山东省城市污水处理率(%)

合集下载

热量q的单位

热量q的单位

热量q的单位
“热量”一直以来被人们所熟知,它在日常生活中会经常被提及,尤其是在做饭或是关于饮食的讨论中,“热量”会是主题之一。

而对于“热量”的定义,许多人并不是那么的清楚,因此,在文章的前半部分,我们会简要介绍一下“热量”的定义。

首先,“热量”(又称热能),是指物体的状态发生改变时所释放的能量,以及改变过程中因而发生的能量交换。

其次,“热量”的单位是热量单位(Q),热量单位是国际单位制委员会(SI)认可的一种标准国际单位,它按照一种特定量纲定义,即1热量单位等于1焦耳(J),1焦耳也相当于1千焦(KJ)。

“热量”有它自己独特的特点,它不像质量,体积和电能等可以直接观测到的物理变量,它是一种瞬时的、不可见的量,由于热量的无形特性,使得人们在进行计量的时候会使用热量单位表示其计量结果。

热量单位可以用于表示物质的可燃性,这是因为“热量”和可燃性是相互联系的,可燃性与热量相关性特别大,而且可以通过计算得出热量单位,因此,热量单位也可以用于表示物质的燃烧性能,这也是“热量单位”的重要用途之一。

此外,“热量单位”在食物饮食方面亦有着重要作用,在这个方面,众所周知,食物的营养价值就是“热量”,以“热量单位”为单位来表示,这样可以很容易的衡量出食物的摄取量。

根据国家和世界卫生组织的指导原则,每人每天应该摄入的食物能量为2500千焦,
可以说,“热量单位”是健康饮食控制中及其重要的一个指标,“热量”也是饮食习惯和规律的指导。

