转向系统设计

转向系统设计
转向系统设计

标题

转向系统设计与优化

摘要

汽车在行驶过程中,需要按照驾驶员的意志经常改变行驶方向,即所谓汽车转向。用来改变或保持汽车行驶方向的机构称为汽车转向系统。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全是至关重要的。因此需要对转向系统进行优化,从而使汽车操作起来更加方便、安全。本次设计是EPS电动转向系统,即电动助力转向系统。该系统是由一个机械系统和一个电控的电动马达结合在一起而形成的一个动力转向系统。EPS系统主要是由扭矩传感器、电动机、电磁离合器、减速机构和电子控制单元等组成。驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。因此,电动助力转向系统是汽车转向系统的发展方向。

关键词:机械系统,扭矩传感器,电动机,电磁离合器,减速机构,电子控制单元。

概述

汽车在行使过程中,需要经常改变行驶方向,即所谓的转向。这就需要有一套能够按照司机意志来改变或恢复汽车行驶方向的专设机构,它将司机转动方向盘的动作转变为车轮的偏转动作,这就是所谓的转向系统。转向系统是用来改变汽车的行使方向和保持汽车直线行使的机构,既要保持车辆沿直线

行驶的稳定性,又要保证车辆转向的灵活性。转向性能是保证车辆安全,减轻驾驶员劳动强度和提高作业效率的重要因素。汽车转向系统可按转向的能源不同分为机械转向系统和动力转向系统两类。机械转向系统是依靠驾驶员操纵转向盘的转向力来实现车轮转向,其中所有传力件都是机械的;动力转向系统则是一套兼用驾驶员体力和发动机动力为转向能源的转向系统,这样驾驶员就可以轻便灵活的操纵吨位较大的汽车转向,大大减轻了劳动强度,提高了行使安全性。

但是动力转向系统一直存在“轻”与“灵”的矛盾。为缓和这一矛盾,过去人们将减速器设计成壳变速比,在转向盘小转角时,以“灵”为主,在转向盘大转角时,以“轻”为主。但“灵”的范围只在转向盘中间位置附近,仅对高速行驶有意义,并且传动比不能随车速变化,所以这一方法不能根本解决矛盾。随着动力转向系统的产生,液压转向系统以其具有的转向操纵灵活、轻便,设计汽车时对转向器的结构形式的选择灵活性增大,并可以吸收路面对前轮产生的冲击等优点,自20世纪50年代以来,在各国的汽车上普遍采用。但是传统的液压动力转向系统的油耗量是很大的,约占整车燃油消耗量的3%,故这一弊端无法消除。后来随着电子技术的发展,电控液压动力转向系统应运而生,该系统的某些性能明显的优于传统液压动力转向系统,但是仍然不发根除液压动力转向系统所固有的遗憾。此外,液压动力转向系统在设计完后,转向系统的性能就确定了,不能在对其调节和控制。因此,传统液压动力转向系统协调转向力与操纵“路感”的关系困难,很大程度上影响汽车的操纵稳定性。

电动助力转向系统(简称EPS)是继液压动力转向系统之后产生的新的转向系统。电动助力转向系统由电动机提供助力,助力大小由电控单元(ECU)实时调节和控制,可以较好的解决液压动力转向系统所不能解决的矛盾。电动助力转向系统有其突出的特点:

1、EPS系统能在各种行驶工况下提供最佳助力,减少由路面不平所引起

的对转向系统的扰动,改善汽车的转向特性,减少汽车低速行驶的转向操纵力,提高汽车高速行驶时的转向稳定性,进而提高汽车的主动安全性。

2、提高汽车的燃油经济性。装有电动系统的车辆和装有液压动力转向系统

的车辆对比实验证明,在不转向情况下、装有电动转向系统的车辆燃油消耗降低2.5%,在使用转向的情况下,燃油消耗降低5.5%。

3、增强了转向跟随性。在EPS中电动机和助力机构直接相连,以使其能量直接用于车轮转向。这样增加了系统的转向惯量,电机部分的阻尼也使得车轮的反向和转向前轮摆振大大减小。因此转向系统的抗扰动能力大大增强。

4、在EPS中由电动机直接提供转向助力,在停车时间壳获得最大的转向

动力。同时省去了液压动力转向系统的所必须的转向油泵、软管、液压油、密封件、传送带和装于发动机上的皮带轮等。因此,其质量更轻、结构等紧凑,装配自动化程度高,维修简单。

(5)采用"绿色能源",适应现代汽车的要求。电动助力转向系统应用"最干净"的电力作为能源,完全取缔了液压装置,不存在液压助力转向系统中液态油的泄漏问题,可以说该系统顺应了"绿色化"的时代趋势。该系统由于它没有液压油,没有软管、油泵和密封件,避免了污染。而液压转向系统油管使用的聚合物不能回收,易对环境造成污染。

(6)系统结构简单,占用空间小,布置方便,性能优越。由于该系统具有良好的模块化设计,所以不需要对不同的系统重新进行设计、试验、加工等,不但节省了费用,也为设计不同的系统提供了极大的灵活性,而且更易于生产线装配.该系统省去了装于发动机上皮带轮和油泵,留出的空间可以用于安装其它部件。许多消费者在买车时非常关心车辆的维护与保养问题。装有电动助力转向系统的汽车没有油泵,没有软管连接,可以减少许多忧虑。实际上,传统的液压转向系统中,液压油泵和软管的事故率占整个系统故障的53%,如软管漏油和油泵漏油等.

目前,电动助力转向系统有取代机械转向系统、液压助力转向系统和电控液压助力转向系统的趋势,是一项紧扣现代汽车时代发展主题的高新技术,是现代轿车的主要发展方向。

目录

一.电动转向系统的来源及发展趋势。

二.转向系统方案的分析。

1.工作原理的分析。

2.转向系统机械部分工作条件。

3.转向系统关键部件的分析。

4.转向器的功用及类型。

5.转向系统的结构类型。

6.转向传动机构的功用和类型。

三.转向系统的主要性能参数。

1.转向系的效率。

2.传动系统传动比的计算。

3.转向器的啮合特征。

4.转向盘的自由行程。

四.转向系统的设计与计算。

1.转向轮侧偏角的计算。

2.转向器参数的选取。

3.动力转向机构的设计。

4.转向梯形的计算和设计。

五.结论。

六.谢辞。

七.参考文献。

正文

一.电动转向系统的来源及发展趋势。

电动助力转向系统是于20世纪80年代中期提出来的。电动助力转向系统符

合现代汽车机电一体化的设计思想,该系统由转向传感装置、车速传感器、助力机械装置、提供转向助力电机及微电脑控制单元组成。

作为汽车的一个重要组成部分,汽车转向系统是决定汽车主动安全性的关键总成,如何设计汽车的转向特性,使汽车具有良好的操纵性能,始终是各汽车生产厂家和科研机构的重要研究课题。特别是在车辆高速化、驾驶人员非职业化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的操纵设计显得尤为重要。汽车转向系统经历了纯机械式转向系统、液压助力转向系统、电动助力转向系统3个基本发展阶段。

