华师大版图形的相似全章教学导案
华师版九年级数学上册(HS)教案 相似图形

23.2 相似图形1.了解相似多边形和相似比的概念;2.会根据条件判断两个多边形是否为相似多边形;(重点)3.掌握相似多边形的性质,能根据相似比进行相关的计算.(难点)一、情景导入观察以下三组图形,每一组图形的对应边、对应角有什么关系呢?二、合作探究探究点一:相似多边形的判定下列图形都相似吗?为什么?(1)所有正方形;(2)所有矩形;(3)所有菱形;(4)所有等边三角形;(5)所有等腰三角形;(6)所有等腰梯形;(7)所有等腰直角三角形;(8)所有正五边形.解析:利用定义判断边数相同的多边形是否相似,要从两方面进行判断:(1)对应角相等;(2)对应边成比例,两者缺一不可.解:(1)相似,因为正方形每个角都等于90°,所以对应角相等,而每个正方形的边长都相等,所以对应边成比例;(2)不一定,虽然矩形的每个角都等于90°,对应角相等,但是对应边不一定成比例,如图①;(3)不一定,每个菱形的四条边长都相等,所以两菱形的对应边一定成比例,但是它们的对应角不一定相等,如图②,显然两个菱形的对应角是不相等的;(4)相似,因为每个等边三角形的三条边都相等,所以两个等边三角形的对应边一定成比例,并且对应角都等于60°;(5)不一定,如图③,对应边不成比例,对应角不相等;(6)不一定,如图④,对应边不成比例,对应角不相等;(7)相似,因为等腰直角三角形的三个角分别是45°,45°,90°,所以对应角相等,而且每一个三角形的三边的比都是1:1:2,所以对应边成比例;(8)相似,因为正五边形的各角都等于108°,所以对应角相等,而且正五边形的各边都相等,所以对应边成比例.方法总结:(1)相似多边形的定义也是相似多边形的判定方法,在判定两个多边形相似时,必须同时具备两点:对应角相等,对应边成比例.(2)在说明图形不相似时只需画图举出反例即可.(3)所有边数相等的正多边形都相似.探究点二:相似多边形的性质已知四边形ABCD 与四边形EFGH 相似,试根据图中所给出的数据求出四边形EFGH 和四边形ABCD 的相似比.解:∵四边形ABCD 与四边形EFGH 相似,且∠A=∠E=80°,∠B=∠F=75°,∴AB 与EF 是对应边.∵EF AB =68=34, ∴四边形EFGH 与四边形ABCD 的相似比为34. 方法总结:找准相似多边形的对应边是解决此类问题的关键,方法类似于找全等三角形对应边和对应角的方法.探究点三:相似多边形的应用如图所示,在四边形ABCD 中,AD∥BC,EF∥BC,EF 将四边形ABCD 分成两个相似四边形AEFD 和EBCF.若AD =3,BC =4,求AE :EB 的值.解析:根据相似多边形的对应边成比例,可得到AD EF =EF BC,可以求出EF 的长,从而可求AE :EB 的值.解:因为四边形AEFD∽四边形EBCF ,所以AD EF =EF BC, 所以EF 2=AD·BC=3×4=12,所以EF =12=2 3.因为四边形AEFD∽四边形EBCF ,所以AE :EB =AD :EF =3:23=3:2.方法总结:若两个多边形相似,则它们对应的边成比例,根据此特性,可列等式或比例式求解.在AB =20m ,AD =30m 的矩形花坛ABCD 的四周建筑小路.(1)如果四周的小路的宽均相等,如图①,那么小路四周所围成的矩形A′B′C′D′和矩形ABCD 相似吗?请说明理由;(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x 与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.三、板书设计相似多边形⎩⎪⎪⎨⎪⎪⎧相似多边形:各角分别相等、各边成比例的两个多边形相似比:相似多边形对应边的比性质:相似多边形的对应角相等,对 应边成比例判定:各角分别相等,各边成比例, 二者缺一不可在探索相似多边形本质特征的过程中,让学生运用“观察-比较-猜想”分析问题,进一步发展学生观察、分析、判断、归纳、类比、反思、交流等方面的能力,提高数学思维水平,体会反例的作用,培养与他人交流、合作的意识和品质.。
华东师大版数学九年上23.2《相似图形》教学设计

2.在判定相似图形时,对判定方法的选择和应用不够熟练,容易混淆。
3.在解决实际问题时,学生可能难以发现相似图形的应用场景,缺乏将理论知识运用到实际中的能力。
针对以上情况,教师在教学过程中应关注以下几点:
1.加强对相似图形定义的讲解,通过实例让学生直观地感受到相似图形的特点。
"提前预习,有助于同学们在课堂上更好地消化吸收新知识,提高学习效率。"
作业布置要求:
1.作业要按时完成,保持字迹清晰,书写规范。
2.对于难题和疑问,要及时与同学或老师交流,确保作业质量。
3.家长要关注孩子的作业进度,给予适当的指导和支持。
"今天我们学习了相似图形,它们具有对应角相等、对应边成比例的性质。我们通过AA、SAS、SSS相似准则来判断两个图形是否相似。这些知识不仅可以帮助我们解决几何问题,还可以应用到生活中的各种场景。"
2.强调相似图形在实际生活中的重要性,激发学生对数学学科的兴趣。
3.鼓励学生在课后继续探索相似图形的知识,为下一节课的学习打下基础。
(2)准备丰富的实物模型,让学生直观地感受相似图形的性质和判定方法。
(3)提供丰富的练习题库,满足不同层次学生的学习需求。
5.教学关注点:
(1)关注学生的几何直观能力培养,提高学生对几何图形的认识和理解。
(2)关注学生的逻辑推理能力,培养学生的几何思维能力。
(3)关注学生的应用意识,将相似图形知识运用到实际问题中,提高学生的实践能力。
2.教学过程:
(1)导入:以生活中的相似图形为例,引导学生观察、思考,导入新课。
(2)新知传授:详细讲解相似图形的定义、性质和判定方法,结合实例进行分析。
华师大版图形的相似全章教案解读

