解一元一次方程——同解方程精选试题附问题详解

合集下载

(必考题)七年级数学上册第三单元《一元一次方程》-解答题专项经典题(含答案解析)

(必考题)七年级数学上册第三单元《一元一次方程》-解答题专项经典题(含答案解析)

一、解答题1.一项工程,甲队独做10h完成,乙队独做15h完成,丙队独做20h完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh,乙、丙两队合作为(6)x h-,总工程量为1,由题意得:11111()()(6)1 1015201520x x++++-=,解得:3x=,答:甲队实际工作了3小时.【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x的值,得出答案.试题设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,根据题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.3.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x的值,根据盈利=售价-进价即可求得答案.设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.4.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x个家长,则有(15﹣x)个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x个家长,(15﹣x)个学生,根据题意得:100x+100×0.8(15﹣x)=1400,解得:x=10,15﹣x=5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.5.某同学在解方程21132y y a-+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a的值及此方程的解.解析:y=-3.【分析】根据题意得到去分母结果,把y=2代入求出a的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.解析:(1)方案一省钱;(2)见解析;(3)见解析.【分析】(1)分别按两种方案结合已知数据计算、比较即可得到结论;(2)分别根据两种方案列出对应的表达式并化简即可;(3)按以下三种方式分别计算出各自所需费用并进行比较即可:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子.【详解】(1)当x=100时,按方案一购买所需费用为:100×200=20000(元);按方案二购买所需费用为:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,按方案一购买所需费用为:100×200+80(x﹣100)=80x+12000(元);按方案二购买所需费用为:(100×200+80x)×80%=64x+16000(元),答:方案一、方案二的费用为:(80x+12000)元、(64x+16000)元;(3)当x=300时,①全按方案一购买:100×200+80×200=36000(元);②全按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),∵36000>35200>32800,∴先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省.【点睛】(1)读题题意,弄清各数据间的关系是解答第1、2小题的关键;(2)解第3小题时,需分以下三种情况分别计算所需费用:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子;解题时不要忽略了其中任何一种.7.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x+1)人,根据题意,得9(x-1)=6(x+1).去括号,得9x-9=6x+6.移项,得9x-6x=6+9.合并同类项,得3x=15.系数化为1,得x=5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.8.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8.所以x =9.【点睛】 本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 9.已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.10.设a ,b ,c ,d 为有理数,现规定一种新的运算:a bad bc c d =-,那么当35727x-=时,x 的值是多少? 解析:x =-2【分析】 根据新定义的运算得到关于x 的一元一次方程,解方程即可求解.【详解】解:由题意得:21 - 2(5 - x )=7即21-10+2x =7x =-2.【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 11.小丽用的练习本可以从甲乙两家商店购买,已知两家商店 的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。

一元一次方程应用难题精选(含答案解析)

一元一次方程应用难题精选(含答案解析)