总结起来,“热量单位”是一种量度单位,它能够帮助人们准确衡量出物质的热能量,从而更好的使用和控制物质的热能量,以实现最大效益,也是饮食习惯和规律的基本参考指标。

国际数学奥林匹克试题分类解析—A数论_A4整除

国际数学奥林匹克试题分类解析—A数论_A4整除

A4 整除A4-001 证明:当且仅当指数n不能被4整除时,1n+2n+3n+4n能被5整除.【题说】1901年匈牙利数学奥林匹克题1.【证】容易验证14≡24≡34≡44 (mod 5)假设n=4k+r,k是整数,r=0,1,2,3.则S n=1n+2n+3n+4n≡1r+2r+3r+4r(mod 5)由此推出,当r=0时,S n≡4,而当r=1,2,3时,S n≡0(mod 5).因此,当且仅当n不能被4整除时,S n能被5整除.A4-002 证明:从n个给定的自然数中,总可以挑选出若干个数(至少一个,也可能是全体),它们的和能被n整除.【题说】1948年匈牙利数学奥林匹克题3.【证】设a1,a2,…,a n是给定的n个数.考察和序列:a1,a1+a2,a1+a2+a3,…,a1+a2+…+a n.如果所有的和数被n除时余数都不相同,那么必有一个和数被n除时余数为0.此时本题的断言成立.如果在n个和数中,有两个余数相同(被n除时),那么从被加项较多的和数中减去被加项较少的和数,所得的差能被n整除.此时本题的断言也成立.A4-003 1.设n为正整数,证明132n-1是168的倍数.2.问:具有那种性质的自然数n,能使1+2+3+…+n整除1·2·3…·n.【题说】1956年上海市赛高三复赛题1.【解】1.132n-1=(132)n-1,能被132-1,即168整除.2.问题即何时为整数.(1)若n+1为奇质数,则(n+1)2(n-1)!(2)若n+1=2,则(n+1)|2(n-1)!(3)若n+1为合数,则n+1=ab其中a≥b>1.在b=2时,a=n+1-a≤n-1,所以a|(n-1)!,(n+1)|2(n-1)!在b>2时,2a≤n+1-a<n-1,所以2ab|(n-1)!更有(n+1)|2(n-1)!综上所述,当n≠p-1(p为奇质数)时,1+2+…+n整除1·2…·n.A4-004 证明:如果三个连续自然数的中间一个是自然数的立方,那么它们的乘积能被504整除.【题说】 1957年~1958年波兰数学奥林匹克三试题1.【证】设三个连续自然数的乘积为n=(a3-1)a3(a3+1).(1)a≡1,2,-3(mod 7)时,7|a3-1.a≡-1,-2,3(mod 7)时,7|a3+1.a≡0(mod 7)时,7|a3.因此7|n.(2)当a为偶数时,a3被8整除;而当a为奇数时,a3-1与a3+1是两个相邻偶数,其中一个被4整除,因此积被8整除.(3)a≡1,-2,4(mod 9)时,9|a3-1.a≡-1,2,-4(mod 9)时,9|a3+1.a≡0,±3(mod 9)时,9|a3.因此9|n.由于7、8、9互素,所以n被504=7×8×9整除.A4-005 设x、y、z是任意两两不等的整数,证明(x-y)5+(y-z)5+(z-x)5能被5(y -z)(z-x)(x-y)整除.【题说】1962年全俄数学奥林匹克十年级题3.【证】令x-y=u,y-z=v,则z-x=-(u+v).(x-y)5+(y-z)5+(z-x)5=u5+v5-(u+v)5=5uv(n+v)(u2+uv+v2)而 5(y-z)(z-x)(x-y)=-5uv(u+v).因此,结论成立,而且除后所得商式为u2+uv+v2=x2+y2+z2-2xy-2yz-2xz.【别证】也可利用因式定理,分别考虑原式含有因式(x-y),(y-z),(z-x)以及5.A4-006 已知自然数a与b互质,证明:a+b与a2+b2的最大公约数为1或2.【题说】1963年全俄数学奥林匹克八年级题4.【证】设(a+b,a2+b2)=d,则d可以整除(a+b)2-(a2+b2)=2ab但由于a、b互质,a的质因数不整除a+b,所以d与a互质,同理d与b互质.因此d=1或2.A4-007 (a)求出所有正整数n使2n-1能被7整除.(b)证明:没有正整数n能使2n+1被7整除.【题说】第六届(1964年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.解的关键是找出2n被7除所得的余数的规律.【证】(a)设m是正整数,则23m=(23)m=(7+1)m=7k+1(k是正整数)从而 23m+1=2·23m=2(7k+1)=7k1+223m+2=4·23m=4(7k+1)=7k2+4所以当n=3m时,2n-17k;当n=3m+1时,2n-1=7k1+1;当n=3m+2时,2n-1=7k2+3.因此,当且仅当n是3的倍数时,2n-1能被7整除.(b)由(a)可知,2n+1被7除,余数只可能是2、3、5.因此,2n+1总不能被7整除.A4-008 设k、m和n为正整数,m+k+1是比n+1大的一个质数,记C s=s(s+1).证明:乘积(C m+1-C k)(C m+2-C k)…(C m+n-C k)能被乘积C1·C2·…·C n整除.【题说】第九届(1967年)国际数学奥林匹克题3.本题由英国提供.【证】C p-C q=p(p+1)-q(q+1)=p2-q2+p-q=(p-q)(p+q+1)所以(C m+1-C k)(C m+2-C k)…(C m+n-C k)=(m-k+1)(m-k+2)…(m-k+n)·(m+k+2)(m+k+3)·…·(m+k+n+1)C1C2…C n=n!(n+1)!因此只需证=A·B是整数.由于n个连续整数之积能被n!整除,故A是整数.是整数.因为m+k+1是大于n+1的质数,所以m+k+1与(n+1)!互素,从而(m+k+2)(m+k+3)…(m+k+n+1)能被(n+1)!整除,于是B也是整数,命题得证.A4-009 设a、b、m、n是自然数且a与b互素,又a>1,证明:如果a m+b m能被a n+b n整除,那么m能被n整除.【题说】第六届(1972年)全苏数学奥林匹克十年级题1.【证】由于a k+b k=a k-n(a n+b n)-b n(a k-n-b k-n)a l-b l=a l-n(a n+b n)-b n(a l-n+b l-n)所以(i)如果a k+b k能被a n+b n整除,那么a k-n-b k-n也能被a n+b n整除.(ii)如果a l-b l能被a n+b n整除,那么a l-n+b l-n也能被a n+b n整除.设m=qn+r,0≤r<n,由(i)、(ii)知a r+(-1)q b r能被a n+b n整除,但0≤|a r+(-1)q b r|<a n+b n,故r=0(同时q是奇数).亦即n|m.A4-010 设m,n为任意的非负整数,证明:是整数(约定0!=1).