dt,式中p是功率,单位是瓦,w是能量,单位是焦。
从上面几个式子可得p=u*i ,因为u和i通常是时间函数,而功率是时变的量,被称为瞬时功率。
这吸收或放出的功率是元件两端电压和通过它的电流的乘积。
如果功率有一个加号,那么被输送功率或元件吸收功率。
相反,如果功率有一个减号,则元件提供(释放)能量,但是我们怎么知道什么时候功率是正或负呢?电流方向和电压极性在决定功率符号起决定作用。
所以注意电压和电流之间的关系是非常重要的。
电压极性和电流方向必须如图示一致才能保证功率符号是正的,这就是我们熟知的关联参考方向(passive signconvention)从关联参考方向得知,电流从电压的正极流入,在这种情况下,p 大于0,表示元件吸收功率,但是如果p小于0,元件释放或提供能量。
实际上,所有电路都遵循(the law of conservation ofenergy )能量守恒定律,因此,电路中功率的代数和在任何时刻都等于0。
这再次验证了提供给电路的总功率和吸收的总功率相等这个事实。
电路元件Active/passive element 有源/无源元件Inductor 电感器Ideal independent source 理想独立源Dependent/controlled source 受控源Constant voltage source 恒定电压源Diamond-shaped 菱形的Transistor 晶体管Amplifier 放大器Integrated circuit 集成电路By the same token 同理,同样,另外,还有一个电路就是一些电气元件的连接。
电路中有两种类型的元件:无源元件和有源元件。
有源元件能够产生能量而无源元件则不能。
无源元件的例子有:电阻,电容,电感。
最重要的有源元件就是向电路中所有与之相连的元件提供电能的电压和电流源。
一个理想的独立源是一个能够提供独立于其他变量的特定电压或电流。
一个独立电压源是一个二端元件,就像电池或发电机那样两个段子间维持特定电压值,这个电压和通过元件的电流是独立的。
电压源的符号是两个端子间有一个U伏的电压,如图所示。
极性如图,表明a端电压比b端高U伏,所以,如果U大于0,a端电势比b端电势高(terminal a is at a higher potential than terminal b ),反之亦可解释。
当然,如果U小于0,电压U可能是时变的,也有可能是恒定的,所以我们尚且标记为电压U。
另一个经常用作恒定电压源的符号,就好像是电池两端有U伏电压,如图所示。
恒流源情况下可以用左图两种方式表示,而且可以互换。
由于极性可以通过电池符号长线短线的位置来确定,我们可以观察到这时图示的极性符号就是多余的。
一个独立电流源就能有特定值电流流过的二端元件,这个电流与元件两端的电压是独立的。
独立电流源的符号如图所示,其中是一个定值,电流方向通过箭头方向表明。
独立源注定是向外部电路输出功率而不是吸收功率。
所以,如果U为独立源两端电压,电流I的方向是正端流出,考虑到p=u×i那么这个元件就是向外电路输出能量,否则就是在吸收能量。
图a中的电源向外电路输出25w功率,图b中电源吸收25w功率,就像电池在充电一样。
(图b中电池就向充电一样,吸收24w功率)。
理想受控源是一个数值能被另外的电压或电流控制的有源元件。
受控源被设计成用菱形符号表示,如图。
因为受控源的控制是通过电路中其它的元件电压或电流来实现的,而且受控制的是电压或电流,所以它们有以下四种可能的类型。
电压控制电压源(v c v s)电流控制电压源(c c v s)电压控制电流源(v c c s)电流控制电压源(c c v s)独立源在模拟像晶体管,运算放大器,集成电路这样的元件时非常有用。
需要注意的是理想电压源(独立或受控)会产生任意大小的电流以确保两端电压,而理想电流源会产生必要的电压确保电流。
所以一个理想的独立源理论上会提供无穷大的能量。
还需注意的是独立远不仅给电路提供能量,还可以从电路中吸收能量。
对于电压源,我们知道它提供或吸收电压而不是电流,同理,我们知道电流源提供电流而不是两端的电压。
翻译所有处于某种工作状态的全部简单电路元件可以根据其通过电流和两端电压的关系来分类,例如,元件端电压正比于其通过的电流,或者u=k*I,我们把这种元件叫做电阻。
另外一种类型的电路元件端电压和时间的导数或者电流对于时间的积分成比例。
还有的电路元件电压与电流没有特定关系,也就是独立源,另外,我们还需定义被电路中其他支路上的电压或电流决定的特殊能量源,这种能量源被称为非独立源或受控源。
欧姆定律Incandescent 白炽(热)的,炽热的Incandescent lamp 白炽灯V oltage-current characteristic 伏安特性Si e mens 西门子Conductance 电导Short circuit 短路 open circuit 开路具有阻碍电流的现象的这类物质就叫做电阻,电阻是最简单的无源元件。
乔治-西门-欧姆,德国物理学家,被认为在1826通过实验明确了电阻电压与电流的关系。
这种关系就是欧姆定律。
欧姆定律声明电阻两端电压正比于通过它的电流。
这个比例的数值就是电阻的电阻值,单位是欧姆(ohm)。
电路符号如图。
表示电阻的符号是大写的希腊字母Ω。
因为r是常数,图像是一条直线。
出于这种原因,电阻常称为线性电阻。
U对i的图像是一条经过原点斜率为r的直线。
因为无论电流是多少,电压对电流的比值是常数,图像只可能是一条直线。
不同电流时不维持恒定的电阻称为非线性电阻,这种电阻,阻值是电流的函数。
非线性电阻最简单的一个例子就是白炽灯。
图示是一种典型伏安特性曲线,可以看出,图像不再是一条直线。
因为r不为定值,使得有非线性电阻的电路更难分析了。
事实上,所有实际电阻都是非线性的,因为所有导体的电气特性受环境因素如温度的影响。
许多材料,在某一段工作区内非常接近线性电阻,我们可以关注这一类元件并且把它们当成线性电阻。
因为电阻值的范围是从0到无穷。
考虑这两种极端情况是非常重要的。
电阻为零称之为短路,图示电压为零,但是电流可以为任意值。
实验中,短路就是一根被认为是理想导体的导线。
短路就是电气元件的电阻接近0.相同的,电阻无穷大被称为是开路,开路表明电流是零,但是电压可以为任意值。
所以,开路就是电阻值接近无穷大。
在电路分析中另外一种很重要的量是电导。
电导是元件导电能力好坏的量度。