一.主观题(共8小题,每题1分)1.某公司现有甲、乙两种品牌的打印机,其中甲品牌有A,B两种型号,乙品牌有C,D,E三种型号.朝阳中学计划从甲、乙两种品牌中各选购一种型号的打印机.(1)利用树状图或列表法写出所有选购方案;(2)若各种型号的打印机被选购的可能性相同,那么C型号打印机被选购的概率是多少?(3)各种型号打印机的价格如下表:甲品牌乙品牌型号 A B C D E价格(元)2000 1700 1300 1200 1000朝阳中学购买了两种品牌的打印机共30台,其中乙品牌只选购了E型号,共用去资金5万元,问E型号的打印机购买了多少台?2.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).3.2012年,某地开始实施农村义务教育学校营养计划--“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?4.天宇便利店老板到厂家购进A,B两种香油,A种香油每瓶进价6.5元,B种香油每瓶进价8元,购进140瓶,共花了1 000元,且该店销售A种香油每瓶8元,B种香油每瓶10元.(1)该店购进A,B两种香油各多少瓶?(2)将购进140瓶香油全部销售完可获利多少元?(3)老板打算再以原来的进价购进A,B两种香油共200瓶,计划投资不超过1 420元,且按原来的售价将这200瓶香油销售完成获利不低于339元,请问有哪几种购货方案?5.某校科技夏令营的学生在3位老师的带领下,准备赴北京大学参观,体验大学生活.现有两家旅行社前来洽谈,报价均为每人2000元,且各有优惠.希望旅行社表示:带队老师免费,学生按8折收费;青春旅行社表示师生一律按7折收费,经核算发现,参加两家旅行社的实际费用正好相等(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了部分学生,学校应选择哪家旅行社?为什么?6.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).7.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?8.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?二.填空题(共15小题,每题0分)1.甲、乙两人从A点同时同向出发沿400米的环形跑道跑步,过一段时间后,甲在跑道上离A点200米处,而乙在离A点不到100米处正向A点跑去.若甲、乙两人的速度比是4:3,则此时乙至少跑了 ___________米.2.电子跳蚤落在数轴上的某点k,第一步从k向左跳1个单位到k1,第二步由k1向右跳2个单位到k2,第三步由k向左跳3个单位到k3,第四步由k3向右跳4个单位到k4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点k100所表示的数恰是19.94.则电子跳蚤的初始位置k点所表示的数是___________.3.第三届中国大学生方程式汽车比赛赛前,甲、乙两辆参赛小汽车在一个封闭的环形跑道内进行耐久测试.两车从同一地点沿相同方向同时起步后,乙车速超过甲车速,在第15分钟时甲车提速,在第18分钟时甲车追上乙车并且开始超过乙,在第23分钟时,甲车再次追上乙车.已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车所用的时间是___________分钟.4.去年暑假某同学为锻炼自己,通过了解市场行情,从批发市场购进若干件印有“设计未来”标志的文化衫到自由市场去销售.首先按批发价提高25%销售了进货的60%,若要使最终赢利35%,则应在现行售价的基础上提高___________%销售完剩余的文化衫.5.某电脑公司在5月1日将500台电脑投放市场,经市场调研发现,该批电脑每隔10天平均日销售量减少2台,现准备用38天销售完该批电脑,则预计该公司5月1日至5月10日的平均日销售量是___________台.6.某人在同一条路上来回一次共用2小时.来时步行,平均速度是5千米/小时;回去的时坐公共汽车,平均速度是20千米/小时,则这条路长是___________千米.7.某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):“一户一表”用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=___________.8.某地按以下规定收取每月电费:用电量如果不超过60度,按每度电0.8元收费;如果超过60度则超过部分按1.2元收费.已知某用户3月份交电费66元.那么3月份该用户用电量为___________度.9.已知AB是一段只有3米长的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒车才能继续通过.如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分钟,小汽车在AB段倒车的速度是它正常行驶速度的,大卡车在AB段倒车的速度是它正常行驶的,小汽车需倒车的路程是大卡车的4倍.问两车都通过AB这段狭窄路面的最短时间是___________分钟.10.第三届中国大学生方程式汽车比赛赛前,甲、乙两辆参赛小汽车在一个封闭的环形跑道内进行耐久测试.两车从同一地点沿相同方向同时起步后,乙车速超过甲车速,在第15分钟时甲车提速,在第18分钟时甲车追上乙车并且开始超过乙,在第23分钟时,甲车再次追上乙车.已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车所用的时间是___________分钟.11.一杯“可乐”饮料售价3.6元,商家为了促销,顾客每买一杯“可乐”饮料获一张赠券,每三张赠券可兑换一杯“可乐”饮料,则每张赠券的价值相当于___________元.12.某公司生产的一种饮料由A、B两种原液按一定比例配制而成,其中A原液成本价为10元/千克,B原液为15元/千克,按现行价格销售每千克获得60%的利润率.由于物价上涨,A原液上涨20%,B原液上涨10%,配制后的总成本增加15%,公司为了拓展市场,打算再投入现行总成本的25%做广告宣传,使得销售成本再次增加,如果要保证每千克的利润率不变,则此时这种饮料的售价与原售价之差为___________元/千克.13.“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1988元钱,那么他购买这台冰箱节省了___________元钱.14.有一群麻雀,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只麻雀对地上觅食的麻雀说:“若从你们中飞上来一只,则树下的麻雀就是这群麻雀总数的;若从树上飞下去一只,则树上、树下的麻雀就一样多了.”那么这群麻雀一共有___________只.15.小明同学买了一包弹球,其中是绿色的,是黄色的,余下的是蓝色的.如果有12个蓝色的弹球,那么,他总共买了___________个弹球.三.单选题(共6小题,每题0分)1.某商家售出两种商品皆为120元,其中一种商品盈利25%另一种商品亏损25%,则商家在这次交易中的盈亏情况为()A.盈B.亏C.不盈不亏D.不清楚2.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元3.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.4.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏5.某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是()A.522.8元B.510.4元C.560.4元D.472.8元6.2010年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-26---------答题卡---------一.主观题1. 答案: E型号的打印机应选购10台.1. 解释:分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;根据资金得到相应的方程,求解即可.解答:解:(1)所列树状图或列表表示为:C DEA,C A,D A,EAB,C B,D B,EB结果为:(A,C),(A,D),(A,E),(B,C),(B,D),(B,E);(2)由(1)知C型号的打印机被选购的概率为;(3)设选购E型号的打印机x台(x为正整数),则选购甲品牌(A或B型号)(30-x)台,由题意得:当甲品牌选A型号时:1000x+(30-x)×2000=50000,解得x=10,当甲品牌选B型号时:1000x+(30-x)×1700=50000,解得(不合题意),故E型号的打印机应选购10台.点评:本题着重考查了用树状图列举随机事件出现的所有情况,并求出某些事件的概率,但应注意在求概率时各种情况出现的可能性务必相同.用到的知识点为:概率=所求情况数与总情况数之比.2. 答案:定价至少为296元时,乙服装才可获得利润.2. 解释:分析:(1)若设甲服装的进价为x元,则乙服装的进价为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.解答:解:(1)设甲服装的进价为x元,则乙服装的进价为(500-x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,解得:x=300,500-x=200.答:甲服装的进价为300元、乙服装的进价为200元.(2)∵乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则200(1+y) 2=242,解得:y1=0.1=10%,y2=-2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调,∴再次上调价格为:242×(1+10%)=266.2(元),∵商场仍按9折出售,设定价为a元时,0.9a-266.2>0,解得:a>.故定价至少为296元时,乙服装才可获得利润.点评:此题主要考查了一元二次方程的应用以及增长率问题和一元一次不等式的应用,注意售价的算法:售价=定价×打折数.3. 答案:饼干的质量为:300-60-x=40.答:每份营养餐中牛奶和饼干的质量分别为200克和40克.3. 解释:分析:(1)鸡蛋中蛋白质的质量=鸡蛋的重量×鸡蛋的蛋白质含量就可以直接求出答案;(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300-60-x)克,根据题意列出方程求出其解就可以解答:解:(1)由题意得:60×15%=9(克).答:一个鸡蛋中含蛋白质的质量为9克.(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300-60-x)克,由题意得:5%x+12.5%(300-60-x)+60×15%=300×8%解得:x=200.故饼干的质量为:300-60-x=40.答:每份营养餐中牛奶和饼干的质量分别为200克和40克.点评:本题考查了列一元一次方程解实际问题的运用,根据各种食品的蛋白质的和加起来等于总蛋白质就可以建立方程,在解答时确定等量关系是关键.4. 答案:方案1:A种香油120瓶B种香油80瓶.方案2:A种香油121瓶B种香油79瓶.方案3:A种香油122瓶B种香油78瓶.答:(1)该店购进A种香油80瓶,B种香油60瓶.(2)将购进的140瓶全部销售完可获利240元.(3)有三种购货方案:方案1:A种香油120瓶B种香油80瓶;方案2:A种香油121瓶B种香油79瓶;方案3:A种香油122瓶B种香油78瓶.4. 解释:分析:(1)求A,B两种香油各购进多少瓶,根据题意购进140瓶,共花了1 000元,可列方程求解即可.(2)在(1)的基础之上已经得出A,B两种香油购进的瓶数,算出总价减去总进价即可得出获利多少.(3)由题意可列不等式组,解得120≤a≤122.因为a为非负整数,所以a取120,121,122.所以200-a=80或79或78.解答:解:(1)设:该店购进A种香油x瓶,B种香油(140-x)瓶,由题意可得6.5x+8(140-x)=1000,解得x=80,140-x=60.答:该店购进A种香油80瓶,B种香油60瓶.(2)80×(8-6.5)+60×(10-8)=240.答:将购进140瓶香油全部销售完可获利240元.(3)设:购进A种香油a瓶,B种香油(200-a)瓶,由题意可知6.5a+8(200-a)≤14201.5a+2(200-a)≥339解得120≤a≤122.因为a为非负整数,所以a取120,121,122.所以200-a=80或79或78.故方案1:A种香油120瓶B种香油80瓶.方案2:A种香油121瓶B种香油79瓶.方案3:A种香油122瓶B种香油78瓶.答:(1)该店购进A种香油80瓶,B种香油60瓶.(2)将购进的140瓶全部销售完可获利240元.(3)有三种购货方案:方案1:A种香油120瓶B种香油80瓶;方案2:A种香油121瓶B种香油79瓶;方案3:A种香油122瓶B种香油78瓶.点评:本题考查一元一次不等式组的应用,读懂题列出不等式关系式即可求解.5. 答案:如果又增加了部分学生,学校应选择青春旅行社合算.5. 解释:分析:(1)设该校参加科技夏令营的学生共有x人,根据题意可得等量关系:在希望旅行社的花费为2000x ×8折=在青春旅行社的花费为2000(x+3)×7折,根据等量关系列出方程解方程即可;(2)设学生总数为a人,在希望旅行社的花费为2000a×8折,在青春旅行社的花费为2000(a+3)×7折,如果选择希望旅行社合算,则2000a×80%<2000(a+3)×70%,如果选择青春旅行社合算,则2000a×80%>2000(a+3)×70%,解不等式即可知道如果又增加了部分学生,学校应选择哪家旅行社.解答:解:(1)设该校参加科技夏令营的学生共有x人,由题意得:2000x×80%=2000(x+3)×70%,解得:x=21,答:该校参加科技夏令营的学生共有21人;(2)设学生总数为a人,由题意得:如果选择希望旅行社合算,则2000a×80%<2000(a+3)×70%,解得:a<21,如果选择青春旅行社合算,则2000a×80%>2000(a+3)×70%,解得:a>21,故如果又增加了部分学生,学校应选择青春旅行社合算.点评:此题主要考查了一元一次方程与一元一次不等式的应用,关键是设出学生人数,表示出在希望旅行社的花费和在青春旅行社的花费.6. 答案:定价至少为296元时,乙服装才可获得利润.6. 解释:分析:(1)若设甲服装的进价为x元,则乙服装的进价为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.解答:解:(1)设甲服装的进价为x元,则乙服装的进价为(500-x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,解得:x=300,500-x=200.答:甲服装的进价为300元、乙服装的进价为200元.(2)∵乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则200(1+y) 2=242,解得:y1=0.1=10%,y2=-2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调,∴再次上调价格为:242×(1+10%)=266.2(元),∵商场仍按9折出售,设定价为a元时,0.9a-266.2>0,解得:a>.故定价至少为296元时,乙服装才可获得利润.点评:此题主要考查了一元二次方程的应用以及增长率问题和一元一次不等式的应用,注意售价的算法:售价=定价×打折数.7. 答案:甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元,根据题意得12(y+y-1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元);故甲公司的施工费较少.7. 解释:分析:(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.解答:解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元,根据题意得12(y+y-1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元);故甲公司的施工费较少.点评:本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.8. 答案:8. 解释:分析:(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.解答:解:(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,5x+4(x-20)=820,x=100,x-20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60-m=39;当m=22时,60-m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.点评:本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.二.填空题1. 答案: 750米.1. 解释:分析:因为甲、乙两人的速度比是4:3,所以,甲、乙两人的路程比S甲:S乙=4:3;由过一段时间后,甲在跑道上离A点200米处,所以,甲跑的路程为:S甲=400k+200米(k为自然数),此时,乙在离A点不到100米处正向A点跑去;再由题意分类讨论解答.解答:解:设甲、乙两人的路程分别为S甲、S乙,由题意知,S甲:S乙=4:3;由过一段时间后,甲在跑道上离A点200米处,根据题意,得S甲=400k+200米(k为自然数),①当k=0时,S乙=×(400×0+200)=150米,不符合题意;②当k=1时,S乙=×(400×1+200)=450米,不符合题意;③当k=2时,S乙=×(400×2+200)=750米,符合题意.故答案为:750米.点评:本题考查了一元一次方程的应用,关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,分类讨论再求解.2. 答案: -30.06.2. 解释:分析:易得每跳动2次,向右平移1个单位,跳动100次,相当于在原数的基础上加了50,相应的等量关系为:原数字+50=19.94.解答:解:设k0点所对应的数为19.94-100+99-98+97-…-6+5-4+3-2+1=-30.06,故答案为:-30.06.点评:考查一元一次方程的应用,得到每跳动2次相对于原数的规律是解决本题的突破点.3. 答案: 25.3. 解释:分析:首先表示出甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟,进而利用甲车在第15分钟时,离乙车的距离为15a,这个距离在第18分钟追回来,即可得出等式方程求出a,b关系,再表示出一圈的路程即可得出答案.解答:解:设甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟.那么有甲车在第15分钟时,离乙车的距离为15a.这个距离在第18分钟追回来.那么15a=(18-15)b.即b=5a,而且在第23分钟时,甲车比乙车多跑一圈.那么一圈的路程为(23-18)b=5b=25a,所以甲车不提速时,乙车首次超过甲车(即多跑一圈)所需时间为:25a÷a=25分钟,故答案为:25.点评:此题主要考查了追击问题,根据已知得出a,b之间的关系是解题关键.4. 答案:在现行售价的基础上提高20%销售完剩余的文化衫.故20.4. 解释:分析:要求应在售价的基础上提高的百分数,就要先设出求知数x,再根据题意列出方程求解.题中的等量关系为:按批发价提高25%销售了进货的60%后经过提价=最终赢利35%.此题要把原价看作单位1.解答:解:设应在现行售价的基础上提高x%销售完剩余的文化衫,依题意有:(1+25%)×60%+(1+25%)(1+x%)×40%=1+35%,解得:x=20.故在现行售价的基础上提高20%销售完剩余的文化衫.故答案为:20.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.5. 答案:填16.5. 解释:分析:分别表示每10天的日销售量,设预计该公司5月1日至5月10日的平均日销售量是x台,则11到20号就是(x-2)台,21到30号就是(x-4)台,第31天到第38天就是(x-6)台,所以依此列方程得10x+10(x-2)+10(x-4)+8(x-6)=500求解即可.解答:解:设预计该公司5月1日至5月10日的平均日销售量是x台,根据题意得:10x+10(x-2)+10(x-4)+8(x-6)=500解得x=16,故填16.点评:此题首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.6. 答案: 8.6. 解释:分析:设路长是x千米,根据某人在同一条路上来回一次共用2小时.来时步行,平均速度是5千米/小时;回去的时坐公共汽车,平均速度是20千米/小时,可列方程求解.解答:解:设路长是x千米,+=2x=8路长为8千米.故答案为:8.点评:本题考查理解题意的能力,关键设出路长,以时间做为等量关系列方程求解.7. 答案: 150.7. 解释:分析:根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元,根据等量关系列出方程,解出a的值即可.解答:解:由题意得:0.5a+0.6(200-a)=105,解得:a=150,故答案为:150.点评:此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.8. 答案:答案为75.8. 解释:分析:先判断出3月份用电量一定超过60度,再根据“某用户3月份交电费66元”得到等量关系:60×0.8+超过60度的用电量×1.2=66,设3月份该用户用电量为x度,从而列出方程求解即可.解答:解:∵某用户3月份交电费66元,0.8×60=48元,66>48,∴3月份用电量超过60度.设3月份该用户用电量为x度,由题意,得:60×0.8+(x-60)×1.2=66,解得:x=75,答:3月份该用户用电量为75度.故答案为75.点评:本题考查用一元一次方程解决实际问题,判断出用电量在60度以上是解决本题的突破点,根据3月份的电费是66元列出方程是解决本题的关键.9. 答案: 50.9. 解释:分析:先根据题意求出小汽车和大卡车倒车的时间分别为50min和160min,然后分别讨论大卡车和小汽车分别倒车,两车都通过AB这段狭窄路面所用的时间,最后进行比较即可.解答:解:小汽车X通过AB段正常行驶需要10分钟,小汽车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段X=10÷=50分钟,卡车Y通过AB段正常行驶需20分钟,大卡车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段Y=20÷=160分钟,又因为:小汽车需要倒车的路程是大卡车需倒车的路程的4倍,得到小车进入AB段,大车进入AB段,由此得出实际Y倒车时间=160×=32分钟,实际X倒车时间=50×=40分钟.若Y倒X进则是32+20=52分钟两车都通过AB路段,若X倒Y进则是40+10=50分钟两车都通过AB路段,所以两车都通过AB路段的最短时间是50分钟.故答案为:50.点评:本题属于应用题,有一定难度,解题时注意分别讨论小汽车和大卡车分别倒车所用的时间.10. 答案: 25.10. 解释:分析:首先表示出甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟,进而利用甲车在第15分钟时,离乙车的距离为15a,这个距离在第18分钟追回来,即可得出等式方程求出a,b关系,再表示出一圈的路程即可得出答案.解答:解:设甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟.。

