转向系统设计计算报告分析

合集下载

(2021年整理)转向系统设计计算匹配

(2021年整理)转向系统设计计算匹配

转向系统设计计算匹配编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(转向系统设计计算匹配)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为转向系统设计计算匹配的全部内容。

1 转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。

对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入.装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。

这时,基本上是角输入。

而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。

1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。

这种反馈,通常称为路感。

驾驶者可以通过手—-——感知方向盘的震动及运转情况、眼睛----观察汽车运动、身体————承受到的惯性、耳朵—-——听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。

反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。

2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系.转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑.不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。

实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角内(内轮15°~25°范围)使转向内外轮运动关系逼近上述要求。

转向系统设计计算报告

转向系统设计计算报告

目录1.系统概述........................................... 错误!未定义书签。

系统设计说明.................................... 错误!未定义书签。

系统结构及组成.................................. 错误!未定义书签。

系统设计原理及规范.............................. 错误!未定义书签。

2.输入条件........................................... 错误!未定义书签。

标杆车基本参数.................................. 错误!未定义书签。

LF7133确定的整车参数........................... 错误!未定义书签。

3.系统计算及验证..................................... 错误!未定义书签。

方向盘转动圈数.................................. 错误!未定义书签。

齿轮齿条式转向系的角传动比...................... 错误!未定义书签。

车轮实际最大转角................................ 错误!未定义书签。

静态原地转向阻力矩.............................. 错误!未定义书签。

静态原地转向时作用于转向盘的力.................. 错误!未定义书签。

最小转弯半径的校核.............................. 错误!未定义书签。