机械式的转向系统,由于采用纯粹的机械解决方案,为了产生足够大的转向扭矩需要使用大直径的转向盘,这样一来,占用驾驶室的空间很大,整个机构显得比较笨拙,驾驶员负担较重,特别是重型汽车由于转向阻力较大,单纯靠驾驶员的转向力很难实现转向,这就大大限制了其使用范围。但因结构简单、工作可靠、造价低廉,目前在一部分转向操纵力不大、对操控性能要求不高的微型轿车、农用车上仍有使用。1953年通用汽车公司首次使用了液压助力转向系统,此后该技术迅速发展,使得动力转向系统在体积、功率消耗和价格等方面都取得了很大的进步。

80年代后期,又出现了变减速比的液压动力转向系统。在接下来的数年内,动力转向系统的技术革新差不多都是基于液压转向系统,比较有代表性的是变流量泵液压动力转向系统和电动液压助力转向系统。变流量泵助力转向系统在汽车处于比较高的行驶速度或者不需要转向的情况下,泵的流量会相应地减少,从而有利于减少不必要的功耗。电动液压转向系统采用电动机驱动转向泵,由于电机的转速可调,可以即时关闭,所以也能够起到降低功耗的功效。

液压助力转向系统使驾驶室变得宽敞,布置更方便,降低了转向操纵力,也

使转向系统更为灵敏。由于该类转向系统技术成熟、能提供大的转向操纵助力,目前在部分乘用车、大部分商用车特别是重型车辆上广泛应用。但是液压助力转向系统在系统布置、安装、密封性、操纵灵敏度、能量消耗、磨损与噪声等方面存在不足的问题。因此电动助力转向系统(简称EPS)应运而生,它是继液压动力转向系统之后产生的新的转向系统。电动助力转向系统由电动机提供助力,助力大小由电控单元(ECU)实时调节和控制,可以较好的解决液压动力转向系统所不能解决的矛盾。且拥有许多液压转向系统没有的优势,所以电动助力转向系统有取代机械转向系统、液压助力转向系统和电控液压助力转向系统的趋势,是一项紧扣现代汽车时代发展主题的高新技术,是现代轿车的主要发展方向。二.转向系统方案的分析。

1.工作原理的分析。

首先,转矩传感器测出驾驶员施加在转向盘上的操纵力矩,车速传感器测出车辆当前的行驶速度,然后将这两个信号传递给ECU;ECU根据内置的控制策略,计算出理想的目标助力力矩,转化为电流指令给电机;然后,电机产生的助力力矩经减速机构放大作用在机械式转向系统上,和驾驶员的操纵力矩一起克服转向阻力矩,实现车辆的转向。

2.转向系统机械部分工作条件。

电动助力转向系统的基本组成包括扭距传感器、车速传感器、控制单元(ECU)、电动机、减速机构和离合器等,如图所示。

在EPS系统中,传感器主要应用了扭距传感器、转速传感器、速度传感器。扭距传感器时刻检测转向盘的运动状况,将驾驶员转动转向盘的方向、角度、信息传送给控制单元作输入信号。转速传感器用于测量转向盘的旋转速度,速度传感器测量车辆的行驶速度,两者的测量结果同样送到控制单元作为输入。

控制单元是EPS系统的核心部分,也是EPS系统研究的重点。目前普遍将控制单元设计为数字化,一般以一个八位或十六位微处理器为核心,外围集成A/D 电路、输入信号接口电路、报警电路、电源。要求具有简单计算、查表、故障诊断处理、储存、报警、驱动等功能。

电动机的功能是根据控制单元的指令输出适宜的辅助扭矩,是EPS的动力源。电动机对EPS的性能有很大的影响,是EPS的关键部件之一,所以EPS对电动机很重要。不仅要求低转速大扭矩、波动小、转动惯量小、尺寸小、质量轻,而且要求可靠性高、易控制。在现有设计中电动机主要采用直流电动机和无刷永磁式电动机,驱动电路根据采用的电动机和控制策略不同而不同。

EPS的减速机构与电动机相连,起减速增扭作用。常采用涡轮蜗杆机构,也有采用行星齿轮机构。

EPS的离合器,装在减速机构的一侧,是为了保证EPS只有在预先设定的车速行驶范围内起作用。当车速达到某一值时,离合器分离,电动机停止工作,转向系统转为手动转向。另外,当电动机发生故障时离合器将自动分离。

由图可见,电动助力转向系统是在传统机械转向机构基础上增加信号

传感装置、控制单元和转向助力机构。EPS的转向轴由靠扭杆相连的输入轴和输出轴组成。输出轴通过传动机构带动转向拉杆使车轮转向,输出轴除通过扭杆与输入轴相连外,还经行星齿轮减速机构—离合器与主力电动机相连。驾驶者在操纵转向盘时,给输入轴输入了一个角位移,输入轴和输出轴之间的相对角位移使扭杆受扭,扭距传感器将扭杆所受到的扭矩转化为电压信号输入电控单元;与此同时,车速传感器检测到的车速信号页输入电控单元,电控单元综合转向盘的输入力矩、转向方向以及车速等信号,判断是否需要力矩以及力矩的方向。若需要力矩,则依照既定的助力控制策略来计算电动机助力转矩的大小并输出相应的信号给驱动电路,驱动电路提供相应的电压或电流给电动机,电动机输出相应的转矩由蜗轮蜗杆传动装置放大再施加给转向轴起助力作用,从而完成实时控制助力转向;若出现故障或超出设定值则停止给电动机供电,系统不提供助力,同时,离合器切断,以避免转向系统受电动机惯性力矩的影响。系统转为人工手动助力。工作过程如图所示。

3.转向系统关键部件的分析。

(1)转矩传感器。

转矩传感器是测量驾驶员作用在转向盘上的力矩的大小和方向的,有的转矩

传感器还能测量转向盘的转角的大小和方向。转矩传感器有接触式和非接触

式两种。二者比较起来,由于非接触式转矩传感器体积小,而且精度高,所

以采用非接触式转矩传感器。

(2)电磁离合器。

EPS系统助力一般都是在一个设定的范围,当车速低于某一个特定值时,系

统提供转向助力,保证转向的轻便性;当车速处于设定值之间时,电动机停

止工作,系统处于休眠状态,离合器分离,以切断辅助动力,另外,当EPS

系统发生故障的时候,离合器自动分离,此时仍然可利用手动控制转向,保

障系统的安全性,EPS系统中电磁离合器应用较多的为单片干式电磁离合器。(3)电动机。

助力电动机是EPS系统的主要动力源,它根据ECU的控制指令在不同的工况下输出不同的助力力矩,对整个EPS系统性能影响很大。对电动机的选择要求是:有良好的动态特性、调速特性和随动特性并易控制,还要求输出波动小、低转速大转矩、转动惯量小、尺寸质量轻等,因此常采用有刷式永磁直流电动机。(4)减速机构。

减速机构是EPS中不可缺少的组件,它把电动机的输出减速放大后再传递给

执行部件。目前实用的减速机构有多种组合方式,采用较多的是蜗轮蜗杆与

转向轴驱动组合式。

4.转向器的功用及类型。

转向器是转向系中减速增大转矩的装置,其功能是增大转向盘传到转向节的

力并改变力的传递方向。它实质上是一个减速器,以达到驾驶员驾驶省力,

减轻其疲劳程度之目的。转向器的结构形式很多,通常按其传动幅结构形式

来分类。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式。5.转向系统的结构类型。

根据助力电动机助力位置不同,可分为转向轴式电动助力转向系统、齿轮轴式电动助力转向系统及齿条轴式电动助力转向系统。

转向轴助力式转向系统的电动机固定在转向轴的一侧,通过减速机构与转向轴相连,直接驱动转向轴助力转向,如图所示。

齿轮助力式转向系统的电动机和减速机构与小齿轮相连,直接驱动齿轮助力转向,如图所示。与转向轴助力式相比,可以提供较大的转向力,适用于中型车。其助力控制特性方面增加了难度。