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。

专题 一元一次方程的同解、错解、参数等问题(解析版)

专题  一元一次方程的同解、错解、参数等问题(解析版)

七年级上册数学《第三章一元一次方程》专题一元一次方程的同解、错解、参数等问题【例题1】(2022•江阴市模拟)已知x=1是方程x+2a=﹣1的解,那么a的值是()A.﹣1B.0C.1D.2【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a 的值.【解答】解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选:A.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.【变式1-1】(2022秋•秀山县期末)已知x=1是关于x的方程6﹣(m﹣x)=5x的解,则代数式m2﹣6m+2=.【分析】根据一元一次方程的解的定义可知m的值,然后代入求值即可.【解答】解:把x=1代入6﹣(m﹣x)=5x,得6﹣(m﹣1)=5×1.解得m=2.所以m2﹣6m+2=22﹣6×2+2=﹣6.故答案为:﹣6.【点评】本题主要考查了一元一次方程的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.【变式1-2】(2022秋•张家港市期中)已知x=1是关于x的方程3x3﹣2x2+x﹣4+a=0的解,则3a3﹣2a2+a ﹣4的值是()A.1B.﹣1C.16D.14【分析】把x=1代入关于x的方程3x3﹣2x2+x﹣4+a=0可以求得a的值,然后把x=2代入所求的代数式进行求值.【解答】解:∵x=1是关于x的方程3x3﹣2x2+x﹣4+a=0的解,∴3﹣2+1﹣4+a=0,解得,a=2,∴3a3﹣2a2+a﹣4=3×23﹣2×22+2﹣4=14.故选:D.【点评】本题主要考查了方程解的定义,解决本题的关键在于根据方程的解的定义将x=1代入,从而转化为关于a的一元一次方程.【变式1-3】若关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,则m的值是()A.14或134B.14C.54D.−12或54【分析】解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.【解答】解:因为方程|x−12|=1,所以x−12=±1,解得x=32或x=−12,因为关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,所以解方程x+2=2(m﹣x)得,m=3r22,当x=32时,m=134,当x=−12时,m=14.所以m的值为:134或14.故选:A.【点评】本题考查了含绝对值符号的一元一次方程,解决本题的关键是解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论.【变式1-4】(2022秋•奎屯市校级月考)已知x=4是关于x的一元一次方程﹣3m﹣x=2+3m的解,则m2020+1的值是.【分析】根据一元一元一次方程的解的定义求得m,再解决此题.【解答】解:由题意得,﹣3m﹣4=42+3.∴﹣3m﹣4=2+3m.∴﹣6m=6.∴m=﹣1.∴m2020+1=(﹣1)2020+1=1+1=2.故答案为:2.【点评】本题主要考查一元一次方程的解、有理数的乘方,熟练掌握一元一次方程的解的定义、有理数的乘方是解决本题的关键.【变式1-5】(2022秋•烟台期末)已知x=﹣1是关于x的方程2a+2=﹣1﹣bx的解.求代数式5(2a﹣b)﹣2a+b+2的值.【分析】根据方程解的定义,把x=﹣1代入关于x的方程2a+2=﹣1﹣bx,即可得出代数式5(2a﹣b)﹣2a+b+2的值.【解答】解:当x=﹣1时,2a+2=﹣1+b,即2a﹣b=﹣3,∴5(2a﹣b)﹣2a+b+2=5(2a﹣b)﹣(2a﹣b)+2=﹣15+3+2=﹣10.【点评】本题考查了一元一次方程的解,以及整式的加减,把2a﹣b作为整体,是数学中常用的整体思想.(2023春•长春期中)已知关于x的方程4x+2m=3x+1的解是x=0,试求(−2p2021−(−32)2020【变式1-6】的值.【分析】将x=0代入原方程,可求出m的值,再将m的值代入原式,即可求出结论.【解答】解:将x=0代入原方程得:2m=1,解得:m=12,∴原式=(﹣2×12)2021﹣(12−32)2020,=(﹣1)2021﹣(﹣1)2020=﹣1﹣1=﹣2.【点评】本题考查了一元一次方程的解,牢记“把方程的解代入原方程,等式左右两边相等”是解题的关键.【例题2】(2023秋•东台市期中)如果关于x的方程K43=8−r22的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求a的值.【分析】先求出第一个方程的解,然后代入第二个方程得到关于a的一元一次方程,再根据一元一次方程的解法进行求解即可.【解答】解:解方程K43=8−r22得:x=10,由题意:4x﹣(3a+1)=6x+2a﹣1的解为x=10,代入得:4×10﹣(3a+1)=6×10+2a﹣1,解得:a=﹣4.【点评】本题考查了同解方程,同解方程就是解相同的方程,本题先求出第一个方程的解是解题的关键.【变式2-1】(2022秋•长沙期末)若关于x的方程r32−=2的解与方程x+1=m的解相同,求m的值.【分析】先解方程r32−=2可得x=4﹣m,再根据方程同解的含义可得4﹣m+1=m,再解关于m 的方程即可.【解答】解:r32−=2,去分母可得:m+3x﹣2x=4,即x=4﹣m,∵关于x的方程r32−=2的解与方程x+1=m的解相同,∴4﹣m+1=m,解得:=52.【点评】本题考查的是同解方程的含义,选择合适的方程进行变形是解本题的关键.【变式2-2】(2022秋•仙游县校级期末)如果方程2K35=23x﹣2与3a−14=3(x+a)﹣2a的解相同,求(a ﹣3)2的值.【分析】通过解关于x的方程2K35=23x﹣2求得x的值,然后将x的值代入3a−14=3(x+a)﹣2a列出关于a的新方程,通过解该新方程即可求得a的值,再代入计算即可求解.【解答】解:由关于x的方程2K35=23x﹣2,解得x=5.25∵关于x的方程2K35=23x﹣2与3a−14=3(x+a)﹣2a的解相同,∴3a−14=3(5.25+a)﹣2a,解得a=8.∴(a﹣3)2=(8﹣3)2=25.【点评】本题考查了同解方程的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.【变式2-3】(2023春•安岳县校级期中)已知关于x的一元一次方程2r13−5K16=1.(1)求这个方程的解;(2)若这个方程的解与关于x的方程3(x+m)=﹣(x﹣1)的解相同,求m的值.【分析】(1)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)根据题意可知x=﹣3是方程3(x+m)=﹣(x﹣1)的解,把x=﹣3代入方程3(x+m)=﹣(x ﹣1)中得到关于m的方程,解方程即可.【解答】解:(1)2r13−5K16=1去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项得:4x﹣5x=6﹣1﹣2,合并同类项得:﹣x=3,系数化为1得:x=﹣3;(2)由题意得x=﹣3是方程3(x+m)=﹣(x﹣1)的解,∴3(﹣3+m)=﹣(﹣3﹣1),∴3m﹣9=4,解得=133.【点评】本题主要考查了解一元一次方程,一元一次方程的解,熟知解一元一次方程的步骤是解题的关键.【变式2-4】如果方程K43−8=−r22的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子a﹣a2的值.【分析】先求得方程方程K43−8=−r22的解,然后将所求的x的值代入方程4x﹣(3a+1)=6x+2a﹣1求得a的值,最后在求代数式的值即可.【解答】解:K43−8=−r22去分母得:2(x﹣4)﹣48=﹣3(x+2)去括号得:2x﹣8﹣48=﹣3x﹣6,移项得:2x+3x=﹣6+8+48,合并同类项得:5x=50,系数化为1得:x=10.将x=10代入方程4x﹣(3a+1)=6x+2a﹣1得:40﹣(3a+1)=60+2a﹣1,去括号得:40﹣3a﹣1=60+2a﹣1,移项得:﹣3a﹣2a=60﹣1﹣40+1,合并同类项得:﹣5a=20,系数化为1得:a=﹣4.a﹣a2=﹣4﹣(﹣4)2=﹣4﹣16=﹣20.【点评】本题主要考查的是同解方程的定义、解一元一次方程、求代数式的值,求得a的值是解题的关键.【变式2-5】(2022秋•巴南区期末)已知方程3K52=5K83的解满足等式10−3(Kp2=3K4−25(3x+m),求m的值.【分析】根据方程的解相同,可得关于m的方程,根据解方程,可得答案.【解答】解:解方程3K52=5K83,3(3x﹣5)=2(5x﹣8),9x﹣15=10x﹣16,9x﹣10x=﹣16+15,x=1,∵方程3K52=5K83的解满足等式10−3(Kp2=3K4−25(3x+m),∴10−3(1−p2=3−4−25×(3+p,2m﹣30(1﹣m)﹣5(3﹣m)﹣8(3+m),2m﹣30+30m=15﹣5m﹣24﹣8m,2m+30m+8m+5m=30+15﹣24,45m=21,解得m=715.【点评】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.【变式2-6】(2022秋•利州区校级期末)已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同.(1)求m的值;(2)求代数式(﹣2m)2022−(−32)2021的值.【分析】(1)分别解出两个方程的解,根据解相同列出方程,解方程即可;(2)代入求值即可.【解答】解:(1)由4x+2m=3x+1解得:x=1﹣2m,由3x+2m=6x+1解得:x=2K13,由题知:1﹣2m=2K13,解得:m=12;(2)当m=12时,(﹣2m)2022﹣(m−32)2021=(﹣2×12)2022﹣(12−32)2021=1+1=2.【点评】本题考查了同解方程,解一元一次方程,列出关于m的方程是解题的关键.【例题3】(202秋•沂源县期末)方程2﹣3(x+1)=0的解与关于x的方程r2−3k﹣2=2x的解互为相反数,求k的值【分析】直接解方程得出x=−13,进而得出关于x的方程r2−3k﹣2=2x的解,求出答案即可.【解答】解:∵2﹣3(x+1)=0,∴解得:x=−13,∵方程2﹣3(x+1)=0的解与关于x的方程r2−3k﹣2=2x的解互为相反数,∴关于x的方程r2−3k﹣2=2x的解x=13,∴r132−3k﹣2=23,解得:k=﹣1.【点评】此题主要考查了一元一次方程的解,正确得出x的值是解题关键.【变式3-1】(2022秋•高港区校级月考)已知关于x的方程①:x+1﹣2m=﹣m的解比方程②:32(−p−2=54的解大2.求m的值以及方程②的解.【分析】用含m的式子分别表示出方程①和方程②的解,根据方程①的解比方程②的解大2列出关于m的方程,求解可得m的值,将m的值代入方程②中即可解得x的值.【解答】解:解x+1﹣2m=﹣m得:x=m﹣1,解32(−p−2=54得:=611−811,∵方程①的解比方程②的解大2,∴−1−(611−811)=2,解得:m=5,将m=5代入方程②中得:32(5−p−2=54,解得:x=2.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.【变式3-2】(2022秋•石景山区校级期末)已知关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,求a的值.【分析】分别解出关于x的方程12x﹣a=0的解和方程a+8x=2+4x的解,然后根据已知条件“关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程12x﹣a=0,得x=12,由方程a+8x=2+4x,得x=2−4,又∵关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,∴12−2−4=1,去分母,得a﹣3(2﹣a)=12,去括号,得a﹣6+3a=12,移项,得a+3a=6+12,合并同类项,得4a=18,化系数为1,得a=4.5.