4.总结............................................... 错误!未定义书签。

参考文献.............................................. 错误!未定义书签。

毕业论文(设计)转向系统设计

毕业论文(设计)转向系统设计

毕业论文(设计)转向系统设计随着科技的不断发展,计算机系统已经成为人们生活中必不可少的一部分,其在各个领域的应用也日渐广泛,如企业管理、医疗卫生、教育和科研等。

而计算机系统中最为重要的组成部分就是系统设计,它是整个系统的核心,是保证系统正常运行的重要保障。

本篇论文将会从系统设计的角度对计算机系统进行详细讲解,阐述其基本概念、设计流程、设计原则以及实际应用等方面。

同时,本文还将以实际案例为例,对系统设计的流程和具体实现进行分析,帮助读者更好地理解系统设计的重要性以及应用意义。

一、系统设计的基本概念系统设计是指针对某一特定的需求或问题,通过对系统进行规划、设计、实现和测试等一系列操作的过程。

其具有系统性、协调性和综合性等特点,旨在构建一个高效、可靠、可维护和易于扩展等优秀的系统。

系统设计主要包括以下几个方面:1. 系统规划:确定系统的基本目标、要求和主要功能,为后续的设计提供方向和基础。

2. 系统分析:对系统进行分析,确定系统所包括的各个模块、组件及其之间的交互关系。

3. 系统设计:根据系统分析的结果,设计系统的各个模块、组件的具体实现方案,并进行整体设计和集成。

4. 系统实现:根据设计方案进行代码编写和测试等操作,保证系统能够正常运行。

5. 系统维护:在系统投入使用之后,对系统进行监控和维护,及时发现和处理系统中出现的问题。

以上几个方面是系统设计中比较重要的环节,其并不是一成不变的,不同的系统和需求有不同的设计方案和实现方式。

二、系统设计的流程1. 系统需求分析系统设计的第一步是进行需求分析,即了解客户或使用人员对系统的需求和应用场景,并确定系统的功能点和性能指标等。

2. 系统架构设计根据需求分析的结果,确定系统的总体架构和模块划分,确定模块之间的交互关系和数据流向。

3. 模块设计根据系统架构设计的结果,对各个模块进行设计,包括结构设计、算法设计、数据结构设计等。

4. 界面设计基于用户体验和交互设计的原则,对系统的界面进行设计,使其易于操作和友好。

客车动力转向系统的设计布置及常见问题分析

客车动力转向系统的设计布置及常见问题分析

上世纪80年代初期,国内大部分客车都是在货车底盘上加装车身而来。

由于货车底盘的前悬较短并且发动机前置,导致车内空间运用率不高,车内噪声较大。

随着国民经济的发展,我国高速公路也在飞速发展,人们对出行及旅行的舒适性、安全性规定越来越高,交通密度的增长和车速的提高对客车的转向性能都提出了更高的规定。

客车转向系统设计的好坏直接影响着客车的驾驶稳定性、安全性和操纵灵活性。

下面简要介绍客车动力转向系统的设计布置及常见问题的分析。

1、客车动力转向系统的设计要点1.1 客车动力转向的设计规定(1)转向轮转角和驾驶员转动方向盘的转角应保持一定的比例关系。

(2)动力转向系统失灵时,仍能用机械系统操纵车轮转向。

(3)减轻驾驶员作用在转向盘上的手力,同时还应有路感,并随转向阻力的增长而增大。

(4)方向盘应能平稳回位,保证汽车的直线行驶能力。

(5)转向系统应能在车辆转弯时灵活平稳地将扭力传到前轮。

(6)不允许路面不平引起的振动导致方向盘回跳或方向失控。

1.2 动力转向器的选择动力转向系统由于具有转向操纵灵活、轻便,能吸取路面对前轮产生的冲击,设计时转向器结构形式的选择也灵活多样等优点,因此,已在各国的汽车制造中普遍采用。

我国大客车一般采用的是整体式-液压动力转向器,其工作原理如图1所示。

液压式动力转向以液体的压力作动力来完毕转向加力。

其特点是油液工作压力可达6-10MPa,甚至更高,所以结构紧凑,动力缸尺寸小、重量轻;因油液具有不可压缩性,故灵敏度高;油液的阻尼作用可以用来吸取路面冲击;动力装置无需润滑。