齿条助力式转向系统的电动机和减速机构直接驱动齿条提供助力,与转向器小齿轮助力式相比,齿条助力式可以提供更大的转向力,适用于大型车。对原有的转向传动机构有较大的改变。

6.转向传动机构的功用和类型。

它的功用将转向器输出的力和运动传到转向桥两侧的转向节,使两侧转向轮偏转,且使两转向轮偏转角按一定关系变化,以保证汽车转向时车轮与地面的相对滑动尽可能小。同时,还承受由于路面不平而引起的冲击振动,以稳定汽车方向,避免转向盘由于路面的冲击而出现的打滑现象。

转向传动机构的结构形式因行驶悬架的不同,可分为非独立悬架转向传动机构和独立悬架转向传动机构。

三.转向系统的主要性能参数。

1.转向系的效率。

根据效率定义,因功率输入来源不同,转向器的效率有正、逆效率之分。

功率由转向轴输入,经转向摇臂输出所求得的效率称为正效率,用符号η

+表示,反之称为逆效率,用符号η

表示。

-

影响转向系的正效率的因素有:转向器的类型、结构特点、结构参数和质量制造等,同一类型的转向器因结构不同,效率也有较大的差别。转向系的逆效率

影响汽车的使用性能和驾驶员的安全。对于逆效率高的转向器而言,路面作用在车轮上的力,经过转向系统可大部分传递到方向盘,这种转向器称为可逆式的。

2.传动系统传动比的计算。

汽车在沥青或者混凝土路面的原地转向阻力矩,可用下面的半经验公式计算:

r M =P

G 313μ

mm N ? (3-9) 式中 1G ——前轴静负荷,N ;

μ——轮胎和地面间的滑动摩擦系数,一般在0.7左右;

P ——轮胎气压,2/mm N 。

由于满载时,前轴负荷45---49.5%;空载时,51---56%,所以

1G =1700×55%×9.8=9163N

即 r M =6.3736563

.0)9163(37.03

=mm N ? 由于轮胎选用205/55R16V 型号,其宽度为205mm ,那么,

a =0.4×205=82mm ;

w F =a M r =8.455682

6.373656=N 取h F =200N ,则

p i =20028.4556?=h

w F F 2=45.6 由于p i =0ωi ?a

R sw , 即0ωi =p i ?sw

R a =45.6×20082≈18.7 3.转向器的啮合特征。

啮合间隙是指各种转向器中传动副之间的间隙。啮合间隙又称为传动间隙。

研究啮合特性的意义,在于它与直线行驶状态的稳定性和转向器的使用寿命有密切关系。汽车处于直线行驶状态时,转向器传动副的啮合间隙可能有两种情况:没有间隙或者有间隙。在后一种情况下,一旦转向器受到侧向力的作用,就能在间隙的范围内,允许转向轮偏离原来的行驶位置,而使汽车失去安稳性。为了防止出现这样的情况,要求传动副的啮合间隙在方向盘处于中间或附近位置上时要极小,最好无间隙,以保证汽车直线行驶的稳定性。

因为汽车用小转弯行驶的次数多于大转弯,所以转向器传动副工作表面磨损不均匀。传动副中间位置的磨损要大于两端的磨损。当中间位置的间隙达到一定程度的时,驾驶员将无法确保行驶的稳定性,此时要对间隙进行重新调整,借以消除所产生的间隙,调整后要求方向盘能及时圆滑地从中间位置转到两端,而无卡住现象。

如果设计的是使转向器的传动副各处具有均匀的间隙,就不能达到上述的要求,因为当中间位置磨损出现间隙后,经过调整,该处的间隙虽然可以消除,但是在方向盘转到底以前必然要卡住,使之不能继续使用。为了延长转向器的使用寿命,应当使传动副的啮合间隙在离开中间位置以后逐渐增大。

4.转向盘的自由行程。

就转向操纵机构的灵敏度而言,最好是转向盘和转向节运动能同步开始并能同步结束。然而,这在实际上是不可能的,因为在整个转向系统中,各个传动件之间必存在着转配间隙,而且,这些间隙将随着零件的磨损而逐渐增大。在转向盘转动的开始阶段,驾驶员对转向盘的转向力矩很小,因为只用来克服转向系的内部摩擦,称为转向盘的空转阶段。此后,才需要对转向盘施加更大的力来克服从车轮传到转向节的阻力矩,从而实现汽车的转向。转向盘在空转阶段的角行程,称为转向盘的自由行程。

四.转向系统的设计与计算。

1.转向轮侧偏角的计算。(以下图为例)

sin =αR

L =46328.058002687= 5990.27=α°

tan B

R L -?=

αβcos 7334.03664268714765900.27cos 58002687==-?= =β36.2545°

2.转向器参数的选取。

转向器的齿轮采用斜齿轮,齿轮模数在2~3mm 之间,主动小齿轮齿数在5~7之间,压力角取20α=?,螺旋角在9~15??之间。故取小齿轮16z =,2.5n m =,10β=?右旋,压力角20α=?,精度等级8级。

3.动力转向机构的设计。

(1).转矩传感器的选择。

本此设计选择非接触式转矩传感器。它主要由滑块、钢球、环和电位器组成。钢球通过螺旋球表面固定在输入轴外侧的螺旋球槽盒和滑体内侧的球洞里。滑块相对于输入轴可以在螺旋方向上移动。同时滑块通过一个销安装到输出轴,使它仅可以相对输出轴在垂直方向上移动。因此,当输入轴相对输出轴移动时,滑块按照输入轴旋转的方向和输出轴的旋转量,垂直移动。当转动方向盘,转矩被传

递到扭力杆时,输入轴和输出轴出现偏差,这些偏差使滑块在轴方向移动,这些轴方向的移动转化为所示的控制杆力电位器的旋转角度。结果,转矩转变为电压变化,并传送到控制器ECU.送到控制器的转矩信号为主、副两路。当方向盘处于中间位置时,主,副两路输出的信号都为 2.5V;当方向盘右转时,主转矩信号大于2.5V;当方向盘左转时,主要转矩信号小于2.5V,辅转矩信号大于2.5V。系统利用主、副转矩信号即可判断方向盘转向的方向和转矩大小。

(2).车速传感器的选择。

车速传感器也是系统控制的主要依据之一,一方面它与转矩信号结合用于确定系统控制的目标电流,一方面用于保证系统的安全性和可靠性,即当车速超出系统设定的助力范围时,系统将要停止助力,改为手动操作。车速信号由车速传感器测得,车速传感器也有多种类型,主要是利用电磁原理和光学原理制成。常见的车速传感器工作原理是车速传感器由永久磁铁,铁芯和线圈组成。由于传感器的顶端设置在附有齿的转子附近,当附有齿的转子旋转时,从传感器的永久磁铁的磁通量发生变化,在线圈上就会产生交流电流。

(3)直流电动机的选择。

本次设计采用的是无刷式永磁直流电动机。作为EPS系统的助力的提供者,直流电动机应该具有较好的机械特性和调速特性。一般应该满足如下要求:尽可能宽的调速范围;较小的转动惯量;良好的调速平稳性;体积小,质量轻、噪声低,过载能力强。

(4).减速机构的选择。

减速机构使电动助力转向系统中不可缺少的部件,它的作用是降低电动机输出轴的转速,从而将电动机输出轴的输出转矩放大后作用于转向输出轴。

(5).电子控制单元ECU.