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【变式3-3】(2022秋•太仓市期末)已知关于x的一元一次方程2x+10﹣3m=0的解与关于x的一元一次方程r12+2(r1)3=1的解互为相反数,求代数式92m﹣4n﹣1的值.【分析】分别解方程,进而用m,n分别表示出x,再结合相反数的定义得出等式,将原式变形求出答案.【解答】解:2x+10﹣3m=0,则2x=3m﹣10,解得:x=3K102,r12+2(r1)3=1,则3(x+1)+4(n+1)=6,故3x+3+4n+4=6,3x=﹣1﹣4n,解得:x=−1+43,∵关于x的一元一次方程2x+10﹣3m=0的解与关于x的一元一次方程r12+2(r1)3=1的解互为相反数,∴3K102−1+43=0,去分母得:3(3m﹣10)﹣2(1+4n)=0,则9m﹣30﹣2﹣8n=0,故9m﹣8n=32,则92m﹣4n﹣1=12(9m﹣8n)﹣1=12×32﹣1=16﹣1=15.【点评】此题主要考查了一元一次方程的解,正确解方程是解题关键.【变式3-4】(2022秋•亭湖区校级月考)已知关于x的方程3(x﹣2)=x﹣a的解比r2=2K3的解小52,求2a﹣3的值.【分析】先分别求出两个方程的解,根据题意得出关于a的一元一次方程,再求出方程的解,最后求出答案即可.【解答】解:解方程3(x﹣2)=x﹣a得:x=6−2,解方程r2=2K3得:x=5a,∵关于x的方程3(x﹣2)=x﹣a的解比r2=2K3的解小52,∴6−2=5a−52,解得:a=1,∴2a﹣3=2×1﹣3=﹣1.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.【变式3-5】(2022秋•常州期中)已知关于x的方程r12=3x﹣2与K2=x+3的解互为倒数,求m的值.【分析】先求出两方程的解,再由倒数的定义即可得出结论.【解答】解:解方程r12=3x﹣2得,x=1,解方程K2=x+3得,x=−53,∵关于x的方程r12=3x﹣2与K2=x+3的解互为倒数,−53×1=1,解得m=−35.【点评】本题考查的是一元一次方程的解,熟知使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解是解答此题的关键.【变式3-6】(2022秋•武城县期末)已知(|a|﹣1)x2﹣(a+1)x+8=0是关于x的一元一次方程.(1)求a的值,并解出上述一元一次方程;(2)若上述方程的解是方程5x﹣2k=2x解的2倍,求k的值.【分析】(1)根据一元一次方程的定义和解一元一次方程的一般步骤准确计算即可;(2)根据解析(1)得出的方程解,得出方程5x﹣2k=2x解为x=2,然后代入求出k的值即可.【解答】解:(1)由题意得:|a|﹣1=0,﹣(a+1)≠0,∴a=±1且a≠﹣1,∴a=1,将a=1代入方程得:﹣2x+8=0,解得:x=4.答:a的值是1,方程的解是x=4.(2)由题意得:x=4÷2=2,将x=2代入方程得:5×2﹣2k﹣2×2,解得:k=3.答:k的值是3.【点评】本题主要考查了解一元一次方程,方程解的定义,一元一次方程的定义,解题的关键熟练掌握解一元一次方程的方法.【例题4】(2023•平桥区校级开学)王涵同学在解关于x的一元一次方程7a+x=18时,误将+x看作﹣x,得方程的解为x=﹣4,那么原方程的解为()A.x=4B.x=2C.x=0D.x=﹣2【分析】把x=﹣4代入方程7a﹣x=18,得出方程7a+4=18,求出a的值,再代入方程,求出方程的解即可.【解答】解:把x=﹣4代入方程7a﹣x=18得:7a+4=18,解得:a=2,即原方程为14+x=18,解得:x=4.故选:A.【点评】本题考查了解一元一次方程和一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.【变式4-1】(2022秋•椒江区校级期中)小明解方程2K15+1=r2,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并求出方程的正确解.【分析】把x=4代入小明粗心得出的方程,求出a的值,代入方程求出解即可.【解答】解:由题意可知:(在去分母时,方程左边的1没有乘10,由此求得的解为x=4),2(2x﹣1)+1=5(x+a),把x=4代入得:a=﹣1,将a=﹣1代入原方程得:2K15+1=K12,去分母得:4x﹣2+10=5x﹣5,移项合并得:﹣x=﹣13,解得x=13.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.【变式4-2】(2022秋•前郭县期末)某同学在解关于y的方程3K4−5K76=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y=10.(1)求a的值;(2)求方程正确的解.【分析】(1)根据题意得3(3y﹣a)﹣2(5y﹣7a)=1,将y=10代入方程即可求a的值;(2)当a=1代入原方程再求解即可.【解答】解:(1)该同学去分母时方程右边的1忘记乘12,则原方程变为3(3y﹣a)﹣2(5y﹣7a)=1,∵方程的解为y=10,代入得3(30﹣a)﹣2(50﹣7a)=1.解得a=1.(2)将a=1代入方程3K4−5K76=1,得3K14−5K76=1,解得y=﹣1,即原方程的解为y=﹣1.【点评】本题考查一元一次方程的解,熟练掌握一元一次方程的解与一元一次方程的关系是解题的关键.【变式4-3】(2023•秦皇岛一模)米老鼠在解方程2K13=r2−1的过程中,去分母时方程右边的﹣1忘记乘6,因而求得的解为x=2.(1)请你帮助米老鼠求出a的值;(2)正确地解这个方程.【分析】(1)把x=2代入方程2(2x﹣1)=3(x+a)﹣1得出2×(2×2﹣1)=3(2+a)﹣1,再求出方程的解即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)把x=2代入方程2(2x﹣1)=3(x+a)﹣1得:2×(2×2﹣1)=3(2+a)﹣1,解得:a=13;(2)方程为2K13=r132−1,2(2x﹣1)=3(x+13)﹣6,4x﹣2=3x+1﹣6,4x﹣3x=1﹣6+2,x=﹣3.【点评】本题考查了一元一次方程的解和解一元一次方程,注意:使方程左右两边相等的未知数的值,叫方程的解.【变式4-4】(2022秋•道里区校级月考)小明同学在解方程2K13=r3−2,去分母时,方程右边的﹣2没有乘3,因而求得方程的解为x=3.试求a的值,并正确地解出方程.【分析】先根据题意,得x=3是方程2x﹣1=x+a﹣2的解,然后根据方程解的定义将x=2代入这个方程,从而求出a的值;再把所求得的a的值代入原方程,最后解一元一次方程即可.【解答】解:依题意,x=3是方程2x﹣1=x+a﹣2的解,∴2×3﹣1=3+a﹣2,∴a=4.∴原方程为2K13=r43−2,解方程,得2x﹣1=x+4﹣6,解得x=﹣1.故a=4,原方程的正确的解是x=﹣1.【点评】本题考查了一元一次方程的解和解一元一次方程的知识,解题的关键是掌握相关的定义和解一元一次方程的一般步骤.【变式4-5】小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【分析】(1)把x=3代入方程即可得到关于a的方程,求得a的值;(2)把a的值代入方程,然后解方程求解;(3)把y=a代入my3+ny+1得到m和n的式子,然后把y=﹣a代入my3+ny+1,利用前边的式子即可代入求解.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.【变式4-6】(2022秋•大余县期末)聪聪在对方程r33−B−16=5−2①去分母时,错误地得到了方程:2(x+3)﹣mx﹣1=3(5﹣x)②,因而求得的解是=52.(1)求m的值;(2)求原方程的解.【分析】(1)将x=52代入方程②,整理即可求出m的值,(2)将m的值代入方程①即可求出正确的解.【解答】(1)把x=52代入2(x+3)﹣mx﹣1=3(5﹣x)中,得:2×(52+3)−52m﹣1=3×(5−52),解得:m=1.(2)当m=1时原方程为r33−K16=5−2,2(x+3)﹣(x﹣1)=3(5﹣x),4x=8,x=2.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【例题5】(2022秋•兴隆县期末)方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个?()A.2个B.3个C.4个D.5个【分析】根据方程的解是正整数,可得(m+2)是12的约数,根据12的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx+2x﹣12=0,得=12r2,∵方程mx+2x﹣12=0是关于x的一元一次方程,此方程的解为正整数,m是正整数,∴m+2=3或4或6或12,解得m=1或2或4或10,∴正整数m的值有4个.故选:C.【点评】本题考查了一元一次方程的解,正确理解m+2=3或4或6或12是关键.【变式5-1】已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为.【分析】根据方程的解是正整数,可得5的约数.【解答】解:由kx=5﹣x,得x=5r1.由关于x的方程kx=5﹣x,有正整数解,得5是(k+1)的倍数,得k+1=1或k+1=5.解得k=0或k=4,故答案为:0或4.【点评】本题考查了一元一次方程的解,利用方程的解是正整数得出关于k的方程是解题关键.【变式5-2】已知关于x的一元一次方程mx﹣1=2(x+32)的解是正整数,则整数m的值为.【分析】根据方程的解是正整数,可得4的约数,根据4的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx﹣1=2(x+32),得x=4K2,因为关于x的方程mx﹣1=2(x+32)的解是正整数,得m﹣2=1,m﹣2=2,或m﹣2=4.解得m=3,m=4,或m=6.故答案为:3或4或6.【点评】本题考查了一元一次方程的解,利用方程的解是正整数得出关于m的方程是解题关键.【变式5-3】(2022秋•九龙坡区校级期末)若关于x的方程−2−B6=r13的解是整数解,m是整数,则所有m的值加起来为()A.﹣5B.﹣16C.﹣24D.18【分析】根据解一元一次方程的一般步骤表示出x的代数式,分析解答即可.【解答】解:解方程−2−B6=r13,得:=44+,根据题意可知=44+为整数,m是整数,当m的值为0,﹣2,﹣3,﹣5,﹣6,﹣8时,44+为整数,∴0+(﹣2)+(﹣3)+(﹣5)+(﹣6)+(﹣8)=﹣24,故选:C.【点评】本题考查了根据一元一次方程解的情况求参数,熟练掌握解一元一次方程的一半步骤是解本题的关键.【变式5-4】(2022秋•邗江区校级期末)若关于x的方程2ax=(a+1)x+6的解为正整数,求整数a的值.【分析】首先解方程表示出x的值,然后根据解为正整数求解即可.【解答】解:2ax=(a+1)x+6,移项得:2ax﹣(a+1)x=6,合并同类项得:(a﹣1)x=6,系数化为1得:=6K1,∵关于x的方程2ax=(a+1)x+6的解为正整数,∴=6K1为正整数,∴a﹣1=1或a﹣1=2或a﹣1=3或a﹣1=6∴a=2或a=3或a=4或a=7.【点评】本题主要考查方程的解和解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.【变式5-5】设m为整数,且关于x的一元一次方程(m﹣5)x+m﹣3=0.(1)当m=2时,求方程的解;(2)若该方程有整数解,求m的值.【分析】(1)把m=2代入原方程,得到关于x得一元一次方程,解之即可,(2)根据“m≠5,该方程有整数解,且m是整数”,结合一元一次方程的解题步骤,得到关于m的几个一元一次方程,解之即可.【解答】解:(1)当m=2时,原方程为﹣3x﹣1=0,解得,=−13,(2)当m≠5时,方程有解,=3−K5=−1−2K5,∵方程有整数解,且m是整数,∴m﹣5=±1,m﹣5=±2,解得,m=6或m=4或m=7或m=3.【点评】本题考查了一元一次方程的解和一元一次方程的定义,解题的关键:(1)正确掌握一元一次方程的解题步骤,(2)正确掌握一元一次方程的定义和一元一次方程的解题步骤.。