其缺陷是结构复杂,对加工精度和密封规定高等。

动力转向器型号的选择须根据前桥负荷、整车的布置等因素来综合考虑。

转向器选择的合适与否对整个转向系统起着至关重要的作用。

1.3 转向器及中间过渡臂的布置转向器及中间过度臂的合理布置对于整车的行驶稳定性有非常重要的作用。

每一种转向器对其安装都有规定,在满足转向器安装规定的情况下,应根据整车的前转向桥和前悬挂的特点,保证转向拉杆和前悬挂的运动干涉在允许的范围内。

某型车辆转向系统的优化设计与动力学分析

某型车辆转向系统的优化设计与动力学分析

某型车辆转向系统的优化设计与动力学分析一、引言车辆转向系统是汽车工程中至关重要的组成部分,对于车辆的操控性能起着至关重要的作用。

一个优秀的转向系统能够使车辆在高速行驶时保持稳定,同时在低速行驶时提供良好的转弯半径和操控性。

二、车辆转向系统的组成与原理车辆转向系统主要由转向盘、转向机构、转向传动系统和转向液压助力系统等部分组成。

在转向过程中,驾驶员通过转向盘发出指令,转向机构通过齿轮、滑块等传动装置将指令传递到车轮,从而实现车辆的转向。

三、车辆转向系统存在的问题虽然车辆转向系统在大多数情况下能够正常工作,但仍然存在一些问题需要解决。

一方面,车辆在高速行驶时容易产生偏航现象,这是由于转向系统的不够稳定所导致的。

另一方面,在低速行驶时,转向系统的灵敏度较高,驾驶员容易产生疲劳感。

四、优化设计策略为了解决车辆转向系统存在的问题,需要进行优化设计。

在设计过程中,应考虑以下几个关键因素:1. 强化转向机构的刚度通过增加转向机构的刚度,可以降低车辆在高速行驶时的偏航现象。

一种常见的做法是采用高强度材料制造转向机构,并通过增加支撑装置来提高其整体刚度。

2. 优化转向机构的传动装置传动装置的设计对于转向系统的稳定性至关重要。

合理选择传动装置的齿轮比、滑块材料等参数,并进行精确的加工和质量控制,能够显著提高转向系统的传动效率和稳定性。

3. 引入电子辅助系统在现代汽车中,引入电子辅助系统已成为一种趋势。

通过利用传感器、操控器和执行器等设备,可以实现对转向系统的精确控制。

例如,通过电子稳定控制系统可以实时感知车辆的偏航情况,并进行相应的调整,从而提高车辆的稳定性。

五、车辆转向系统的动力学分析对车辆转向系统进行动力学分析有助于进一步优化设计。

动力学分析主要从转向盘输入力、转向机构传递力和车轮转向角等方面进行研究。

通过建立相关的数学模型和力学方程,可以分析出转向系统的关键参数和响应特性。

六、结论某型车辆转向系统的优化设计与动力学分析是一个复杂而重要的课题。

转向系统设计计算书

转向系统设计计算书
3.5.2转向油泵压力的变化∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6
4结论说明∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7
3.4转向器的内外轮转角:
根据整车设计要求和阿克曼几何原理,可得出理想的阿克曼转角曲线,具体计算如下:
ctg -ctg = 其中K——主销距L——轴距
ctg -ctg =0.55
根据我们设计的转向系统从整车装配数模中可取转向系统需要的设计硬点并建立Adams仿真计算模型,在不考虑轮胎侧偏和所有组件都为刚性的情况下可仿真出实际的内外轮转角曲线。
代入公式Rmin=6549mm即最小转弯半径的理论为6.5m。
3.2转向系的角传动比计算
齿轮齿条式转向系的角传动比i0ω=L/rcosθ
其中L——梯形臂长度;
r——主动小齿轮的节圆半径;
θ——齿轮与齿条的轴交角;
其中L=146.8光洋:r =6.351恒隆:r =6.75θ=20°,θ=25°(优化后)
静态原地转向阻力矩是汽车使用中最大极限转向所需力矩,汽车在沥青或者混凝土路面上的原地转向阻力矩采用下面的经验公式计算:
=
式中 ——轮胎与地面间的滑动摩擦系数,一般取0.8左右。
——转向阻力矩,单位N·mm;
——前轴负荷,单位N;
——轮胎气压,单位MPa。
根据整车参数,CC6460K/KY车满载前轴荷为1070㎏,约为10486N,轮胎气压为230KPa,梯形臂L1=147㎜,转向器梯形底角α=76°,动力受压面积S=9.18㎝2。

FSAE赛车转向系统设计及性能分析任务书及开题报告资料

FSAE赛车转向系统设计及性能分析任务书及开题报告资料

附件一毕业设计任务书设计(论文)题目FSAE赛车转向系统设计及性能分析学院名称汽车与交通工程学院专业(班级)车辆工程姓名(学号)胡嗣林指导教师张代胜系(教研室)负责人卢剑伟一、毕业设计(论文)的主要内容及要求(任务及背景、工具环境、成果形式、着重培养的能力)背景:中国汽车工业已处于大国地位,但还不是强国。

从制造业大国迈向产业强国已成为中国汽车人的首要目标,而人才的培养是实现产业强国目标的基础保障之一。

中国大学生方程式汽车大赛(以下简称"FSAE")是中国汽车工程学会及其合作会员单位,在学习和总结美、日、德等国家相关经验的基础上,结合中国国情,精心打造的一项全新赛事。