【题说】第十四届(1972年)国际数学奥林匹克题3.本题由英国提供.易证 f(m+1,n)=4f(m,n)-f(m,n+1)(1)n)为整数,则由(1),f(m+1,n)是整数.因此,对一切非负整数m、n,f(m,n)是整数.A4-011 证明对任意的自然数n,和数不能被5整除.【题说】第十六届(1974年)国际数学奥林匹克题3.本题由罗马尼亚提供.又两式相乘得因为72n+1=7×49n≡2×(-1)n(mod 5)A4-012 设p和q均为自然数,使得证明:数p可被1979整除.【题说】第二十一届(1979年)国际数学奥林匹克题1.本题由原联邦德国提供.将等式两边同乘以1319!,得其中N是自然数.由此可见1979整除1319!×p.因为1979是素数,显然不能整除1319!,所以1979整除p.A4-013 一个六位数能被37整除,它的六个数字各个相同且都不是0.证明:重新排列这个数的六个数字,至少可得到23个不同的能被37整除的六位数.【题说】第十四届(1980年)全苏数学奥林匹克十年级题1.(c+f)被37整除.由于上述括号中的数字是对称出现的,且各数字不为0,故交换对又因为100a+10b+c=-999c+10(100c+10a+b),所以各再得7个被37整除的数,这样共得23个六位数.A4-014 (a)对于什么样的整数n>2,有n个连续正整数,其中最大的数是其余n-1个数的最小公倍数的约数?(b)对于什么样的n>2,恰有一组正整数具有上述性质?【题说】第二十二届(1981年)国际数学奥林匹克题4.【解】设n个连续正整数中最大的为m.当n=3时,如果m是m-1,m-2的最小公倍数的约数,那么m整除(m-1)(m-2),由m|(m -1)(m-2)得m|2,与m-2>0矛盾.设n=4.由于m|(m-1)(m-2)(m-3)所以m|6,而m>4,故这时只有一组正整数3,4,5,6具有所述性质.设n>4.由于m|(m-1)(m-2)…(m-n+1),所以m|(n-1)!取m=(n-1)(n-2),则(n -1)|(m-(n-1)),(n-2)|(m-(n-2)).由于n-1与n-2互质,m-(n-1)与m-(n-2)互质,所以m=(n-1)(n-2)整除m-(n-1)与m-(n-2)的最小公倍数,因而m 具有题述性质.类似地,取m=(n-2)(n-3),则m整除m-(n-2)与m-(n-3)的最小公倍数,因而m具有题述性质.所以,当n≥4时,总能找到具有题述性质的一组正整数.当且仅当n=4时,恰有唯一的一组正整数.A4-015 求一对正整数a和b,使得:(1)ab(a+b)不被7整除;(2)(a+b)7-a7-b7被77整除.证明你的论断.【题说】第二十五届(1984年)国际数学奥林匹克题2.【解】(a+b)7-a7-b7=7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6=7ab[(a5+b5)+3ab(a3+b3)+5a2b2(a+b)]=7ab(a+b)[a4+2a3b+3a2b2+2ab3+b4]=7ab(a+b)(a2+ab+b2)2取a=18,b=1,则a2+ab+b2=a(a+b)+b2=343=73.所以(a+b)7-a7-b7被77整除,ab(a +b)不被7整除.A4-016 1.是否存在14个连续正整数,其中每一个数均至少可被一个不小于2、不大于11的素数整除?2.是否存在21个连续正整数,其中每一个数均至少可被一个不小于2、不大于13的素数整除?【题说】第十五届(1986年)美国数学奥林匹克题1.【解】1.14个连续正整数中,有7个奇数n,n+2,n+4,n+6,n+8,n+10,n+12不能被2整除.这7个奇数中,至多1个被11整除,一个被7整除,2个被5整除,3个被3整除.如果被3整除的数少于3个或被5整除的数少于2个,那么这7个奇数中被3,5,7,11整除的数不足7个.如果恰有3个数被3整除,2个数被5整除,那么,被3整除的数必须是n,n+6,n+12,被5整除的2个数必须为n与n+10或n+2与n+12.此时必有一个数n或n+12同时被3,5整除.即这7个奇数中被3,5,7,11整除的数仍不足7个.不管怎样,这14个连续正整数中必有1个不被2,3,5,7,11任一个整除.故答案为不存在.2.存在.以下21个连续整数-10,-9,…,-1,0,1,2,3,…,10除去±1,其余整数被2,3,5,7之一整除.由中国剩余定理,满足N≡0(mod 210)N≡1(mod 11)N≡-1(mod 13)的整数N存在,于是N-10,N-9,…,N,N+1,…,N+10这21个连续整数满足所有要求.A4-018 试求出所有的正整数a、b、c,其中1<a<b<c,使得(a-1)(b-1)(c-1)是abc -1的约数.【题说】第三十三届(1992年)国际数学奥林匹克题1.本题由新西兰提供.【解】设x=a-1,y=b-1,z=c-1,则1≤x<y<z并且xyz是(x+1)(y+1)(z+1)-1=xyz+x+y+z+xy+yz+zx的约数,从而xyz是x+y+z+xy+yz +zx的约数.由于x+y+z+xy+yz+zx<3yz,所以x=1或2.若x=1,则yz是奇数1+2y+2z的约数.由于1+2y+2z<4z,所以y=3.并且3z是7+2z的约数.于是z=7.若x=2,则2yz是2+3y+3z+yz的约数,从而y,z均为偶数,设y=2y1,z=2z1,则4y1z1≤1+3y1+3z1+2y1z1<6z1+2y1z1,所以y1<3.因为y>x,所以y1=2,y=4.再由8z1是7+7z1的约数得z1=7,z=14.因此,所求解为(3,5,15)与(2,4,8).019 x与y是两个互素的正整数,且xy≠1,n为正偶数.证明:x+y不整除x n+y n.【题说】1992年日本数学奥林匹克题1.【证】由(x,y)=1知(x+y,y)=1,(x+y,xy)=1.当n=2时,x2+y2=(x+y)2-2xy.由于x+y>2,所以(x+y)2xy.故(x+y)(x2+y2).假设当n=2k(k∈N+)时,(x+y)(x2k+y2k).则当n=2(k+1)时,由于x2(k+1)+y2(k+1)=(x+y)(x2k+1+y2k+1)-xy(x2k+y2k)所以(x+y)(x2(k+1)+y2(k+1)).故对一切正偶数n,x+y不整除x n+y n.A4-020 证明当且仅当n+1不是奇素数时,前n个自然数的积被前n个自然数的和整除.【题说】第二十四届(1992年)加拿大数学奥林匹克题1.若n+1为奇合数,设n+1=qr,q、r为奇数且3≤q≤r,则nA4-021 找出4个不同的正整数,它们的积能被它们中的任意两个数的和整除.你能找出一组5个或更多个数具有同样的性质吗?【题说】1992年英国数学奥林匹克题3.【解】显然,2、6、10、14满足要求.任取n个不同的正整数。