一元一次方程的同解问题专题练习(学生版)

一元一次方程的同解问题专题练习(学生版)

一元一次方程的同解问题专题练习(学生版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一元一次方程的同解问题专题练习一、选择题1、若方程4x -1=3x +1和2m +x =1的解相同,则m 的值为( ).A. -3B. 1C. -12 D. 322、若方程2x +1=-1的解是关于x 的方程1-2(x -a )=2的解,则a 的值为( ).A. -1B. -12 C. -32 D. 13、关于x 的方程2x +5a =3的解与方程2x +2=0的解相同,则a 的值是( ).A. 4B. 1C. 15 D. -14、若关于x 的方程2x +13k =2与3x =k +6的解互为相反数,求k 的值为( ).A. 18B. -18C. 0D. 6二、填空题5、关于x 的方程2x +5a =3的解与方程2x +2=0的解相同,则a 的值是______.6、已知关于x 的方程(a -2)x =9与x +2=5的解相同,则a 的值是______.7、方程2x +4=0的解与关于x 的方程4x +m =31的解互为相反数,则m 的值是______.8、如果关于x 的方程3x -7=2x +a 的解与方程4x +3=7的解相同,那么a 的值为______.9、若关于x 的方程3x -4=-1与ax -b +1=-c 有相同的解,则(a -b +c )2012=______.10、如果关于x 的方程2x +1=3和方程2-3k x -=0的解相同,那么k 的值为______.11、方程3[x -2(x -2a )]=4x 与方程315128x a x +--=1有相同的解,则x =______.三、解答题12、若方程3x +2a =12和方程3x -4=2的解相同,求a 的值.13、若关于x 的方程2x -3=1和2x k -=k -3x 有相同的解,求k 的值.14、方程x -7=0与方程5x -2(x +k )=2x -1的解相同,求代数式k 2-5k -3的值.15、若关于x 的方程3x =52x -4和12x -2ax =4a x +5有相同的解,求a 的值.16、已知关于x 的方程12(1-x )=1-k 的解与35148x k x +--=1的解相同,求k 的值.17、已知关于x 的方程2x m -=x +3m 与方程415y -=213y +的解互为倒数,求m 的值.18、已知两个关于x 的方程x -2m =-3x +4和-4x =2-m -5x ,它们的解互为相反数.(1)求常数m 的值.(2)求出这两个方程的解.19、若关于x 的方程2x k -=13x +与方程x -3(x -1)=2-(x +1)的解互为相反数,求k 的值.20、m 为何值时,关于x 的方程2x -m =13x -的解是x =2x -m +1的解的2倍21、关于x 的方程4x +2m =3x +1和3x +2m =4x +1的解相同,求m 的值和方程的解.22、已知关于x 的方程2x m -=x +3m 与23x +=3x -2的解互为倒数,求m 的值.23、已知关于x 的方程4x -2m =3x -1的解是x =2x -3m 的解的2倍,求m 的值.24、求k为何值时,关于x的方程34+8x=7k+6x的解比关于x的方程12x-+1=3x的解大3.25、解答下列问题:(1)解关于x的方程:2(-2x+a)=3x.(2)若(1)中方程的解与关于x的方程x-13x-=6x a+的解互为相反数,求a的值.26、已知3x n+2+2m-n=2t与x2-m-3m+2nt=-2都是关于x的一元一次方程,且他们的解互为相反数,求关于y的方程26y-+3t=1的解.。

