一款简单实用易制作的高低音控制电路(含电路图)
最简易声控电路(声控灯,声控开关,声控门铃)

欢迎阅读声控灯1这里有个电路,通过调节电位器的大小,可以调节时间。
可以参考哦声控灯2时间、亮度可调声控灯3三极管VT3状态。
经电容 管×270×间。
下图,R1,R2,VT1构成放大电路,后面的构成单稳电路和开关。
下图声控电路,同样是放大然后是单稳电路,只是这里用的是定时IC ,双稳态声控电路,拍一下亮,再拍一下灭,如此循环。
本电路主要由音频放大电路和双稳态触发电路组成。
Q1和Q2组成二级音频放大电路,由MIC 接受的音频信号经C1耦合至Q1的基极,放大后由集电极直接馈至Q2的基极,在Q2的集电极得到一负方波,用来触发双稳态电路。
R1、C1将电路频响限制在3kHz 左右为高灵敏度范围。
电源接通时,双稳态电路的状态为Q4截止,Q3饱和,LED1不亮。
当MIC 接到控制信号,经过两级放大后输出一负方波,经过微分处理后负尖脉冲通过D1加至Q3的基极,使电路迅速翻转,LED1被点亮。
当MIC 再次接到控制信号,电路又发生翻转,LED1熄灭。
如果将LED 回路与其它电路连接也可以实现对其它电路的声控。
欢迎阅读本电路采用直流5V 电压供电,LED 熄灭时整机电流为3.4 mA , LED 点亮时整机电流为8.8mA 。
吹熄蜡烛IC :1. 上电LED _Y 仿蜡烛灯闪,LED _B 长亮2. 对MIC 头吹气可熄灭LED ,再吹一次LED 亮,如此循环3. 调节MIC 头的偏制电阻R2可改变MIC 头的灵敏度,电阻越大,MIC 头灵敏度越低,静态电流越小。
电阻参考范围30K -100K 。
以下是拍手电路,拍一下手灯亮,再拍一下灯灭。
(此电路笔者已验证)声控门铃:利用以下电路作为门铃时,不需在门前安装按钮开关,来客只需叩一下大门,门铃便会发声。
电路如图所示。
电V1、对C2提供振荡,=60;V2。
高低音调节电路

所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。
这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音控制”或“音色调节”。
高保真扩音机大都装有音调控制器。
然而,从保证信号传送质量来考虑,音调控制倒不是必须的。
一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。
所谓提升或衰减高、低音,都是相对于中音而言的。
先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。
因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。
音调控制电路大致可分为两大类:衰减式和负反馈式。
衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。
所以噪声和失真大一些。
负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。
1.衰减式音调控制电路。
典型电路如图:衰减式音调控制典型电路高音、低音分开调节:C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。
W1旋到A点时高音提升,旋到B点时高音衰减。
W2旋到C点时低音提升,旋到D点时低音衰减。
组成音调电路的元件值必须满足下列关系:(1)R1≥R2;(2)W1和W2的阻值远大于R1、R2;(3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。
C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。
只有满足上述条件,衰减式音调控制电路才有足够的调节范围,并且W1、W2分别只对高音、低音起调节作用,调节时中音的增益基本不变,其值约等于R2/R1。
自制的实用电子琴电路图

自,其实它就是电子合成器。它采用大规模集成电路,大多配置声音记忆存储器(波表)。用于存放各类乐器的真实声音波形并在演奏的时候输出。常用的电子琴有编曲键盘(带自动伴奏)和合成器(无自动伴奏)两大类,广义上的电子琴包括电子钢琴(数码钢琴,区别于电声钢琴),多使用五线谱,多为高低音双行记谱。如下图所示为一款自制的实用电子琴电路图。
ASW低音炮专用频率均衡放大器的设计制作音响电路图