Q学习原理及例子

Q学习原理及例子

Q学习原理及例⼦这篇教程通过简单且易于理解的实例介绍了Q-学习的概念知识,例⼦描述了⼀个智能体通过⾮监督学习的⽅法对未知的环境进⾏学习。

假设我们的楼层内共有5个房间,房间之间通过⼀道门相连,正如下图所⽰。

我们将房间编号为房间0到房间4,楼层的外部可以被看作是⼀间⼤房间,编号为5。

注意到房间1和房间4可以直接通到房间5。

我们可以⽤图来表⽰上述的房间,将每⼀个房间看作是⼀个节点,每⼀道门看作是⼀条边(链路)。

在这个例⼦中,我们可能在任意⼀间房间中放置⼀个智能体(机器⼈),并期望该智能体能够从该房间开始⾛出这栋楼(可以认为是我们的⽬标房间)。

换句话说,智能体的⽬的地是房间5。

为了设置这间房间作为⽬标,我们为每⼀道门(节点之间的边)赋予⼀个奖励值。

能够直接通到⽬标房间的门赋予⼀及时奖励值100,⽽其他的未与⽬标房间直接相连的门赋予奖励值0。

因为每⼀道门都有两个⽅向,因此,每⼀道门在图中将描述为两个箭头。

如下所⽰:当然,从房间5到房间5的奖励值也是100,其他所有直接通到⽬标房间5的奖励值也是100。

在Q-学习中,学习的⽬标是达到具有最⾼奖励值的状态,因此,如果智能体到底了⽬标位置,它将永远的留在那⼉。

这种类型的⽬标被称为“吸收⽬标”。

想象我们的智能体是⼀个不会说话的虚拟机器⼈,但是它可以从经验中学习。

智能体能够从⼀个房间到底另外⼀个房间,但是它对周围的环境⼀⽆所知,它不知道怎么⾛能够通到楼层外⾯(房间5)。

假设我们想对智能体从某⼀个房间中撤退的过程进⾏建模,现在,我们假设智能体在房间2内,我们希望智能体通过学习到达房间5。

Q-学习中的术语包括状态(state)和动作(action)。

我们将每⼀个房间称为⼀个“状态”,智能体从⼀个房间到另⼀个房间的移动过程称为“动作”。

在我们的⽰意图中,状态被描述为节点,动作被描述成箭头。

假设智能体处于状态2,那么,它从状态2能够直接到达状态3,因为状态2和状态3相连。

然⽽,智能体从状态2不能直接到达状态1,因为在房间2和房间1之间没有直接相通的门,也即没有箭头存在。

qprinter printerstate实例

qprinter printerstate实例

qprinter printerstate实例摘要:1.QPrinter 简介2.PrinterState 实例的作用3.QPrinter 的构造函数和成员变量4.PrinterState 实例的构造函数和成员变量5.使用QPrinter 和PrinterState 实例的实例正文:1.QPrinter 简介QPrinter 是Qt 框架下的一个类,用于打印文档。