一元一次方程计算题100道及答案

一元一次方程计算题100道及答案

一元一次方程计算题100道及答案
题目1:
求解方程:2x + 3 = 7。

解答:将方程转化为一元一次方程的标准形式:2x = 4。

则解为 x = 2。

题目2:
求解方程:3x + 5 = -4。

解答:将方程转化为一元一次方程的标准形式:3x = -9。

则解为 x = -3。

……(依次类推,提供其余98道题目及解答)
题目100:
求解方程:4x + 2 = 18。

解答:将方程转化为一元一次方程的标准形式:4x = 16。

则解为 x = 4。

这是一份包含100道一元一次方程计算题以及对应答案的文档。

每道题目都是求解一个一元一次方程。

通过解答这些题目可以帮助学生巩固对一元一次方程的概念和求解方法的理解。

每道题目都有提供解答,方便学生对比自己的答案。

希望这份文档对你有所帮助!。

一元一次方程的同解问题专题练习(学生版)

一元一次方程的同解问题专题练习(学生版)

一元一次方程的同解问题专题练习一、选择题1、若方程4x -1=3x +1和2m +x =1的解相同,则m 的值为( ).A. -3B. 1C. -12D. 32 2、若方程2x +1=-1的解是关于x 的方程1-2(x -a )=2的解,则a 的值为( ). A. -1 B. -12 C. -32D. 1 3、关于x 的方程2x +5a =3的解与方程2x +2=0的解相同,则a 的值是( ). A. 4 B. 1 C. 15 D. -14、若关于x 的方程2x +13k =2与3x =k +6的解互为相反数,求k 的值为( ). A. 18 B. -18C. 0D. 6 二、填空题5、关于x 的方程2x +5a =3的解与方程2x +2=0的解相同,则a 的值是______.6、已知关于x 的方程(a -2)x =9与x +2=5的解相同,则a 的值是______.7、方程2x +4=0的解与关于x 的方程4x +m =31的解互为相反数,则m 的值是______.8、如果关于x 的方程3x -7=2x +a 的解与方程4x +3=7的解相同,那么a 的值为______.9、若关于x 的方程3x -4=-1与ax -b +1=-c 有相同的解,则(a -b +c )2012=______.10、如果关于x 的方程2x +1=3和方程2-3k x -=0的解相同,那么k 的值为______. 11、方程3[x -2(x -2a )]=4x 与方程315128x a x +--=1有相同的解,则x =______. 三、解答题12、若方程3x +2a =12和方程3x -4=2的解相同,求a 的值.13、若关于x 的方程2x -3=1和2x k -=k -3x 有相同的解,求k 的值.14、方程x -7=0与方程5x -2(x +k )=2x -1的解相同,求代数式k 2-5k -3的值.15、若关于x 的方程3x =52x -4和12x -2ax =4a x +5有相同的解,求a 的值.16、已知关于x 的方程12(1-x )=1-k 的解与35148x k x +--=1的解相同,求k 的值.17、已知关于x 的方程2x m -=x +3m 与方程415y -=213y +-0.6的解互为倒数,求m 的值.18、已知两个关于x 的方程x -2m =-3x +4和-4x =2-m -5x ,它们的解互为相反数.(1)求常数m 的值.(2)求出这两个方程的解.19、若关于x 的方程2x k -=13x +与方程x -3(x -1)=2-(x +1)的解互为相反数,求k 的值.20、m 为何值时,关于x 的方程2x -m =13x -的解是x =2x -m +1的解的2倍?21、关于x 的方程4x +2m =3x +1和3x +2m =4x +1的解相同,求m 的值和方程的解.22、已知关于x 的方程2x m -=x +3m 与23x +=3x -2的解互为倒数,求m 的值.23、已知关于x 的方程4x -2m =3x -1的解是x =2x -3m 的解的2倍,求m 的值.24、求k 为何值时,关于x 的方程34+8x =7k +6x 的解比关于x 的方程12x -+1=3x 的解大3.25、解答下列问题:(1)解关于x的方程:2(-2x+a)=3x.(2)若(1)中方程的解与关于x的方程x-13x-=6x a+的解互为相反数,求a的值.26、已知3x n+2+2m-n=2t与x2-m-3m+2nt=-2都是关于x的一元一次方程,且他们的解互为相反数,求关于y的方程26y-+3t=1的解.。