ECU的功能是根据扭矩传感器的信号和车速传感器的信号,进行逻辑分析与计算后,发出指令,控制离合器和电动机的动作。由于EPS系统处理的数据量还不是很大,所以目前控制器核心一般采用8位的单片机。其结构如下图所示,其原理:ECU控制模块接受到A1的点火信号后,接通蓄电池电源,系统开始工作。根据扭矩传感器A8(主信号),A10(副信号)和车速传感器A2的输入信号,确

定助力的控制的大小和方向,驱动电机转动(B1、B3)和离合器(A6、A11)的开断除此之外,P/S控制模板还具有故障自我诊断(A12)和安全防护功能。当系统出现故障报警时,系统将停止助力控制,并显示故障代码。

4.转向梯形的计算和设计。

(1).转向梯形的功用及分类。

转向梯形用来保证汽车转弯行驶时,所有车轮都能在一个瞬时转向中心,在不同的圆周上做无滑动的纯滚动。同时为达到总体布置要求的最小转弯半径,转向轮应该有足够大的转角。

转向梯形有整体式和断开式的两种,选择整体式或断开式转向梯形方案与悬架采用何种方案有联系,当汽车的前悬架采用非独立悬架时,应采用整体式转向梯形;当汽车的前悬架采用独立悬架时,应采用断开式转向梯形。

(2).最小转弯半径。

为了避免在汽车转向时产生的路面对汽车行驶的附加阻力和轮胎过快的摩擦,要求转向系能保证在汽车转向时所有的车轮均做纯滚动,这只是在所有车轮

的轴线都相交与一点方能实现,内转向轮偏转角β应大于外转向轮偏转角α。在汽车转向轮转角最大位置的条件下以低速转弯时的半径称为最小转弯半径min R 。在车轮绝对刚体的条件下。角α与角β的理想关系是:

L

B +=βαcot cot 式子中 B ——两侧主销轴线与地面交点的距离;

L ——汽车轴距。

由转向中心到外转向轮与地面的接触点的距离为汽车的转弯半径,转弯半径越小,汽车转向所需要的场地就越小。当外转向轮偏转角达到最大时,转弯半径最小。转弯半径越小,汽车的机动性越好。最小转弯半径min R 与m ax i θ的关系为: a L

R i +=max min sin θ (4-4)

其中 L ——汽车轴距,L =2687mm ;

a ——车轮转臂,a =18mm ;

根据设计要求,m R 8.5=;

计算得 =θ27036‘。

五.结论

此次毕业设计是在我们掌握了相关基础课程如:理论力学、材料力学、机械原理、机械设计及专业课程如:汽车构造、汽车理论、汽车设计的后所做的一次综合性的设计,不仅是对我们大学所学知识的一个检验,更是一次实战练兵。使我们对所学的一些基本理论得到了培养,并且使我们更加理解本专业的一些原理、设计方法和思路,为我们以后在自己专业领域内的发展奠定了基础。

在本次设计中,我设计的是越野车的的动力转向系统,采用断开式电动助力转向系统。

动力转向系统是在原有机械式转向器的基础上添加了动力装置而实现动力转向,减轻驾驶员负担的一种转向系统。动力转向系统正在从液压气压式向着电控转向系统方向发展,在以后的设计和运用中将要广泛的应用新技术新知识。

这次设计到现在基本是结束了,但是对于动力转向系统的认识还有待提高,

由于过去的理论中缺乏这方面知识的培养,所以对于很多的电控动力转向机构原理的认识不是很透彻,这就给设计本身带来了困难,所以设计的动力转向系统可能在某些方面有漏洞和不足,但是它是对我自身能力的一种锻炼,从中得到理论知识以外的实践经验,觉得毕业设计收获颇丰。

六.谢辞

本论文设计在老师的悉心指导和严格要求下完成的,从课题选择到具体的写作过程,无不凝聚着老师的心血和汗水,在我的毕业论文写作期间,老师为我提供了种种专业知识上的指导和一些富于创造性的建议,没有这样的帮助和关怀,我不会这么顺利的完成毕业论文。在此向老师表示深深的感谢和崇高的敬意。

我还要感谢老师在毕业设计期间给予我的种种帮助与关怀,以及耐心的指导,使我学到了很多专业的知识,并运用到我的毕业设计中,增加了亮点。

在临近论文完成之际,我还要借此机会向给予了我帮助和指导的所有老师表示由衷的谢意,感谢他们的辛勤栽培和教育。不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文。

同时,我还要感谢同组的各位同学,在毕业设计的这段时间里,你们给了我很多的启发,提出了很多宝贵的意见,对于你们帮助和支持,在此我表示深深地感谢。

最后,在论文写作过程中,我还参考了有关的书籍和论文,在这里一并向有关的作者表示谢意。

七.参考文献

1. 蔡春源.机械设计设计手册.冶金工业出版社,1996

2.吉林工业大学汽车教研室.汽车设计.北京:机械工业出版社,1983

3.王望予.汽车设计(第四版).机械工业出版社.北京:2004

4.罗玉涛.现代汽车电子控制技术.北京:国防工业出版社,2007

5.崔胜民.现代汽车系统控制技术.北京:北京大学出版社,2007

6.李书龙.汽车电动助力转向系统的研究与开发[D].东南大学,2004.

7.刘照.汽车电动助力转向系统动力学分析与控制方法研究[J].汽车研究与开发,2004.

8.周冬林.电动助力转向系统仿真及控制系统设计[J].汽车技术,1991.

9.张永辉.汽车电动助力转向系统特性仿真研究[J].汽车科技,2009.

10.姬广斌.汽车电动助力转向的系统仿真与控制器设计[J].汽车科技,2006.

11.余树洲.汽车电动助力转向系统助力特性的仿真研究[M].吉林科学技术出版社,2006.

12.徐汉斌.电动转向器控制系统研究[M].山西科学技术出版社,2007.

13.李伟光,李慧祺,王元聪.汽车电动助力转向系统的现状与发展[D].华南理工大学,2005.