FSAE活动由各高等院校汽车工程或与汽车相关专业的在校学生组队参加。

FSAE要求各参赛队按照赛事规则和赛车制造标准,自行设计和制造方程式类型的小型单人座休闲赛车,并携该车参加全部或部分赛事环节。

比赛过程中,参赛队不仅要阐述设计理念,还要由评审裁判对该车进行若干项性能测试项目。

在比赛过程中,参赛队员能充分将所学的理论知识运用于实践中。

同时,还学习到组织管理、市场营销、物流运输、汽车运动等多方面知识,培养了良好的人际沟通能力和团队合作精神,成为符合社会需求的全面人才。

大学生方程式赛车活动将以院校为单位组织学生参与,赛事组织的目的主要有:一是重点培养学生的设计、制造能力、成本控制能力和团队沟通协作能力,使学生能够尽快适应企业需求,为企业挑选优秀适用人才提供平台;二是通过活动创造学术竞争氛围,为院校间提供交流平台,进而推动学科建设的提升;大赛在提高和检验汽车行业院校学生的综合素质,为汽车工业健康、快速和可持续发展积蓄人才,增进产、学、研三方的交流与互动合作等方面具有十分广泛的意义。

任务:调研国内外赛车转向系统结构及原理,遵循FSAE竞赛规则完成赛车转向系统设计,转向梯形优化,系统建模与转向性能分析。

工具环境:CATIA/UG AutoCAD ADAMS Visio MATLAB Office办公软件等成果形式:①翻译相关外文文献不少于5000字②优化设计说明书一份③赛车转向系统三维模型一份能力培养:培养和锻炼学生搜集相关资料,综合运用所学汽车设计知识解决实际问题的能力、提高学生软件应用能力、独立完成赛车转向系统设计及相关问题的能力,为从事本专业有关工作打下坚实基础。

电动助力转向系统中齿轮齿条传动设计与计算_刘庚寅

电动助力转向系统中齿轮齿条传动设计与计算_刘庚寅

收稿日期:2012-09-14作者简介:刘庚寅(1970—),男,汉,湖南邵东人,硕士研究生,研究方向:汽车电动助力转向系统。

E-mail :lgy960@ 。

电动助力转向系统中齿轮齿条传动设计与计算刘庚寅,刘晟昱,彭微君,葛阳清,康永升(株洲易力达机电有限公司,湖南株洲412002)摘要:介绍了P-EPS 电动助力转向系统的传动原理及其主要零部件。

特别是就某一车型的P-EPS 齿轮齿条的设计计算进行了详细的分析。

对不同载荷车型的齿轮齿条模数和齿数的匹配分别进行了计算,为新产品的开发提供了参考和指导。

关键词:电动助力转向系统;P-EPS ;齿轮轴;齿条轴Design and Calculation on Transmission between Pinion andRack in Electric Power Steering SystemLIU Gengyin ,LIU Shengyu ,PENG Weijun ,GE Yangqing ,KANG Yongsheng (Zhuzhou Elite Electro Mechanical Co.,Ltd.,Zhuzhu Hunan 412002,China )Abstract :The theory and main components of P-EPS electric power steering system were introduced here.Especially ,the design and calculation for rack and pinion of P-EPS about one car were analyzed in detail.Also ,matching relation between modulus and teeth number of rack and pinion were separately calculated for different car types with different weight ,so the reference and guides were provided for the devel-opment of new products.Keywords :Electric power steering system ;P-EPS ;Pinion ;Rack0前言国产电动助力转向系统(EPS )经过十几年的探索与研究,技术日趋成熟,并以其相对传统液压转向系统的突出优点而得到众多汽车厂家的认可,并在中小排量汽车上得到了广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1.系统概述 (1)1.1系统设计说明 (1)1.2系统结构及组成 (1)1.3系统设计原理及规范 (2)2.输入条件 (2)2.1标杆车基本参数 (2)2.2LF7133确定的整车参数 (3)3.系统计算及验证 (4)3.1方向盘转动圈数 (4)3.2齿轮齿条式转向系的角传动比 (4)3.3车轮实际最大转角 (5)3.4静态原地转向阻力矩 (5)3.5静态原地转向时作用于转向盘的力 (5)3.6最小转弯半径的校核 (6)4.总结 (8)参考文献 (8)1. 系统概述1.1 系统设计说明LF7133是在标杆车的基础上开发设计的一款全新车型,其转向系统是在标杆车转向系统为依托的前提下,根据总布置设计任务书而开发设计的。