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (39)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (39)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)先看例子,再解类似的题目.例:解方程:||14x -=.解法一:当0x 时,原方程化为14x -=.解方程,得5x =.当0x <时,原方程化为14x --=.解方程,得5x =-.所以原方程的解是5x =或5x =-.解法二:移项,得||41x =+.合并同类项,得||5x =.由绝对值的意义,得5x =或5x =-.所以原方程的解是5x =或5x =-.问题:用你发现的规律解方程:2||35x -=.【答案】4x =或4x =-【解析】【分析】解法一:讨论x ≥0与x <0时,两种情况即可求出解;解法二:方程变形后,利用绝对值的代数意义化简,即可求出解.【详解】解法一:当x ⩾0时,原方程化为2x −3=5,解得:x=4;当x<0时,原方程化为−2x −3=5,解得:x=-4;解法二:方程变形为2|x|=8,即|x|=4,解得:x=±4.则方程的解为4或−4.【点睛】本题考查解含绝对值符号的一元一次方程,熟练掌握计算法则是解题关键82.已知5x =是关于x 的方程820kx k -=+的解,求k 的值.【答案】7【解析】【分析】把5x =代入方程,可得5820k k -=+,解得方差即可得出k 的值【详解】将5x =代入820kx k -=+,得5820k k -=+4k=28k=7【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.83.解下列方程:(1)21x x -+=-;(2)5326x x -=+.【答案】(1)32x =(2)3x = 【解析】【分析】(1) 先移项,再合并同类项,把x 的系数化为1即可;(2) 先移项,再合并同类项,把x 的系数化为1即可;【详解】(1) 原式=-21x x -=--,-23x =-,32x =(2) 原式=5263x x -=+,3x=9,x=3【点睛】本题考查解一元一次方程-移项,熟练掌握计算法则是解题关键.84.下面是两位同学的作业.请你用曲线把出错误的步骤画出来,并把正确的写在右边.(1)解方程: 215x x -=-+.解:215x x -=+,6x =.(2)解方程:715y y =+. 解: 71y y =+,71y y -=,61y =,16y =. 【答案】(1)见解析;(2)见解析.【解析】【分析】根据解一元一次方程的步骤:移项,合并同类项,系数化为1,进行解方程即可求解.【详解】解:⑴215x x -=+ 改正:215x x +=+ 2x =(2) 71y y =+ 改正:755y y =+ 52y =【点睛】本题主要考查解一元一次方程的步骤,解决本题的关键是要熟练掌握解一元一次方程的步骤.85.已知12x =是关于x 的方程1382m x x +=+的解,求关于x 的方程223m x m x +=-的解.【答案】答案见解析【解析】【分析】 先将12x =代入1382m x x +=+得到m=-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2.6同解方程完成时间:20min一.选择题(共9小题)1.已知关于x的方程7x+3k=12与7x+3=0的解相同,则k的值为()A﹣3 B.3C.﹣5 D.52.关于x的方程x+a=2x﹣3与2x﹣b=x有相同的解,则a、b的关系为()A.a﹣b=3 B.b﹣a=3 C.b+a=3 D.b+a+3=03.已知方程4x=8与x﹣k=1的解相同,则4k2﹣1的值为()A.1B.3C.8D.174.吴云科和孟家福是七年级四班的两名爱好数学的优等生,在学完第三章《一元一次方程》后,吴云科对孟家福说:“方程与方程的解相同,你能求出k的值吗?”孟家福用笔算了一下给出正确答案,聪明的你知道是哪个吗?()A.0B.2C.1D.﹣15.如果方程x=1与2x+a=ax的解相同,则a的值是()A.2B.﹣2 C.3D.﹣36.下列方程中与方程3x=x+1的解相同的是()A.2x=4 B.2x=4x﹣1 C.5x+3=6 D.6x﹣15x=37.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=()A.B.C.﹣D.﹣8.在方程:①3x﹣=1;②;③6x﹣5=2x﹣3;④x+=2x中,与方程2x=1的解相同的方程有()A.1个B.2个C.3个D.4个9.有4个关于x方程:(1)x﹣2=﹣1 (2)(x﹣2)+(x﹣1)=﹣1+(x﹣1)(3)x=0 (4)其中同解的两个方程是()A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(4)二.填空题(共15小题)10.方程x+2=3的解也是方程ax﹣5=8的解时,则a= _________ .11.已知关于x的方程+3=x与方程3﹣2x=1的解相同,则m2= _________ .12.若方程2x﹣3=11与关于x的方程4x+5=3k有相同的解,则k的值是_________ .13.已知关于x的方程5x+3k=24与5x+3=0的解相同,则k的值为_________ .14.已知方程3(x+3)﹣1=2x的解与关于x的方程的解相同,则m2﹣2m+1的值为_________ .15.已知关于x的方程=x+与=3x﹣2的解相同,则m= _________ .16.如果关于x的方程和方程的解相同,那么k的值_________ .17.如果方程与方程3x﹣2a=0的解相同,则a3= _________ .18.方程ax2+3x2b﹣1+cy=2是关于x的一元一次方程,则a+b+c= _________ ;如果关于x的方程2x+1=﹣3和方程=0的解相同,那么k= _________ .19.若3x﹣4=﹣1与ax﹣b+1=﹣c有相同的解,则(a﹣b+c)2009= _________ .20.若以为未知数的方程3x=5x﹣8和有相同的解,则a= _________ .21.已知方程2x﹣3=+x的解满足|x|﹣1=0,则m _________ .22.关于x的方程3x=9与x+4=k的解相同,则代数式1﹣2|k|的值为_________ .23.关于x的方程3mx+7=0和2 x+3n=0是同解方程,那么(mn)2= _________ .24.已知:一元一次方程2x﹣2=3的解是方程的解,则m= _________ .三.解答题(共6小题)25.已知:关于x的方程4x﹣k=2与3(2+x)=2k的解相同,求k的值及相同的解.26.已知关于x的方程2x+1=a和2x+2=0的解相同,求的值.27.若关于x的方程2x﹣3=1和=k﹣3x有相同的解,求k的值.28.如果方程的解与方程4y﹣(3m+1)=6y+2m﹣1的解相同,求式子的值.29.方程4+2(x﹣1)=0的解与关于x的方程的解相同,求k的值.30.当k为何值时,方程与方程有相同的解?6.2.6同解方程参考答案与试题解析一.选择题(共9小题)1.已知关于x的方程7x+3k=12与7x+3=0的解相同,则k的值为()A.﹣3 B.3C.﹣5 D.5考点:同解方程.专题:计算题.分析:先解方程7x+3=0,可得x=﹣,根据同解的定义可得x=﹣也是7x+3k=12的解,再把x=﹣代入7x+3k=12中即可求k.解答:解:解方程7x+3=0得,x=﹣,∵7x+3k=12与7x+3=0的解相同,∴x=﹣也是7x+3k=12的解,再把x=﹣代入7x+3k=12中,得7×(﹣)+3k=12,解得k=5.故选D.点评:本题考查了同解方程的定义,解题的关键是先求出x.2.关于x的方程x+a=2x﹣3与2x﹣b=x有相同的解,则a、b的关系为()A.a﹣b=3 B.b﹣a=3 C.b+a=3 D.b+a+3=0考点:同解方程.分析:求出两个方程的解,根据已知得出两个解相等,即可求出答案.解答:解:x+a=2x﹣3,x﹣2x=﹣3﹣a,﹣x=﹣3﹣a,则x=3+a,2x﹣b=x,x=b,∵关于x的方程x+a=2x﹣3与2x﹣b=x有相同的解,∴3+a=b,∴b﹣a=3,故选B.点评:本题考查了对同解方程的理解,关键是求出3+a=b,题目比较好,难度适中.3.已知方程4x=8与x﹣k=1的解相同,则4k2﹣1的值为()A.1B.3C.8D.17考点:同解方程.专题:计算题.分析:先解出方程4x=8的解,然后代入求出k的值,进而可得出答案.解答:解:解方程4x=8,得:x=2,把x=2代入x﹣k=1,得:k=1,∴4k2﹣1=3.故选B.点评:本题考查同解方程的知识,比较简单,解决本题的关键是理解方程解的定义,注意细心运算.4.吴云科和孟家福是七年级四班的两名爱好数学的优等生,在学完第三章《一元一次方程》后,吴云科对孟家福说:“方程与方程的解相同,你能求出k的值吗?”孟家福用笔算了一下给出正确答案,聪明的你知道是哪个吗?()A.0B.2C.1D.﹣1考点:同解方程.专题:方程思想.分析:先解方程,得x=1,因为这个解也是方程的解,根据方程的解的定义,把x代入方程中求出k的值.解答:解:12﹣2(x﹣1)=3(1﹣x)+6(3﹣x)解得:x=1.把x=1代入方程得:4﹣=3k﹣,12﹣k﹣2=9k,解得:k=1.故选C.点评:本题考查了同解方程,解题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.5.如果方程x=1与2x+a=ax的解相同,则a的值是()A.2B.﹣2 C.3D.﹣3考点:同解方程.专题:计算题.分析:可以分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.解答:解:解第一个方程得:x=3,解第二个方程得:x=∴=3解得:a=3故选C.点评:本题解决的关键是能够求解关于x的方程,要能正确理解方程解的含义.6.下列方程中与方程3x=x+1的解相同的是()A.2x=4 B.2x=4x﹣1 C.5x+3=6 D.6x﹣15x=3考点:同解方程.专题:计算题.分析:求得题目中各个方程的解,即可作出判断.解答:解:方程3x=x+1的解是x=.A、解是x=2,故错误;B、解是x=,故正确;C、解是x=,故错误;D、解是x=﹣,故错误.故选B.点评:本题主要考查了一元一次方程的解法,正确解方程是解题的关键.7.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=()A.B.C.﹣D.﹣考点:同解方程.专题:计算题.分析:先通过方程3x+5=11求得x的值,因为方程6x+3a=22与方程3x+5=11的解相同,把x的值代入方程6x+3a=22,即可求得a的值.解答:解:3x+5=11,移项,得3x=11﹣5,合并同类项,得3x=6,系数化为1,得x=2,把x=2代入6x+3a=22中,得6×2+3a=22,∴a=,故选B.点评:解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号.因为两方程解相同,把求得x的值代入方程,即可求得常数项的值.8.在方程:①3x﹣=1;②;③6x﹣5=2x﹣3;④x+=2x中,与方程2x=1的解相同的方程有()A.1个B.2个C.3个D.4个考点:同解方程.专题:计算题.分析:求出方程2x=1的解是x=,要判断x=是否是方程的解,就是把它代入方程的左右两边,看是否相等.解答:解:方程2x=1的解是x=A、把x=代入3x﹣=1,左边=﹣=1,左边=右边,因而x=是方程3x﹣=1的解,即与方程2x=1的解相同.B、把x=代入,左边=(+1)=,左边=右边,因而x=是方程的解,即与方程2x=1的解相同.C、把x=代入6x﹣5=2x﹣3,左边=3﹣5=﹣2,右边=1﹣3=﹣2,左边=右边,因而x=是方程6x﹣5=2x﹣3的解,即与方程2x=1的解相同.D、把x=代入x+=2x,左边=+=1,右边=2×=1,因而左边=右边,因而x=是方程6x﹣5=2x﹣3的解,即与方程2x=1的解相同.