农用车转向系统设计说明书

第一章前言 §1.1 四轮农用车的发展前景 中国改革开放以来,在农村实行家庭联产承包责任制的改革,使农村的经济空前的活跃。农村的货运量和人口的流动量急剧增加,加快运输机械化成为农村经济发展的迫切需要,正是这一市场的需要使具有中国特色的运输机械-农用运输车应运而生。它解决了农村运输的急需,填补了村际,乡际,城镇及城乡结合部运输网络的空白,活跃了农村经济,为农村富裕劳动力找了一条出路,从而使数以万计的农民走上了小康之路! 四轮农用运输车的竞争对手是轻型汽车。与汽车相比,四轮农用运输车有许多优点。入世后农用运输车没有受到多大冲击,因为它是中国特色的产业,符合国情,在国外几乎没人搞过。但是我们不能回避汽车与四轮农用运输车在市场的竞争,四轮农用运输车利用比较底的生产成本和微利经营的生产方式并引进先进的汽车技术,坚持“三低一高”的特色,注重产品质量,使之与在汽车行业的竞争中得以提高。 随着党和国家提出的的开发西部的政策落实,也给农用运输车厂商带来了无限商机使农用运输车的开发有广阔的前景,另一方面,我国有近13亿人口,特别是9亿以上的农村人口收入水平相对较低,需求量最大的是低档次的汽车。由于它比较适合中国国情,预计在未来的5~15年里,农用车在我国农村仍然具有广阔的发展前景。近年来农用车保有量增加很快,因此对柴油的需求很大。 农用车制造工艺简单,价格便宜,其中三轮车价格在4000~7000元/辆,四轮车价格在1~1.5万元/辆,购车农户一般半年左右即可收回10000元投资。另外,农用车的养路费为每月每吨70元,是汽车的30%,使用成本为同吨位汽车的1/3到1/2。公路快速建设也促进了农用车的发展。旧中国,全国公路仅13×104 km,而到1997年底,已达1.226×106 km,目前全国98%的乡和80%的村都通了公路,使得农用车有用武之地。公安车管部门1993年制定了《关于农用运输车道路交通管理的规定》,在不损害管理大局的前提下,

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

车辆排气系统设计规范

车辆排气系统设计规范

车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式(1) 计算初步确定排气管内径。 D=2 √Q/(πV) (1) 式中:Q—发动机排量;V—气流速度,一般取50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。管的中心转弯半径一般应≥(1.5~2)D,其折弯成型角应大于90o,以大于120o为宜。整个系统的管道转弯数应尽可能少,一 1

越野车转向系统的设计

毕业设计 题目:越野车转向系统设计与优化学生姓名: 学号: 专业: 年级: 指导老师: 完成日期:

目录 第一章电动转向系统的来源及发展趋势 (1) 第二章转向系统方案的分析 (3) 1.工作原理的分析 (3) 2. 转向系统机械部分工作条件 (3) 3.转向系统关键部件的分析 (4) 4.转向器的功用及类型 (5) 5.转向系统的结构类型 (5) 6.转向传动机构的功用和类型 (7) 第三章转向系统的主要性能参数 (8) 1. 转向系的效率 (8) 2. 转向系统传动比的组成 (8) 3. 转向系统的力传动比与角传动比的关系 (8) 4. 传动系统传动比的计算 (9) 5. 转向器的啮合特征 (10) 6. 转向盘的自由行程 (11) 第四章转向系统的设计与计算 (12) 1. 转向轮侧偏角的计算(以下图为例) (12) 2. 转向器参数的选取 (12) 3. 动力转向机构的设计 (12) 4. 转向梯形的计算和设计 (14)

第五章结论 (16) 谢辞 (17) 参考文献 (18) 附录 (19)

转向系统设计与优化 摘要 汽车在行驶过程中,需要按照驾驶员的意志经常改变行驶方向,即所谓汽车转向。用来改变或保持汽车行驶方向的机构称为汽车转向系统。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全是至关重要的。因此需要对转向系统进行优化,从而使汽车操作起来更加方便、安全。本次设计是EPS电动转向系统,即电动助力转向系统。该系统是由一个机械系统和一个电控的电动马达结合在一起而形成的一个动力转向系统。EPS系统主要是由扭矩传感器、电动机、电磁离合器、减速机构和电子控制单元等组成。驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。因此,电动助力转向系统是汽车转向系统的发展方向。 关键词:机械系统,扭矩传感器,电动机,电磁离合器,减速机构,电子控制单元。

课程设计--汽车转向机构说明书

汽车运动机构课程设计说明书 温州大学机电工程学院 2013年6月

机械原理设计说明书 题目:汽车转向机构 学院:机电工程学院 专业:汽车服务工程 班级:11汽车服务本 姓名:叶凌峰俞科王栋柄 王璐吴海霞欧阳凯强 学号:11113003233 11113003243 11113003199 11113003209 11113003218 11113003174指导老师:李振哲

目录 一.设计题目 (1) 1.1课程设计目的和任务 (1) 1.2课程设计内容与基本要求 (2) 1.3机构简介 ........................................................................ 错误!未定义书签。 1.4参考数据 (5) 1.5设计要求 (5) 二. 设计方案比较 (6) 2.1设计方案一 (6) 2.2设计方案二 (7) 2.3设计方案三 (8) 2.4最终设计方案 ................................................................ 错误!未定义书签。 三.虚拟样机实体建模与仿真 (9) 四.虚拟样机仿真结果分析 (10) 4.1运动学仿真 (11) 4.1.1运动学仿真--转向盘位移仿真曲线 (11) 4.1.2运动学仿真--轮胎位移仿真曲线 (11) 4.1.3运动学仿真--转向盘速度仿真曲线 (12) 4.1.4运动学仿真--轮胎速度仿真曲线 (12) 4.1.5运动学仿真--转向盘加速度仿真曲线 (13) 4.1.6运动学仿真--轮胎加速度仿真曲线 (13) 4.2动力学分析 (14) 4.2.1转向盘受力仿真曲线 (14) 4.2.2轮胎受力仿真曲线 (14) 五. 课程设计总结 (15) 5.1机械原理课程设计总结 (15) 5.2设计过程 (15) 5.3设计展望 (16) 5.4设计工作分工表 (16) 5.5参考文献 (16)

汽车排气系统CADCAE集成开发方法

汽车排气系统CAD/CAE集成开发方法 华中科技大学张杰金国栋钟绍华傅强 摘要:本文探讨了一种新颖的汽车排气系统CAD/CAE 集成开发的思路和方法,此法将传统的经验设计理论与先进的专业软件应用结合起来。首先明确系统的需求和目标,然后建立起排气系统集成开发的环境,运用软件工程的思想进行整体规划和程序开发的模块化,这种设计方法在很大程度上提高了设计精度和功效。文中以消声器为例给出了其设计方法和在软件上实现的流程图。 关键词:排气系统集成开发催化转换器消声器 1 排气系统开发现状分析 日益严格的排放法规和人类环境意识的增强对汽车节能净化提出了高标准的要求,而排气系统作为现代内燃机动力汽车的一个重要总成,其性能直接决定了发动机排气损失以及污染物和气动噪声的排放量,因此如何对排气系统进行有效的设计分析,如何使其与发动机合理匹配等,就成为现代汽车节能与净化的关键技术之一。 在我国长期以来,汽车排气系统的开发仍然停留在各部件单一设计,依赖简单理论估算、经验设计和大量试验的基础上[1],这样不仅费时费力,给排气系统结构和性能的进一步优化带来困难;而且,单独对消声器或催化器局部分散设计不能完全反映排气系统的整体耦合特征,难以设计出令人满意的产品。随着计算机软硬件技术以及计算流体力学(CFD)等仿真分析软件的飞速发展,一些商用软件逐渐完善,成为研究设计人员的有效工具。例如通过对催化器和消声器进行数值模拟研究其阻力特性等[2],这一方面为结构优化提供充分的理论指导,另一方面也大大降低了实际试验的工作量,缩短设计周期,并且可以探索多种可能设计。 然而单一的商用软件往往不能满足复杂系统的整体开发,而需要选择相关软件进行二次开发和科学集成。目前针对整个排气系统进行集成开发研究的还未见报道。为满足排气系统模块供应商产品开发的需要,我们选择了一些有专业特点的设计与分析软件,以数据库管理系统为纽带,以VC++为开发语言,对这些软件进行了集成和二次开发,初步完成了汽车排气系统CAD/CAE 软件,使其能在一个用户界面下完成整个排气系统的设计(CAD)与分析(CAE)功能,使传统的经验设计向精确的理论设计过渡,很大程度上提高了设计精度和功效。 2 排气系统CAD/CAE 系统的任务和功能 2.1 任务要求