ASW低音炮专用频率均衡放大器的设计制作音响电路图ASW低音炮专用频率均衡放大器的设计制作本放大器是为笔者的ASW低音炮度身定制的,具有简单可靠、性能优良、使用灵活等特点。
若将其均衡电路参数稍作修改,也适用于其他类型的超低频音箱。
现将其电路原理、制作及安装方法等介绍如下。
一、电路工作原理本放大器包括频率均衡、功率放大、电源等几个部分。
1、频率均衡电路10英寸单元ASW低音炮的低频下限选36Hz,这一指标已很不错,但重放36Hz以下的超低频时份量仍感不足,若使用的是8英寸或6.5英寸单元制作的超低频音箱,低频下限一般只能达到42Hz以上,重放超低频时更是捉襟见肘,力不从心。
这时听到的多半只是超低频的谐音。
故均有必要通过均衡电路预先对40Hz以下的超低频份量予以适当提升,以充分发挥音箱的潜能,改善重放效果。
此外,不同类型超低频音箱的低频上限也各不相同,与主音箱低频下限的配合也就不一定适当,可能造成系统中低频段的响应失真。
故也有必要通过均衡电路对超低频音箱的频率上限进行调整,使之能与主音箱的低频下限完美配合。
而20Hz以下的次低频人耳虽不可闻,但音乐信号中则可能存在(包括噪音),一旦进入音箱,单元锥盆的振幅极大,会产生大量可闻的失真信号(如调制失真、二次、三次谐波失真等),故也需要通过均衡电路予以衰减。
具有上述多种功能的均衡电路通常比较复杂。
为简化起见,本均衡电路选用了最为简单有效的高Q值高通有源滤波器加可调式无源低通滤波器的电路形式(见图1)。
图中,L、R声道信号经R1、R2相加(接解码器超低音输出端子时只需从一个输入端接入),再经音量电位器VR1调节后,送往IC1a与外围阻容元件组成的高Q值高通滤波器。
该滤波器在不同Q值时具有如图2所示的通带特性。
当Q>0.7时,其转折频率fp处会形成一个峰,Q越大,峰越高(提升量越大)。
利用这一特性,且Q值取得适当,便可按要求在提升超低频的同时衰减次低频,且电路十分简单,该滤波器的电路特点是具有等值的滤波元件C、R和一定的增益,且Q值通过电路增益A来控制,其中A=1+R4/R3Q=1/(3-A)Q值决定后,fp处的提升量也就决定了。
高低音调节电路

所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。
这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音控制”或“音色调节”。
高保真扩音机大都装有音调控制器。
然而,从保证信号传送质量来考虑,音调控制倒不是必须的。
一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。
所谓提升或衰减高、低音,都是相对于中音而言的。
先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。
因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。
音调控制电路大致可分为两大类:衰减式和负反馈式。
衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。
所以噪声和失真大一些。
负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。
1.衰减式音调控制电路。
典型电路如图:衰减式音调控制典型电路高音、低音分开调节:C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。
W1旋到A点时高音提升,旋到B点时高音衰减。
W2旋到C点时低音提升,旋到D点时低音衰减。
组成音调电路的元件值必须满足下列关系:(1)R1≥R2;(2) W1和W2的阻值远大于R1、R2;(3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。
C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。
只有满足上述条件,衰减式音调控制电路才有足够的调节范围,并且W1、W2分别只对高音、低音起调节作用,调节时中音的增益基本不变,其值约等于R2/R1。
高低音调节电路

高低音调节电路标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的不足。
这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音控制”或“音色调节”。
高保真扩音机大都装有音调控制器。
然而,从保证信号传送质量来考虑,音调控制倒不是必须的。
一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。
所谓提升或衰减高、低音,都是相对于中音而言的。
先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。
因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。
音调控制电路大致可分为两大类:衰减式和负反馈式。
衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。
所以噪声和失真大一些。
负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。
1.衰减式音调控制电路。
典型电路如图:衰减式音调控制典型电路高音、低音分开调节:C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。
W1旋到A点时高音提升,旋到B点时高音衰减。
W2旋到C点时低音提升,旋到D点时低音衰减。
组成音调电路的元件值必须满足下列关系:(1)R1≥R2;(2) W1和W2的阻值远大于R1、R2;(3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。
C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。
自制高品质有源超重低音音箱音响电路图