它可以在多个平台下使用,支持各种打印机和纸张类型。

通过使用QPrinter,开发者可以在应用程序中实现打印功能,方便用户将文档输出到打印机。

2.PrinterState 实例的作用PrinterState 是QPrinter 的一个实例,用于表示打印机的状态。

通过PrinterState 实例,开发者可以获取和设置打印机的各种属性,例如纸张大小、打印质量等。

同时,PrinterState 实例还可以用于控制打印进程,例如开始打印、暂停打印等。

3.QPrinter 的构造函数和成员变量QPrinter 类有两个构造函数,一个参数和一个不带参数的构造函数。

参数构造函数需要传入一个QPrinter 对象作为参数,用于创建一个新的QPrinter 实例。

不带参数的构造函数用于创建一个默认的QPrinter 实例。

QPrinter 类的成员变量包括:- printerName:打印机的名称- printerDescription:打印机的描述- printerState:打印机的状态,即PrinterState 实例- paperSize:纸张大小- paperSource:纸张来源- printQuality:打印质量- printSpeed:打印速度4.PrinterState 实例的构造函数和成员变量PrinterState 类有一个构造函数,用于创建一个新的PrinterState 实例。

PrinterState 类的成员变量包括:- paperSize:纸张大小- paperSource:纸张来源- printQuality:打印质量- printSpeed:打印速度- isPrinting:是否正在打印- errorCode:错误代码5.使用QPrinter 和PrinterState 实例的实例以下是一个使用QPrinter 和PrinterState 实例的简单示例:```cpp#include <QApplication>#include <QPrinter>#include <PrinterState>int main(int argc, char *argv[]){QApplication app(argc, argv);QPrinter printer;printer.setPaperSize(QPrinter::A4);printer.setPaperSource(QPrinter::DefaultPaperSource);printer.setPrintQuality(QPrinter::HighQuality);printer.setPrintSpeed(QPrinter::NormalSpeed);PrinterState state(&printer);state.setPaperSize(QPrinter::A3);state.setPaperSource(QPrinter::ManualPaperSource);state.setPrintQuality(QPrinter::BestQuality);state.setPrintSpeed(QPrinter::FastSpeed);state.setIsPrinting(true);// 开始打印state.print();return app.exec();}```上述示例中,首先创建一个QPrinter 实例,并设置其纸张大小、纸张来源、打印质量和打印速度。

等比数列概念及性质

等比数列概念及性质

an am q
变通公式
nm
( n, m N )
*
性质1:设an , am为等比数列an 中任意两项, 且公比为q,则an am q
证明
nm
.
设等比数列an 的首项为a1 , 公比为q, 则有an a1q , am a1q
n 1 m 1
an nm nm 从而 q , 即an am q . am
例题3:一个等比数列的第3项和第4 项分别是12和18,求它的第1项和第2 项。
1.在等比数列{an}中,已知
a 3 20, a 6 160
求an.
四. 应用示例
例2.根据右图的框图,写出所打印 数列的前5项,并建立数列的递 推公式.这个数列是等比数列吗?
开始
A=1 n=1 输出A n=n+1 A=1/2A 否

例3.已知等比数列an 的首项为a1 , 公比为q,依次取出数列an 中所有奇数项,组成一个新数列,这个数列还是等比数列吗?
变式1:如果依次取出a1 , a4 , a7 , a10 ,构成一个新数列, 该数列是否还是等比数列?
思考:你能得到更一般的结论吗?
① 1,-1,1,…,(-1)n+1 ;√
②1,2,4,6…;× ③a,a,a,…,a; ×
④已知a1=2,an=3an+1 ; √

m, 2m, 4m ,8m ,... ×
2
3
⑥2a,2a,2a,…,2a. √
2、求出下列等比数列中的未知项: 1 (1)2,a,8;(2)-4,b,c, . 2
思考2:公比q<0时,等比数列呈现怎样的特 点? 正负交替
第二课时
二、新课