16L爱丽舍转向系统设计说明书

1.摘要 汽车转向器是汽车的重要组成部分,也是决定汽车主动安全性的关键总成,它的质量严重影响汽车的操纵稳定性。随着汽车工业的发展,汽车转向器也在不断的得到改进,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。而在机械式转向器中,循环球齿条-齿扇式转向器由于其自身的特点被广泛应用于各级各类汽车上。本文选择GX1608A型循环球齿条-齿扇式转向器作为研究课题,其主要内容有:汽车转向器的组成分类;转向器总成方案分析及其数据确定和转向器的设计过程。 这种转向器的优点是,操纵轻便,磨损小,寿命长。缺点是结构复杂,成本高,转向灵敏度不如齿轮齿条式。因此逐渐被齿轮齿条式取代。但随着动力转向的应用,循环球式转向器近年来又得到广泛使用。 关键词;转向器操纵稳定性循环球齿条-齿扇式转向器

目录 摘要 (1) 1绪论 (4) 2汽车转向系的组成及分类 (6) 2.1汽车转向系的类型和组成 (6) 2.1.1 机械式转向系 (9) 2.1.2 动力转向器 (10) 2.2 转向系主要性能参数 (11) 2.2.1转向器的效率 (11) 2.2.2传动比的变化特性 (12) 2.2.3转向盘自由行程 (17) 2.3 转向操纵机构及转向传动机构 (17) 2.3.1转向操纵机构 (17) 2.3.2转向传动机构 (18) 3转向器总成方案分析 (20) 3.1转向器设计要求 (20) 3.2转向器总成方案设计 (21) 4循环球式转向器主要尺寸参数的选择 (25) 5 转向器输出力矩的确定 (26) 6 轴的设计计算及校核 (27) 6.1 转向摇臂轴(即齿形齿扇轴)的设计计算 (27) 6.1.1材料的选择 (27) 6.1.2结构设计 (27) 6.1.3轴的设计计算 (27) 6.2 螺杆轴设计计算及主要零件的校核 (31) 6.2.1材料选择 (31) 6.2.2结构设计 (31) 6.2.3轴的设计计算 (32) 6.2.4钢球与滚道之间的接触应力校核 (34)

排气系统设计开发指南

汽车有限公司 . 01 页次:1/7 版次:

1. 主题与适用范围 1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发 2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB;

4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

毕业论文设计转向系统设计

目录摘要2 第一章绪论3 1.1汽车转向系统概述3 1.2齿轮齿条式转向器概述9 1.3液压助力转向器概述10 1.4国内外发展情况12 1.5本课题研究的目的和意义12 1.6本文主要研究内容13 第二章汽车主要参数的选择14 2.1汽车主要尺寸的确定14 2.2汽车质量参数的确定16 2.3轮胎的选择17 第三章转向系设计概述18 3.1对转向系的要求18 3.2转向操纵机构18 3.3转向传动机构19 3.4转向器20 3.5转角及最小转弯半径20 第四章.转向系的主要性能参数22 4.1转向系的效率22 4.2传动比变化特性23 4.3转向器传动副的传动间隙△T25 4.4转向盘的总转动圈数26 第五章机械式转向器方案分析及设计26 5.1齿轮齿条式转向器26 5.2其他转向器28 5.3齿轮齿条式转向器布置和结构形式的选择29 5.4数据的确定29 5.5设计计算过程31 5.6齿轮轴的结构设计35 5.7轴承的选择35 5.8转向器的润滑方式和密封类型的选择35 5.动力转向机构设计36 5.1对动力转向机构的要求36 5.2动力转向机构布置方案36 5.3液压式动力转向机构的计算38 5.4动力转向的评价指标43

6. 转向传动机构设计45 6.1转向传动机构原理45 6.2转向传送机构的臂、杆与球销47 6.3转向横拉杆及其端部47 6.4杆件设计结果48 7.结论49 致谢49 摘要 本课题的题目是转向系的设计。以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。在本文中主要进行了转向器齿轮齿条的设计和对转向齿轮轴的校核,主要方法和理论采用汽车设计的经验参数和大学所学机械设计的课程内容进行设计,其结果满足强度要求,安全可靠。 关键词:转向系;机械型转向器;齿轮齿条;液压式助力转向器 Abstract The title of this topic is the design of steering system. Rack and pinion steering gear to the design as the center, one vehicle parameters on the overall framework of the impact of vehicle steering; Second, the choice of mechanical steering; third rack gear and a reasonable match to meet the correct steering gear ratio and strength requirements; Fourth, power steering mechanism design; Fifth, the structural design of trapezoidal. Therefore, taking into account the above issues and factors that require study, based on the steering wheel rotary drive transmission shaft of the steering rack and pinion steering, through the universal joint drive shaft rotation gear shift, steering rack and steering gear shaft meshing, thereby encouraging steering rack linear motion to achieve steering. Simple structure to achieve the steering tight, short axial dimension, and the number of parts can increase the advantages of less power in order to achieve the vehicle steering stability and sensitivity. In this article a major design steering rack and pinion steering gear shaft and the check, the main methods and theoretical experience in the use of automotive design parameters and the University of mechanical design school curriculum design and the results meet the strength

汽车转向系统EPS设计毕业论文

汽车转向系统EPS设计毕业论文 目录 1 引言 (1) 1.1汽车转向系统简介 (1) 1.2汽车转向系统的设计思路 (3) 1.3 EPS的研究意义 (4) 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 3 电助力转向系统的设计 (11) 3.1 动力转向机构的性能要求 (11) 3.2 齿轮齿条转向器的设计计算 (11) 3.3 转向横拉杆的运动分析[9] (21) 3.4 转向器传动受力分析 (22) 4 转向传动机构优化设计 (24) 4.1传动机构的结构与装配 (24) 4.2 利用解析法求解出外轮转角的关系 (25) 4.3 建立目标函数 (27) 5 控制系统设计 (29) 5.1 电助力转向系统的助力特性 (29) 5.2 EPS电助力电动机的选择 (30)

本科毕业设计(论文) 5.3 控制系统框图设计 (31) 结论 (32) 致谢 (34) 参考文献 (35)