根据项目要求,需要对转向系统各参数进行计算与较核,以确保转向系统的正常使用,使系统中各零部件之间参数匹配合理,并且确保其满足国家相关法律法规的要求。

1.2 系统结构及组成LF7133转向系统是在标杆车的基础上,根据驾驶室和发动机舱的布置,对转向管柱、方向盘和转向器等作相应调整与优化设计。

为提高汽车行驶的安全性,转向系必须转向轻便、灵活,以减轻司机的疲劳。

LF7133电动助力转向系统中转向器采用齿轮齿条式转向器、电动助力转向管柱的结构方式。

该结构紧凑,布置方便,降低油耗,工作可靠,维修方便,并且满足了整车的各项指标。

1). 转向系统的结构简图图1 转向系统结构简图1、转向器2、电动助力转向管柱3、转向盘2). 转向系统的转向梯形示意简图由于LF7133转向系结构与布置情况参照标杆车设计,所以LF7133与标杆车转向梯形示意图一致,如下图2所示。

231.3系统设计原理及规范对于液压动力转向系的设计,在保证系统拥有正常助力功用的情况下,还应满足如下的技术要求:1).根据GB17675-1999 汽车转向系基本要求的规定,同样要求在不带助力转向时转向力应小于254N。

2).对于乘用车来说,还要求转向盘转动在总圈数一般不超过4圈。

3).在转向系最大转角时,要求其最小转弯直径满足整车总布置参数。

2.输入条件2.1标杆车基本参数对于标杆车其参数采集可分为为直接测量参数和间接计算参数,对于标杆车具体的参数如下:1).直接测量参数表1 标杆车基本参数转向器小齿轮节圆半径:4.820cos 14.325.49cos 2cos 222=︒⨯⨯==⇒⋅=θπθπL r r L mm转向器小齿轮旋转圈数:07.35.491521===S S n 圈 标杆车角传动比:46.137.414.4036007.3360=+⨯=⇒+⨯=⇒==--wo Ri L i wo kk w wo i n i d d i δδβϕωω通过标杆车逆向数据其最大转角标i δ=42.8°。

则由于转向拉杆连接球头、转向器齿轮齿条啮合间隙以及万向传动轴、方向盘连接等转向系连接结构中存在转向行程损失可以直接进行估算。

其转向系统转向行程损失:%9.95%1008.422/7.414.40=⨯+==⇒⋅=)(标标i i wowoi i δδηηδδ 2.2 LF7133整车参数根据对标杆车数据的综合分析,结合LF7133整车的实际情况,对LF7133车型转向系统参数设计取值如下表所示:3. 系统计算及验证3.1 方向盘转动圈数︒⨯⨯⨯==⇒=20cos 4.814.32152cos 2cos 2θπθπr S n r n S n =3.065圈3.2 齿轮齿条式转向系的角传动比转向系理论角传动比可用三维数模模拟的最大转角直接求出,当转向齿条行程152 mm 时,通过三维运动分析可以得出前轮最大转角内外分别为:i δ=42.0°,Aa δ=35.5°。

则理论角传动比i :14.1320.42360065.32360=⨯⨯=⇒⨯=⇒==i n i d d i ikk w δβϕωω实际上,转向系在转向拉杆连接球头、转向器齿轮齿条啮合间隙以及万向传动轴、方向盘连接等转向系连接结构中存在转向行程损失。

由于LF7133转向系统基于标杆车进行设计,这里以标杆车计算所得转向行程损失ηwo =95.9%进行计算。

则转向系实际传动比70.13%9.9514.13===⇒⋅=wowo wo wo ii i i ηη 3.3 车轮实际最大转角已知转向系实际传动比以及方向盘圈数的情况下,则其最大内转角为:︒=⨯︒⨯=⨯=⇒︒⨯=⇒==3.4070.132360065.323602360wo i iwo kk w wo i n n i d d i δδβϕωω最大外转角:%9.950.36K ⨯︒=⋅=-ηδδAa Aa =34.5°3.4 静态原地转向阻力矩静态原地转向阻力矩是汽车中最大极限转向所需力矩,比行驶中转向所需的力矩大2到3倍。