2020版数学人教B版必修5学案:第二章 2.3.1 第2课时 等比数列的性质 Word版含解析

2020版数学人教B版必修5学案:第二章 2.3.1 第2课时 等比数列的性质 Word版含解析

第2课时 等比数列的性质学习目标 1.灵活应用等比数列的通项公式推广形式及变形.2.理解等比数列的有关性质,并能用相关性质简化计算.知识点一 等比数列通项公式的推广和变形 等比数列{a n }的公比为q ,则 a n =a 1·q n -1 ① =a m ·q n -m ② =a 1q·q n ③其中当②中m =1时,即化为①.当③中q >0且q ≠1时,y =a 1q ·q x为指数型函数.知识点二 等比数列常见性质(1)对称性:a 1a n =a 2a n -1=a 3a n -2=…=a m ·a n -m +1(n >m 且n ,m ∈N +); (2)若k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n ; (3)若m ,p ,n 成等差数列,则a m ,a p ,a n 成等比数列;(4)在等比数列{a n }中,连续取相邻k 项的和(或积)构成公比为q k (或2k q )的等比数列;(5)若{a n }是等比数列,公比为q ,则数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q,q 2.(6)若{a n },{b n }是项数相同的等比数列,公比分别是p 和q ,那么{a n b n }与⎩⎨⎧⎭⎬⎫a nb n 也都是等比数列,公比分别为pq 和pq.1.a n =a m q n -m (n ,m ∈N +),当m =1时,就是a n =a 1q n -1.( √ ) 2.等比数列{a n }中,若公比q <0,则{a n }一定不是单调数列.( √ ) 3.若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( × )4.若数列{a n }的奇数项和偶数项分别成等比数列,且公比相同,则{a n }是等比数列.( × )题型一 等比数列通项公式的推广应用 例1 已知等比数列{a n }中. (1)若a 4=2,a 7=8,求a n ;(2)若{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,求通项公式a n . 解 (1)∵a 7a 4=q 7-4=82,即q 3=4,∴q =34,∴225444333422(2)2n n n n n a a q----=⋅=⋅=⋅= (n ∈N +).(2)由a 25=a 10=a 5·q 10-5,且a 5≠0, 得a 5=q 5,即a 1q 4=q 5, 又q ≠0,∴a 1=q .由2(a n +a n +2)=5a n +1得,2a n (1+q 2)=5qa n , ∵a n ≠0,∴2(1+q 2)=5q , 解得q =12或q =2.∵a 1=q ,且{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=2,q =2.∴a n =2·2n -1=2n (n ∈N +).反思感悟 (1)应用a n =a m q n -m ,可以凭借任意已知项和公比直接写出通项公式,不必再求a 1.(2)等比数列的单调性由a 1,q 共同确定,但只要单调,必有q >0.跟踪训练1 已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A .21 B .42 C .63 D .84 答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21, 解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B.题型二等比数列的性质及其应用例2已知{a n}为等比数列.(1)若a n>0,a2a4+2a3a5+a4a6=25,求a3+a5;(2)若a n>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.解(1)a2a4+2a3a5+a4a6=a23+2a3a5+a25=(a3+a5)2=25,∵a n>0,∴a3+a5>0,∴a3+a5=5.(2)根据等比数列的性质,得a5a6=a1a10=a2a9=a3a8=a4a7=9,∴a1a2…a9a10=(a5a6)5=95,∴log3a1+log3a2+…+log3a10=log3(a1a2…a9a10)=log395=10.反思感悟抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地解决问题.跟踪训练2设各项均为正数的等比数列{a n}满足a4a8=3a7,则log3(a1a2…a9)等于() A.38B.39C.9 D.7答案 C解析∵a4·a8=a5·a7=3a7且a7≠0,∴a5=3,∴log3(a1a2…a9)=log3a95=log339=9.题型三由等比数列衍生的新数列例3已知各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于() A.4 2 B.6 C.7 D.5 2答案 D解析∵{a n}为等比数列,∴a1a2a3,a4a5a6,a7a8a9也成等比数列,∴(a4a5a6)2=(a1a2a3)(a7a8a9)=5×10,又{a n}各项均为正数,∴a4a5a6=5 2.反思感悟借助新数列与原数列的关系,整体代换可以减少运算量.跟踪训练3等比数列{a n}中,若a12=4,a18=8,则a36为()A .32B .64C .128D .256 答案 B解析 由等比数列的性质可知,a 12,a 18,a 24,a 30,a 36成等比数列,且a 18a 12=2,故a 36=4×24=64.等比数列的实际应用典例 某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度贬值. (1)用一个式子表示n (n ∈N +)年后这辆车的价值.(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱? 解 (1)n 年后车的价值(万元)依次设为:a 1,a 2,a 3,…,a n , 由题意,得a 1=13.5(1-10%),a 2=13.5(1-10%)2,…. 由等比数列定义,知数列{a n }是等比数列, ∴n 年后车的价值为a n =13.5×(0.9)n 万元. (2)由(1)得a 4=a 1·q 4=13.5×0.94≈8.9(万元), ∴用满4年时卖掉这辆车,大概能得到8.9万元.[素养评析] (1)等比数列实际应用问题的关键是:建立数学模型即将实际问题转化成等比数列的问题,解数学模型即解等比数列问题.(2)发现和提出问题,建立和求解模型,是数学建模的核心素养的体现.1.在等比数列{a n }中,a 2=8,a 5=64,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A解析 由a 5=a 2q 3,得q 3=8,所以q =2.2.等比数列{a n }中,若a 2a 6+a 24=π,则a 3a 5等于( ) A.π4 B.π3 C.π2 D.4π3 答案 C解析 a 2a 6=a 24=a 3a 5,∴a 3a 5=π2.3.已知等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比是( ) A.32 B. 2 C .2 D .2 2 答案 C解析 奇数项之积为2,偶数项之积为64,得a 1a 3a 5a 7a 9=2,a 2a 4a 6a 8a 10=64,则a 2a 4a 6a 8a 10a 1a 3a 5a 7a 9=q 5=32,则q =2,故选C.4.在1与2之间插入6个正数,使这8个数成等比数列,则插入的6个数的积为________. 答案 8解析 设这8个数组成的等比数列为{a n },则a 1=1,a 8=2. 插入的6个数的积为a 2a 3a 4a 5a 6a 7 =(a 2a 7)·(a 3a 6)·(a 4a 5) =(a 1a 8)3=23=8.5.已知a n =2n +3n ,判断数列{a n }是不是等比数列? 解 不是等比数列.∵a 1=21+31=5,a 2=22+32=13,a 3=23+33=35, ∴a 1a 3≠a 22,∴数列{a n }不是等比数列.1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法.2.所谓通式通法,指应用通项公式,前n 项和公式,等差中项,等比中项等列出方程(组),求出基本量.3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.一、选择题1.