1 引言 1.1汽车转向系统简介 汽车转向系统,顾名思义是为了能够使车辆按照驾驶员的意愿向左或者向右转弯或者直线行驶。转向装置有很多种,也一直在经历一个循序渐进不断更新不断创新的过程。从发明家本茨发明汽车的初期,转向系统知识最简单的形式来转向,其机构为单纯的扶把式,没有助力,所以笨重,费力,以及行驶状态不稳定。从在原始的雏形开始,各国人士不断创新改革,到现在为止,汽车转向系统的应用按先后顺序可以分为:机械转向装置、液压助力转向装置、电子控液压助力转向系统、电助力转向系统、四轮转向系统、主动前轮转向系统和线控转向系统[1]目前市场大部分中低档轿车采用的液压式转向器,当然电控的也很常见,所以在该种系统的转向器技术的发展如今已经遇到了瓶颈。随着人们对乘车舒适,节能,安全,稳定的期望,电控液压式转向系统逐渐取代了先前的版本,但随着科技的进步,越来越多的科学家期待有路感的转向系统问世,所以流量阀式液压助力转向器出现了,在不同车速下,驾驶员手握方向盘,感觉到了路感的存在,助力特性曲线描述的就是“路感”,但是美中不足的是这种液压式转向器依然存在很多缺陷,电机,液压泵,转向器,流量阀等等转向器在发动机旁的布置问题又出现了,还有就是液压油的泄漏问题越来越的突出尖锐。电助力EPS (Electronic Power steering system)是在纯机械转向机构的前提下,设计加装了扭矩和车速等信号传感器、电子控制单元和转向助力装置等[2]。所以电助力式转向器弥补了上述的不足,而且节能环保,易于线性控制,所以现在很多研究人员把目光转向了电助力式转向机,瞬时其成为了国际汽车工业转向系统新的研究主题,且这种系统也正在慢慢实现整车量产状态。

制动系统设计开题报告

毕业设计(论文)开题报告

1 选题的背景和意义 1.1 选题的背景 在全球面临着能源和环境双重危机的严峻挑战下世界各国汽车企业都在寻求新的解决方案一一如开发新能源技术,发展新能源汽车等等然而. 新能源汽车在研发过程中已出现!群雄争霸的局面在能源领域. 有压缩天然气,液化石油气,煤炼乙醇,植物乙醇,生物乙醇,,生物柴油,甲醇,二甲醚,合成油等等新能源动力汽车在转换能源方面有燃料电池汽车氢燃料汽车纯电动汽车轮毅电机车等等。选择哪种新能源技术作为未来汽车产业发展的主要方向是摆在中国汽车行业面前的重要课题。据有关专家分析进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。其中油电混合动力技术逐步进入产业化锂动力电池技术取得重大突破。新能源电动汽车技术的变革为我国车用能源转型和汽车产业化振兴提供了历史机遇[1]。 作为 21 世纪最清洁的能源———电能,既是无污染又是可再生资源,因此电动汽车应运而生,随着人民生活水平和环保觉悟的提高电动汽车越来越受到广泛关注[2]。传统车辆的转向、驱动和制动都通过机械部件连接来操纵,而在电动汽车中,这些系统操纵机构中的机械部件(包括液压件)有被更紧凑、反应更敏捷的电子控制元件系统所取代的趋势。加上四轮能实现± 90°偏转的四轮转向技术,车辆可实现任意角度的平移,绕任意指定转向点转向以及进行原地旋转。线控和四轮转向的有机结合,是当今汽车新技术领域的一大亮点,其突出特点就是操纵灵活和行驶稳定[3]。轮毂电机驱动电动车以其节能环保高效的特点顺应了当今时代的潮流,全方位移动车辆是解决日益突出的城市停车难问题的重要技术途径,因此,全方位移动的线控转向轮毂电机驱动电动车是未来先进车辆发展的主流方向之一。全方位移动车辆可实现常规行驶、沿任意方向的平移、绕任意设定点、零半径原地转向等转向功能[4]。 1.2 国内外研究现状及发展趋势 电动汽车的出现得益于19世纪末电池技术和电机技术的发展较内燃机成熟,而此时石油的运用还没有普及,电动车辆最早出现在英国,1834年Thomas Davenport 在布兰顿演示了采用不可充电的玻璃封装蓄电池的蓄电池车,此车的出现比世界上第一部内燃机型的汽车(1885年)早了半个世纪。1873年英国人Robert Davidson制造的一辆三轮车,它由一块铁锌电池向电机提供电力,这被认为是电动汽车的诞生,这也比第一部内燃机型的汽车早出现了13年。到了1881年,法国人Gustave Trouve 使用铅酸电池制造了第一辆能反复充电的电动汽车。此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置,据统计,到1890年在全世界4200辆汽车中,有

转向系统设计计算书

密级:版本/更改状态:第一版/0 编号: 长城汽车股份有限公司技术文件 CC6460K/KY 转向系统设计计算书 编制: 审核: 审定: 批准: 长城汽车股份有限公司 二OO四年四月十五日

目录 1 系统概述????????????????????????????????????????????????????????????????????????????????????????????????????????????????1 2 转向系统设计依据的整车参数计设计要求????????????????????????????????????????????????????????2 3 转向系统设计过程????????????????????????????????????????????????????????????????????????????????????????????????2 3.1 最小转弯半径计算?????????????????????????????????????????????????????????????????????????????????????????2 3.2 转向系的角传动比计算?????????????????????????????????????????????????????????????????????????????????3 3.3 转向系的力传动比计算?????????????????????????????????????????????????????????????????????????????????3 3. 4 转向系的内外轮转角?????????????????????????????????????????????????????????????????????????????????????4 3. 5 液压系统的匹配计算?????????????????????????????????????????????????????????????????????????????????????5 3.5.1 转向油泵流量的计算??????????????????????????????????????????????????????????????????????????5 3.5.2 转向油泵压力的变化??????????????????????????????????????????????????????????????????????????6 4 结论说明????????????????????????????????????????????????????????????????????????????????????????????????????????????????7 5 参考文献????????????????????????????????????????????????????????????????????????????????????????????????????????????????8

排气系统设计开发指南

1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发

2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB; 4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

汽车前轮转向设计说明书

设计题目汽车前轮转向机构原理设计 年级 学号 学生姓名 指导教师 完成时间2014 年 4 月 2 日电子信息与机电工程学院

机 械 原 理 课 程 设 计 签 名 页 学 生 签 名: 年 月 日 指导教师签章: 年 月 日 答辩教师签章: 年 月 日 说明:(1)课程设计说明书提交时,学生须签名完毕。(2)分值填写、指导教师和答辩教师签章,是在相应质量评价之后由指导教师和答辩教师填写、签署。(3)指导教师质量评价分值小于48分,为课程设计质量不及格;答辩质量评价分值小于12分,为答辩不及格。课程设计质量不及格的或答辩不及格的,不予课程设计修改和二次答辩,须重修课程设计并参加下届学生的课程设计。

目录 第1章设计任 1 务 ……………………………………………………………………………………………………………………………… 1.1 设计任 1 务 ………………………………………………………………………………………………………………………………… 1.1.1 工作原 1 理 ……………………………………………………………………………………………………………………… 1.1.2 设计要求 ………………………………………………………………………………………………………………-1 ……… 1.2 设计参 2 数 ………………………………………………………………………………………………………………………………… 1.3 国内外技术应用与发展现 3 状 ……………………………………………………………………………………… 1.4 国内外技术发展趋 4 势 ……………………………………………………………………………………………………… 1.5 工作计 7 划 ………………………………………………………………………………………………………………………………… 第2章课程设计过 9 程 ……………………………………………………………………………………………………………………… 2.1 设计内 9 容 ………………………………………………………………………………………………………………………………… 2.1.1 理论的α和β值 (9) 2.1.2 用图解法设计四杆机构 9 ABCD …………………………………………………………………………… 2.1.3 运动分 10 析 ……………………………………………………………………………………………………………………… 2.1.4 最小传动角γ 12 min……………………………………………………………………………………………………… 结论 参考文献 个人总结

基于MATLAB的汽车制动系统设计与分析软件开发.