自制高品质有源超重低音音箱音响电路图自制高品质有源超重低音音箱很多发烧友普遍使用6.5~8英寸低音单元的音箱,这些音箱的低频下限比较低,低音听起来虽然有力,但能量和延伸能力却不足。
众所周知,低音是音乐信号的基础,它在很大程度上影响听音的氛围,缺失低音信号声音会显得轻飘而不真实,而在正规的家庭影院播放中,超重低音箱是很重要的一分子,如果少了重低音的烘托,那就完全失去临场感,也就是说不真实。
因此,笔者建议,如果有条件,还是选用中大型落地箱为好,以得到更丰富的低频响应,而组建家庭影院时,应把超重低音音箱考虑进去。
当然,如果原来的系统没有丰富的低频效果,你也可单独添置一个优质的超重低音音箱来提高重播效果。
不过,好一点的超重低音音箱售价不菲,既然我们有能力去自己设计制作书架箱或落地箱,那么我们是否也能自己做一个好一点的超重低音音箱呢?答案是肯定的,有兴趣的读者不妨跟随着我依葫芦画瓢。
理想的超重低音箱的概念在制作前,我们应对什么是“好一点的超重低音音箱”有一个基本的概念。
笔者认为衡量超重低音音箱的品质高低有几个方面。
1、好的超重低音箱必须是有源放大的所谓“有源放大”就是内置功放的,而无源超低音音箱是没有内置功放,箱内只有无源分频器,要和主音箱共用或另配功放。
无源超低音音箱是利用前级的音量控制来决定音量,如果超重低音音箱的灵敏度或音量和主音箱不平均,会引发声场混乱、频响不均衡、声像定位出不来等情况,而此时超重低音音箱的摆位又不能解决这一问题,这些问题就难以改善。
加上超低音大口径单元的振动质量肯定大于主音箱单元,故发声速度要慢一些,加了这种超重低音音箱之后,效果往往很浑浊。
有源超低音音箱是专门为低音重播而设计的。
它的工作特征是信号直入带有源分频的前级。
100 Hz以下的频率由专用的低音放大器放大后驱动超低音音箱。
100 Hz以上的频率经分频后送至放大器,放大后由主音箱播出。
这时要有一个独立的音量控制用来控制超低音音量跟主音箱在音量上的比例。
用AD827OPA2604NE5532制作的负反馈高中低音调电路

音调控制电路如上图,由W1,W2,W3,W4,分别实现高音,中音,低音,平衡控制电路,音量电路由于本站的SSE01/SSE02板上已经设有音量电位器,故不再增加,音量电位其中运放U1做为前级信号的缓冲放大,R3/R2的值为1-5倍之间,本站设为2倍放大,可以根据实际的音源情况改变R2的值加以调整,信号通道中的电容C2,C4,C7对音质的影响较大,用高品质量发烧电容德国红WIMA 电容,运算放大器U2选用高品质的发烧运放AD827/OPA2604/NE5532均可以,音色表现不同,烧友可根据自已喜好加以选取,有关前级发烧运放的音色特点请看联系我们中有详细的说明,上图中和常见的功率放大器中的音调控制中只有高低音控制不同是增设中音控制电路,在听音中,中频部分和音乐的临场感关系密切,中频过亮或单薄都将导致临场失真,由W2入相关外围元件构成对1000HZ-2000HZ的中频信号做6-10dB的提升或衰减,达到中频控制的目的。
在电源的设计上这里改用LM317/LM337构成的有源伺服稳压电源,比78/79系列构成的有源伺服电源相比在电源内阻和噪声低一个数量级,纹波抑制更强,和一些相对复杂的洼田式具有电源结构简单,性能稳定的优点,在成本上虽提高了些,但是实际使用上对音质的改善也相当的明显。
电路图如上图,输入电压为交流双12V-双18V均可,其中影响电压精度的电阻R14/Re14,R15/Re15的参数要一致,这样才能达到正负电源的良好对称性,输出的电压值不一定为双15V,但是正负电压达到一致(一般运放电压为DC双12V-双15V均可正常工作)PCB板设计图如下PCB设计上充分的地考虑到用高速率的运放使用上的严格要求,在离IC电源脚最近的位置增加WIMA CBB退耦电容,电路的电源远离小信号处理部分,增加地线隔离措施,以及严格的一点接地布线措施,使用本板得到最佳的信噪比。
下面是本站最近从厂家定做的本页介绍的用发烧运放制作的带高,中,低,平衡的音调控制板实物图片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一款简单实用易制作的
高低音控制电路
江苏省泗阳县李口中学沈正中
给一个不带音调控制功放加装一个高低音电路,即音调控制电路,可以满足渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。
音调控制就是人为地改变信号里高、低频的成分,这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音成分调节”或“音色调节”。
一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。
以下是两个实用的高低音音调控制电路图,图1中R1 = 6.8 KΩ、R2 = 3.3KΩ、R3 = 5.6KΩ、C1 = 2200p、C2 = 0.022、C3 = 0.01、C4 = 0.22、W1 = W2 = 50KΩ,R3是一个隔离电阻;图2中R1 = 50KΩ、R2 = 5KΩ、C1 = 1600p、C2 = 0.016、C3 = 6400、C4 = 0.064、W1 = W2 = 100KΩ。