在等比数列{a n }中,若a 2 019=8a 2 016,则公比q 的值为( ) A .2 B .3 C .4 D .8 答案 A解析 ∵a 2 019=8a 2 016=a 2 016·q 3,∴q 3=8,∴q =2.2.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100B .-100C .10 000D .-10 000答案 C解析 ∵lg(a 3a 8a 13)=lg a 38=6,∴a 38=106,∴a 8=102=100.∴a 1a 15=a 28=10 000.3.(2018·大连模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1等于( )A .2B .4 C. 2 D .2 2 答案 B解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为单调递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12(舍负),a 1=a 2q =4.4.等比数列{a n }中,a 1+a 2=3,a 2+a 3=6.则a 8等于( ) A .64 B .128 C .256 D .512 答案 B解析 a 2+a 3=q (a 1+a 2)=3q =6, ∴q =2,∴a 1+a 2=a 1+2a 1=3a 1=3, ∴a 1=1.∴a 8=27=128.5.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( )A.13 B .3 C .±13 D .±3 答案 B解析 设等差数列为{a n },公差为d ,d ≠0. 则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )(a 1+5d ), 化简得d 2=-2a 1d ,∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3.6.(2018·长春模拟)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( )A .8B .9C .10D .11 答案 C解析 由题意得,2a 5a 6=18,a 5a 6=9,∵a 1a m =9,∴a 1a m =a 5a 6,∴m =10,故选C.7.(2018·济南模拟)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .15 答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q3n -3=324,因此q 3n -6=81=34=q 36,所以n =14,故选C. 二、填空题8.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________. 答案 18解析 由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18. 9.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=________. 答案 -6解析 由题意知,a 3=a 1+4,a 4=a 1+6. ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4, ∴(a 1+4)2=(a 1+6)a 1, 解得a 1=-8,∴a 2=-6.10.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=________. 答案 8解析 由等比数列的性质,得a 3a 11=a 27,∴a 27=4a 7.∵a 7≠0,∴a 7=4,∴b 7=a 7=4. 再由等差数列的性质知b 5+b 9=2b 7=8.11.在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,则a 41a 42a 43a 44=________. 答案 1 024解析 设等比数列{a n }的公比为q , a 1a 2a 3a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,① a 13a 14a 15a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,②②÷①得q 48=8,q 16=2,∴a 41a 42a 43a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)(q 16)10=210=1 024. 三、解答题12.已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值. 解 ∵{a n }为等比数列,∴a 1·a 9=a 3·a 7=64. 又∵a 3+a 7=20,∴a 3=4,a 7=16或a 3=16,a 7=4.①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64.②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝⎛⎭⎫142=1. 13.在等比数列{a n }(n ∈N +)中,a 1>1,公比q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项公式a n ; (3)试比较a n 与S n 的大小. (1)证明 因为b n =log 2a n ,所以b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n =log 2q (q >0)为常数,所以数列{b n }为等差数列且公差d =log 2q . (2)解 因为b 1+b 3+b 5=6,所以(b 1+b 5)+b 3=2b 3+b 3=3b 3=6,即b 3=2. 又因为a 1>1, 所以b 1=log 2a 1>0,又因为b 1·b 3·b 5=0,所以b 5=0,即⎩⎪⎨⎪⎧ b 3=2,b 5=0,即⎩⎪⎨⎪⎧ b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1,因此S n =4n +n (n -1)2·(-1)=9n -n 22.又因为d =log 2q =-1, 所以q =12,b 1=log 2a 1=4,即a 1=16,所以a n =25-n (n ∈N +).(3)解 由(2)知,a n =25-n >0,当n ≥9时,S n =n (9-n )2≤0,所以当n ≥9时,a n >S n .又因为a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7,S 8=4, 所以当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9,n ∈N +时,a n >S n .14.已知等比数列{a n }的公比为q (q ≠-1),记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N +),则以下结论一定正确的是( ) A .数列{b n }为等差数列,公差为q m B .数列{b n }为等比数列,公比为q 2m C .数列{c n }为等比数列,公比为qm 2 D .数列{c n }为等比数列,公比为qm m 答案 C解析 b n =a m (n -1)+1·(1+q +q 2+…+q m -1),由q ≠-1易知b n ≠0,b n +1b n =a mn +1a m (n -1)+1=q m ,故数列{b n }为等比数列,公比为q m ,选项A ,B 均错误; c n =a m m (n -1)+1·q 1+2+…+(m -1),c n +1c n =a m mn +1a m m (n -1)+1=⎣⎢⎡⎦⎥⎤a mn +1a m (n -1)+1m =(q m )m =2m q ,故数列{c n }为等比数列,公比为2m q ,D 错误.故选C.15.在等差数列{a n }中,公差d ≠0,a 1,a 2,a 4成等比数列,已知数列a 1,a 3,1k a ,2k a ,…,n k a ,…也成等比数列,求数列{k n }的通项公式.解 由题意得a 22=a 1a 4,即(a 1+d )2=a 1(a 1+3d ),得d (d -a 1)=0, 又d ≠0,∴a 1=d .又a 1,a 3,1k a ,2k a ,…,n k a ,…成等比数列, ∴该数列的公比q =a 3a 1=3dd=3,∴n k a =a 1·3n +1.又n k a =a 1+(k n -1)d =k n a 1,∴数列{k n }的通项公式为k n =3n +1(n ∈N +).。