目前采用半经验公式计算p G fM r 313=22.04.772237.03==3.38×105 N ·mm 式中: M r : 在沥青或混凝土路面上的原地转向阻力矩,N ·mm ;f : 轮胎与地面间的滑动摩擦系数,一般取0.7; G 1 : 转向轴负荷,788.00×9.8=7722.4 N ; P :轮胎气压,0.22Mpa ;3.5 静态原地转向时作用于转向盘的力αηsin R i M F wo rh =式中: Mr :原地转向阻力矩,N ·mm ,M r =3.38×105N ·mm ;F h :作用于转向盘的力;i wo :齿轮齿条式转向系的角传动比,i ow =13.70; R :方向盘半径 mm ,R =190mm ;α : 转向梯形底角 ( °),α=89.23°; η :转向器的效率,取η=75%。

即:23.89sin 190%7570.131038.3sin 5⨯⨯⨯⨯==αηR i M F wo r h =173.1 N 不带助力转向,汽车以10km/h 行驶时,作用在方向盘的手力不应超过245N ,Fh <245N ,所以此设计满足法规要求。

3.6 最小转弯半径的校核设定设计数据姿态处于空载情况下,通过上述模拟其外轮理论最大转角分别为:42.8°/36.0°,且左右转角相等,计算时采用该值为计算基础。

为计算最小转弯半径,根据对数模空载姿态下的测量,转向轮绕主销偏移距s r =0.004809m ,轴距L =2.55m 。

计算采取文献3推荐的一种计算方法校核最小转弯直径。

为保证车辆行驶转向的精确性,确保各车轮不发生侧滑,转向时通过4个车轮中心的车轮平面垂直线都相交于一点——转向中心M 。

如果后轮不转向,则2个前轮平面的垂线必须与后轮中心连线的延长线相交于M 点(如图2所示),从而使得在车身内外侧的前轮上出现不同的转向角δi 和δAa 。

根据相对较大的内侧车轮转向角δi 可以推算出外侧车轮的理论值,即所谓的阿克曼角。

图2 转向原理图由文献3所载的经验公式可以计算出最小转弯直径:F s Aas r lD δαδ∆⨯-+⨯=)sin (2≈9.4 m式中:δAa : 外侧车轮推算理论转角值δAa =arc(cot δAa )= arc 1.649=31.25°;cot δAa :外侧车轮推算理论转角余切值l j i Aa /cot cot +=δδ=1.649 ;δi : 内侧车轮理论最大转角值,δi = 42.8°; j : 为在地面测得的主销延长线与地面交点的距离j = b v - 2×r s =1.4494 ;r s : 主销偏移距,r s =0.004809 m ; b v : 为前轮距, b v = 1.459 m ; l : 汽车轴距, l = 2.550 m ; α : 经验因子, α = 0.1 m/°;ΔδF : 转向误差, ︒=︒-︒=-=∆75.4.251336.0F Aa a δδδ;由以上计算结果可以看出,其值与标杆车试验测量值(9.64m)相当接近,并且小于最小转弯直径值。

故此,LF7133转向系统各参数取值符合总布置对最小转弯直径的设计目标值9.64m 的要求。

转向系统设计计算报告4. 总结根据此报告的设计计算,此转向系统满足法规的要求,符合整车的设计需要,达到预期的目的。

但是其中很多数据为经验值,尚待装车做进一步优化。

其计算结果参数见表3所示。

表3 计算结果参数5. 参考文献1). 刘惟信著.汽车设计.清华大学出版社,2001 2). 王望予.汽车设计.机械工业出版社,20033). 《汽车工程手册》编辑委员会.汽车工程手册:设计篇. 人民交通出版社, 2001 4). GB 17675-1999:汽车转向系基本要求.中国标准出版社,2001 5). GB 7258-2004:机动车运行安全技术条件.中国标准出版社,2005。

相关文档
最新文档