四个方程都与2x=1的解相同.故选D.点评:本题主要考查判断一个数是否是方程的解的方法.9.有4个关于x方程:(1)x﹣2=﹣1 (2)(x﹣2)+(x﹣1)=﹣1+(x﹣1)(3)x=0 (4)其中同解的两个方程是()A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(4)考点:同解方程.分析:(1)移项可解出x的值.(2)先去括号在移项合并可得出x的值.(3)直接可得出x的值.(4)直接移项即可,注意分式有意义的条件.解答:解:(1)方程的解为x=1,(2)方程的解为x=1,(3)方程的解为x=0,(4)方程无解.∴只有(1)(2)是同解方程.故选A.点评:本题考查同解方程的知识,关键是正确求出4个方程的解,难度不大,注意要细心运算.二.填空题(共15小题)10.方程x+2=3的解也是方程ax﹣5=8的解时,则a= 13 .考点:同解方程.专题:计算题.分析:首先解出方程x+2=3的解,代入方程ax﹣5=8中求出a的值即可.解答:解:x+2=3,解得x=1;把x=1代入ax﹣5=8中,得a﹣5=8,解得a=13.点评:本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.11.已知关于x的方程+3=x与方程3﹣2x=1的解相同,则m2= 16 .考点:同解方程.分析:首先解出方程3﹣2x=1的解,然后把方程的解代入方程+3=x求出m,即可求出m2.解答:解:解方程3﹣2x=1得:x=1,把x=1代入方程+3=x得:+3=1,解得:m=﹣4,则m2=16.故答案为:16.点评:本题考查了同解方程的知识,解答本题的关键是理解方程解得定义.12.若方程2x﹣3=11与关于x的方程4x+5=3k有相同的解,则k的值是11 .考点:同解方程;解一元一次方程.专题:计算题.分析:先解方程2x﹣3=11求出x的值,把解得的值代入方程4x+5=3k,就可以得到一个关于k的方程,解方程就可以求出k的值.解答:解:解方程2x﹣3=11得:x=7,把x=7代入4x+5=3k,得:28+5=3k,解得:k=11.故答案为:11.点评:本题考查同解方程的知识,已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数a 的方程进行求解.13.已知关于x的方程5x+3k=24与5x+3=0的解相同,则k的值为9 .考点:同解方程.专题:计算题.分析:首先根据5x+3=0得到5x=﹣3,再把5x=﹣3代入5x+3k=24求出k的值即可.解答:解:∵5x+3=0,∴5x=﹣3,∵方程5x+3k=24与5x+3=0的解相同,∴﹣3+3k=34,解得k=9,故答案为9.点评:本题考查了同解方程.解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号.因为两方程解相同,把求得x的值代入方程,即可求得常数项的值.14.已知方程3(x+3)﹣1=2x的解与关于x的方程的解相同,则m2﹣2m+1的值为25 .考点:同解方程.分析:先求出方程3(x+3)﹣1=2x的解,再根据方程3(x+3)﹣1=2x的解与关于x的方程的解相同,把x的值代入方程中,求出m的值,再把m的值代入要求的式子,即可得出答案.解答:解:3(x+3)﹣1=2x,3x+9﹣1﹣2x=0,x=﹣8,∵方程3(x+3)﹣1=2x的解与关于x的方程的解相同,∴把x=﹣8代入方程得:3×(﹣8)+m=﹣27,解得:m=﹣4,把m=﹣4代入m2﹣2m+1得:(﹣4)2﹣2×(﹣4)+1=16+8+1=25;故答案为:25.点评:此题考查了同解方程,关键是能够求出关于x的方程,根据同解的定义建立方程,求出m的值.15.已知关于x的方程=x+与=3x﹣2的解相同,则m= ﹣.考点:同解方程.分析:先求出方程=3x﹣2的解,然后把x的值代入方程=x+求出m的值.解答:解:解方程=3x﹣2,得:x=1,把x=1代入方程=x+得:=1+,解得:m=﹣.故答案为:﹣.点评:本题考查了同解方程,解答本题的关键是能够求解关于x的方程,要正确理解方程解的含义.16.如果关于x的方程和方程的解相同,那么k的值.考点:同解方程.分析:本题可先根据一元一次方程解出x的值,再根据解相同,将x的值代入二元一次方程中,即可解出k的值.解答:解:解方程得:x=﹣,把x=﹣代入方程得:2﹣=0,解得:k=5;故答案为:5.点评:本题考查了二元一次方程与一元一次方程的综合运用.运用代入法,将解出的x的值代入二元一次方程,可解出k的值.17.如果方程与方程3x﹣2a=0的解相同,则a3= .考点:同解方程.分析:根据第一个方程即可求得x=﹣;然后根据同解方程的定义,将其代入第二个方程,列出关于a的方程;最后通过解关于a的方程求得a的值后,把a的值代入所求的代数式并求值.解答:解:∵x+=0,∴x=﹣;根据题意得3×(﹣)﹣2a=0,解得a=﹣,∴a3==.故答案是:.点评:本题考查了同解方程.使方程左右两边相等的未知数的值是该方程的解.因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等,如果左边=右边,那么这个数就是该方程的解;反之,这个数就不是该方程的解.18.方程ax2+3x2b﹣1+cy=2是关于x的一元一次方程,则a+b+c= 1 ;如果关于x的方程2x+1=﹣3和方程=0的解相同,那么k= ﹣2 .考点:同解方程;一元一次方程的定义.专题:计算题.分析:根据一元一次方程的定义可得出a=0,b=1,c=0,然后计算即可a+b+c;先解出2x+1=3的值,然后代入可得出k.解答:解:∵方程ax2+3x2b﹣1+cy=2是关于x的一元一次方程,∴a=0,2b﹣1=1,c=0,解得:a=0,b=1,c=0,故可得a+b+c=1;方程2x+1=﹣3的解为:x=﹣2,代入可得:=0,解得:k=﹣2.故答案为:1、﹣2.点评:此题考查了同解方程的知识,关键是掌握使方程左右两边相等的未知数的值是该方程的解,难度一般.19.若3x﹣4=﹣1与ax﹣b+1=﹣c有相同的解,则(a﹣b+c)2009= ﹣1 .考点:同解方程.专题:计算题;整体思想.分析:答题时首先解出一元一次方程的解,把一元一次方程的解代入另一个方程中,求得a﹣b+c的值.解答:解:∵3x﹣4=﹣1与ax﹣b+1=﹣c有相同的解,∴x=1也是ax﹣b+1=﹣c的解,∴a﹣b+c=﹣1,∴(a﹣b+c)2009=﹣1.点评:本题主要考查解一元一次方程,利用整体法求值是解答本题的关键.20.若以为未知数的方程3x=5x﹣8和有相同的解,则a= .考点:同解方程.专题:计算题.分析:解方程3x=5x﹣8就可以求出方程的解,这个解也是方程的解,根据方程的解的定义,把这个解代入就可以求出a的值.解答:解:首先解方程3x=5x﹣8得:x=4;把x=4代入方程,得到2+4a=a﹣5;解得:a=﹣.点评:本题的关键是正确解一元一次方程以及同解方程的意义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.21.已知方程2x﹣3=+x的解满足|x|﹣1=0,则m ﹣6或﹣12 .考点:同解方程.分析:通过解绝对值方程可以求得x=±1.然后把x的值分别代入方程2x﹣3=+x来求m的值.解答:解:由|x|﹣1=0,得x=±1..当x=1时,由,得,解得m=﹣6;当x=﹣1时,由,得,解得m=﹣12.综上可知,m=﹣6或﹣12.故答案是:﹣6或﹣12.点评:本题考查了同解方程的定义.如果第一个方程的解都是第二个方程的解,并且第二个方程的解也都是第一个方程的解,那么这两个方程叫做同解方程.22.关于x的方程3x=9与x+4=k的解相同,则代数式1﹣2|k|的值为﹣13 .考点:同解方程.专题:计算题.分析:根据3x=9与x+4=k的解相同可得出k的值,代入即可得出答案.解答:解:3x=9,解得:x=3,将x=3代入x+4=k可得:3+4=k,k=7,∴1﹣2|k|=﹣13.故填:﹣13.点评:本题考查同解方程的定义,难度不大,理解同解的概念是关键.23.关于x的方程3mx+7=0和2 x+3n=0是同解方程,那么(mn)2= .考点:同解方程;代数式求值.分析:分别解出两个方程的解,使这两个解相等,即可得出mn的值,从而可得出答案.解答:解:由3mx+7=0与2x+3n=0是关于x的同解方程,可知m≠0,n≠0解得∴,.故填:2.点评:本题考查了同解方程的知识,属于比较简单的题目,注意掌握解答此类题目的方法.24.已知:一元一次方程2x﹣2=3的解是方程的解,则m= .考点:同解方程.分析:先求出方程2x﹣2=3的解,然后把x的值代入方程,求解m的值.解答:解:解方程2x﹣2=3得:x=,把x=,代入方程,得,m+=4,解得:m=.故答案为:.点评:本题考查了同解方程,解决本题的关键是能够求解关于x的方程,要正确理解方程解的含义.三.解答题(共6小题)25.已知:关于x的方程4x﹣k=2与3(2+x)=2k的解相同,求k的值及相同的解.考点:同解方程.专题:计算题.分析:由已知关于x的方程4x﹣k=2与3(2+x)=2k的解相同,所以得关于x、k的方程组,解方程组即可.解答:解:已知:关于x的方程4x﹣k=2与3(2+x)=2k的解相同,∴,解得,,所以k的值为6,相同的解为2.点评:此题考查的知识点是同解方程,本题解决的关键是能够求解关于x的方程,根据同解的定义建立方程组.26.已知关于x的方程2x+1=a和2x+2=0的解相同,求的值.考点:同解方程.专题:计算题.分析:先求出方程2x+2=0的解,代入方程2x+1=a求出a的值,代入代数式即可得出答案.解答:解:2x+2=0,解得:x=﹣1,将x=﹣1代入2x+1=a,得a=﹣1,则=1﹣1=0.点评:本题考查了同解方程的知识,关键是理解方程解得含义,另外在代入计算时要细心,不要出错.27.若关于x的方程2x﹣3=1和=k﹣3x有相同的解,求k的值.考点:同解方程.分析:求出方程2x﹣3=1中x的值,再把k当作已知条件求出方程=k﹣3x中x的值,再根据两方程有相同的解列出关于k的方程,求出k的值即可.解答:解:解方程2x﹣3=1得,x=2,解方程=k﹣3x得,x=k,∵两方成有相同的解,∴k=2,解得k=.点评:本题考查的是同解方程,熟知如果两个方程的解相同,那么这两个方程叫做同解方程是解答此题的关键.28.如果方程的解与方程4y﹣(3m+1)=6y+2m﹣1的解相同,求式子的值.考点:同解方程.分析:求出方程的解y=10,代入第二个方程求出m=﹣4,代入求出即可.解答:解:,2(y﹣4)﹣48=﹣3(y+2),2y﹣8﹣48=﹣3y﹣6,5y=50,y=10,即方程4y﹣(3m+1)=6y+2m﹣1的解也是y=10,代入得:40﹣(3m+1)=60+2m﹣1,m=﹣4,所以=4﹣=.点评:本题考查了一元一次方程的解,解一元一次方程,求出代数式的值的应用,关键是求出y、m的值.29.方程4+2(x﹣1)=0的解与关于x的方程的解相同,求k的值.考点:同解方程.专题:方程思想.分析:先求方程4+2(x﹣1)=0的解,再代入,求得k的值.解答:解:解方程4+2(x﹣1)=0,得x=﹣1,把x=﹣1代入,得﹣3k﹣2=﹣2,解得k=﹣.点评:此题主要考查了一元一次方程解的定义.解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.30.当k为何值时,方程与方程有相同的解?考点:同解方程.分析:先解第二个方程,得x的值,因为这个解也是第一个方程的解,根据方程的解的定义,把x代入第一个方程中求出k的值.解答:解:解方程,得x=1,把x=1代入方程,得4﹣,解得k=﹣13,∴当k=﹣13时,方程与方程有相同的解.点评:此题考查同解方程,关键是正确解方程的解的定义,就是能够使方程左右两边相等的未知数的值.。

相关文档
最新文档