aq开头的单词 -回复

aq开头的单词 -回复

aq开头的单词-回复问题:aq是什么意思?1. 概述aq的定义和意义(200-300字)aq是一个英语词汇,代表着一种标准的单词形态。

它是以a和q这两个字母作为前缀和后缀构成,其中a代表“问题”(aq的首字母),q代表“答案”(aq的最后一个字母)。

因此,aq表示了以问题为主题的文章或讨论。

本文将逐步回答以[aq开头的单词]为主题的问题。

2. 常见的以aq开头的单词及其含义(200-300字)在英语中,以aq开头的单词不多,但每个单词都有其独特的含义和用法。

常见的以aq开头的单词有:aquatic、aqua、aqueous等。

下面对这些单词进行简要解释:- Aquatic:它是形容词,表示与水有关的、生活在水中的。

例如,aquatic animals(水生动物)、aquatic plants(水生植物)。

- Aqua:它是名词,指代水。

例如,aqua pura(纯净水)、aqua vitae (烈酒)。

- Aqueous:它是形容词,表示水的、水溶解的。

例如,aqueous solutions(水溶液)、aqueous humor(眼房水)。

3. 以[aq开头的单词]在不同领域中的应用(400-500字)aq开头的单词在不同领域中有各自的应用。

- 在生物学领域,aquatic指代水生生物,如aquatic plants和aquatic animals。

这些生物适应了水的环境,发展出独特的特征和生存机制。

- 在化学和物理学领域,aqueous是一个重要的概念,指代水溶解的物质。

因为水是一种普遍的溶剂,aqueous solutions广泛应用于实验室和工业上的化学反应中。

- 在建筑和设计领域,aqua是一个常用的色彩名称,指代蓝绿色或浅蓝色。

它被广泛运用于室内装饰和潮流设计中,给人以清新和舒适的感觉。

4. aq开头的单词在日常生活中的应用(400-500字)尽管以aq开头的单词在日常生活中的应用相对较少,但仍有一些常见的使用场景。

催化转化器型号大全(三元催化器)

催化转化器型号大全(三元催化器)
bmwx1325sy
宝马x6
bmx6hj112
宝马MINI(1.6T)
bmmn16tsy554
宝马X5 E70
bmwx5wz3
宝马530 523 520 525 528
bmw530sy
宝马MINI F55
bmmnsy4439
X3
bmwx3x1sy
宝马760(12缸)
bmw76012g
宝马320 520
英朗雪佛兰科鲁兹迈锐宝1.宝2.0 2.4
xjwhsy231
君越3.0
1q22q
别克陆尊gl8
44068
君越雪佛兰迈锐宝2.0 2.4
xjwhsy231
凯越1.8
44369
迈锐宝2.0t
44349
林荫大道2.8 3.0 3.6
44411
别克荣御
bkrysy1
44142
广本cg1 cg5 2.0 2.3 3.0 cd5朗程
btcd5sy
思域1.5T
sdsysy339
丰田思铂睿2.0
jdyg20sy42
本田飞度
14015
飞度思迪理念s1
44234
本田奥德赛
14adssyh2
本田步威
btbwsy3
广汽本田凌派1.8
xtlc4hj332
本田时韵
44161
理念s1
mt32syjk3
桑塔纳2000超人骄子
44688
晶锐昊锐2.0
44559
迈腾斯柯达速派
17mtzzhj98575
波罗polo 1.4
4007
辉腾6.0
htsy8
东风
系列
风行菱智
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档