基于MAT LAB 的汽车制动系统 3 设计与分析软件开发 孙益民(上汽汽车工程研究院 【摘要】根据整车制动系统开发需要, 利用MAT LAB 平台开发了汽车制动系统的设计和性能仿真软件。 该软件用户界面和模块化设计方法可有效缩短开发时间, 提高设计效率。并以上汽赛宝车为例, 对该软件的可行性进行了验证。 【主题词】制动系汽车设计 统分成两个小闭环系统, 使设计人员更加容易把 1引言 制动性能是衡量汽车主动安全性的主要指标。如何在较短的开发周期内设计性能良好的制动系统一直是各汽车公司争相解决的课题。 本文拟根据公司产品开发工作需要, 利用现有MA T LAB 软件平台, 建立一套面向设计工程师, 易于调试的制动开发系统, 实现良好的人机互动, 以提高设计效率、缩短产品开发周期。 握各参数对整体性能的影响, 使调试更具针对性。 其具体实施过程如图1所示。 3软件开发

与图1所示的制动系统方案设计流程对应, 软件开发也按照整车参数输入、预演及主要参数确定, 其他参数确定和生成方案报告4个步骤实现。3. 1车辆参数输入 根据整车产品的定位、配置及总布置方案得出空载和满载两种条件下的整车质量、前后轴荷分配、质心高度, 轮胎规格及额定最高车速。以便获取理想的前后轴制动力分配及应急制动所需面临的极限工况。 3. 2预演及主要参数确定 在获取车辆参数后, 设计人员需根据整车参数进行制动系的设计, 软件利用MAT LAB 的G U I 工具箱建立如图2所示调试界面。左侧为各主要参数, 右侧为4组制动效能仿真曲线, 从曲线可以查看给定主要参数下的制动力分配、同步附着系数、管路压力分配、路面附着系数利用率随路况的变化曲线, 及利用附着系数与国标和法规的符合现制动器选型、性能尺寸调节, 查看液压比例阀、感载比例阀、射线阀等多种调压工况的制动效能, 并通过观察了 2汽车制动系统方案设计流程的优化 从整车开发角度, 制动系统的开发流程主要包括系统方案设计、产品开发和试验验证三大环节。制动系统的方案设计主要包含结构选型、参数选择、性能仿真与评估, 方案确定4个环节。以前, 制动系统设计软件都是在完成整个流程后, 根据仿真结果对初始设计参数修正。因此, 设计人员往往要反复多次方可获得良好的设计效果, 而且, 在调试过程中, 一些参数在特定情况下的相互影响不易在调试中发现, 调试的尺度很难把握。 本文将整车设计流程划分为两个阶段:主要参数的预演和确定、其他参数的预演和参数确定。即根据模块化设计思想, 将原来一个闭环设计系 收稿日期:2004-12-27 3本文为上海市汽车工程学会2004年(第11届学术年会优秀论文。

齿轮齿条转向器设计计算说明书

车辆工程课程设计任务书 1.课程设计题目:汽车齿轮齿条式转向器设计及零件加工工艺制定2.课程设计目的:此课程设计是《汽车设计》、《汽车制造工艺学》课 程教学重要实践环节,其目的是: 1)培养学生理论联系实际的设计思想,巩固和加强所学的相关专业课程的知识; 2)熟悉和掌握车辆设计和制造工艺制定的一般过程和方法,提高综合运用所学的知识进行车辆设计与制造的能力; 3)熟练掌握和运用设计资料(指导书、图册、标准和规范等)以及经验数据进行设计的能力,培养学生机械制图、设计计算和编写技 术文件等的基本技能。 3.课程设计时间:2010年8月30日~2010年9月23日(4周)4.整车性能参数: 车型:一汽佳宝(面包车) 基本参数(网络搜索得到): 5.汽车齿轮齿条式转向器设计的基本要求: 1)技术参数: 线角传动比:41.8mm/rad 齿轮法向模数:2.2 方向盘总圈数:3.5 齿条行程:61.5mm 2)设计要求:仅设计转向器部分。 6.齿轮齿条式转向器的零件加工制造工艺部分的要求零件名称:齿轮 1)生产纲领:1000~10000件,生产类型:批量生产;应保证零件的加工质量,尽量提高生产率和降低消耗率。

2)尽量降低工人的劳动强度,使其有良好的工作条件;在充分利用现 有生产条件的基础上,采用国内外先进工艺技术;主要的工艺要进 行必要的分析论证和计算。 7.提交的文件资料: 1)装配图1张(A1)、零件图2张(A3); 2)零件毛配图1张(A3); 3)零件加工工艺过程卡片1套、零件加工工序卡片1套; 4)课程设计说明书1份(20页左右)(A4)。 一.齿轮齿条转向器的优缺点: 齿轮齿条转向器是由转向轴做成一体的转向齿轮和常与转向横拉杆做成一体的齿条组成。 优点:结构简单、紧凑;壳体采用铝合金或镁合金压铸而成,转向器质量比较小,传动效率高达90%;齿轮与齿条之间因磨损而出现间隙后,利用装在齿条背部的、靠近主动小齿轮的处的压紧弹簧能自动消除间隙,不仅可以提高转向系统的刚度,还可以防止工作时产生冲击和噪声;转向器占用体积小,没有转向摇臂和直拉杆,所以转向转角可以增大,制造成本低。 缺点:齿轮齿条转向器因逆效率高(60%~70%),汽车在不平路面上行驶时,发生在转向轮与路面之间冲击力的大部分能传至方向盘,称之反冲现象。反冲会使驾驶员精神紧张,并难以准确控制汽车的行驶方向,转向盘突然转动又会造成打手,同时对驾驶员造成伤害。 二.齿轮齿条转向器的输入形式及特点: 1.侧面输入,中间输出:与齿条固连的左右拉杆延伸到接近汽车纵向对称平面附近,由于拉杆长度增加,车轮上下跳动时拉杆摆角减小,有利于减少车轮的上下跳动时转向系与悬架系的运动干涉,拉杆与齿条用螺栓固连在一起,因此,两拉杆与齿条同时向左或向右移动,为此在转向器壳体上开有轴向的长槽,从而降低了他的强度。 2.采用两端输出方案时,由于转向拉杆长度受到限制,容易与悬架系统导向机构产生运动干涉。 3.侧面输入,一端输出的齿轮齿条转向器,常用在平头车上。 齿轮齿条转向器采用斜齿圆柱齿轮与斜齿齿条啮合,增加运转平稳性,降低冲击和噪声。齿条断面有圆形、V形和Y形三种。圆形断面制造简单;V形和Y形节约材料,质量小而且位于齿条下面的两斜面与齿条托坐接触,可以用来防止齿条绕轴线转动。 三.齿轮齿条转向器计算载荷的确定。 1、引言:为了保证行驶安全,组成转向器的各零部件有足够的强度,欲 验算转向器各零件的强度,首先需要确定各零件所承受的力及扭矩, 影响这些力的主要因素为轴向载荷、路面阻力和轮胎胎压等。为转动 各转向轮需克服阻力,包括主销传动阻力和车轮稳定阻力、轮胎变形

相关文档
最新文档