第23章 图形的相似23.1 相似图形的特征 第一课时 成比例线段教学目标 :知识与技能:了解成比例线段的意义,会判断四条线段是否成比例。
利用比例的性质,会求出未知线段的长。
过程与方法:培养学生灵活解题及合作探究的能力 情感态度价值观:感受数学逻辑推理的魅力教学重点:成比例线段的定义;比例的基本性质及直接运用 教学难点:比例的基本性质的灵活运用,探索比例的其它性质 教学准备:白卡纸、作图工具、 课 型:新授课教学过程:一、复习引入: 挂上两张照片,问: 1.这两个图形有什么联系?它们都是平面图形,它们的形状相同,大小不相同,是相似形。
2.这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。
二、新课讲解1.两条线段的比(1)回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小?如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比 AB ∶CD =m ∶n ,或写成CD AB =nm,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项.如果把n m 表示成比值k ,则CDAB =k 或AB =k ·CD . 注意:在量线段时要选用同一个长度单位.(2).做一做量出数学书的长和宽(精确到0.1cm ),并求出长和宽的比. 改用m 作单位,则长为0.211m ,宽为0.148m ,长与宽的比为0.211∶0.148=211∶148只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变. (3).求两条线段的比时要注意的问题①两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;②两条线段的比,没有长度单位,它与所采用的长度单位无关; ③两条线段的长度都是正数,所以两条线段的比值总是正数.问:两条线段长度的比与所采用的长度单位有没有关系?(学生讨论) (答:线段的长度比与所采用的长度单位无关) 2.成比例线段的定义你还记得八年级上册中“变化的鱼”吗?如果将点的横坐标和纵坐标都乘以(或除以)同一个非零数,那么用线段连接这些点所围成的图形的边长如何变化?四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.3.比例的基本性质两条线段的比实际上就是两个数的比.如果a ,b ,c ,d 四个数满足d cb a =,那么ad =bc 吗?反过来,如果ad =bc ,那么dcb a =吗?与同伴交流.如果dcb a =,那么ad =bc 。
华师大版九年级上册《图形的相似》教学设计

华师大版九年级上册《图形的相似》教学设计《华师大版九年级上册《图形的相似》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教材分析1、主要内容:相似图形的概念和性质、相似三角形的判定和应用、相似多边形、位似变换。
在本章学习之前,已经研究了图形的全等以及图形的一些变换,如平移、轴对称、旋转等,本章将在这些内容的基础上研究相似三角形和相似多边形的性质与判定,并进一步研究一种特殊的变换--位似变换,结合一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力。
2、教材特点(1)突出图形性质的探索过程,重视实验操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质,以及相似三角形的判定方法。
(2)注意联系实际,通过生活中大量的实例引入相似图形、位似图形的概念,例题、习题中也有许多应用相似图形知识的实例。
教材还给出了一些利用相似三角形的性质和判定方法来解决生活中不能直接测量物体长度的问题等。
(3)重视数学思想方法的渗透。
本章主要涉及的数学思想方法是转化。
二、教学设计思路1、让学生经历数学知识的形成与应用过程本章的教学可采用“问题情境--立模解释--与拓展"的模式展开,让学生经历知识的形成与应用过程。
相似概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。
分两个阶段教学。
第一阶段要求学生对相似图形有一个整体的、直观的认识,使学生对这种变换的特点有一个初步的感受,即各边同时放大或缩小相同的倍数,各个角不变。
第二阶段是在学习了线段的比,进一步明确了相似多边形的概念之后,要求学生能通过测量或说理的方法判断两个图形是否相似。
第一阶段的教学可以这样设计:(1)先提供一些相似图形的图片--实物的照片、几何图案、简单的几何图形让学生观察,用自己的语言描述,给出相似图形的直观概念;(2)观察图形,思考几何图形各条边、各个角是怎样变化的(3)思考矩形、正方形、菱形是相似图形吗?然后引导学生动手操作:画相似矩形、相似菱形,进一步感受相似变换的特点。
华师大版-数学-九年级上册-24.1相似的图形 教案

华师大版九年级(上)第二十四章第一节24.1 图形的相似教案【三维教学目标】知识与技能:理解相似形的概念,了解相似形是两个图形之间的关系。
由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察能力。
过程与方法:引导-自学-探究-交流-展示(探究结果确立与班级内分享)情感态度与价值观:经历知识产生的过程,探索新知识。
教学重点:理解相似形的概念,了解相似形是两个图形之间的关系。
教学难点:由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察能力。
【课堂导入】挂上大小不一样的中国地图两张及两张大小不同的长城图片,供同学观察,并看课本第64页的图,提出问题:这几组图片有什么相同的地方呢?这些图片大小虽然不一样,但形状是相同。
【教学过程】A自学:请同学们用10---15分钟时间自学教科书上本节内容。
B交流:请几个同学上台总结满足什么条件的两个图形是相似图形。
点评:(1)形状相同(2)大小不一定相同(3)大小一样的是特殊的相似图形(也可以称为全等图形)C探究:例1:观察下列图形,图形相似的是()(1) (2) (3) (4)A.(1)(3)B.(3)(4)C.(1)(2)D.(1)(4)分析:相似图形是指形状相同,大小不一定相同,难度在多边形(四边形及以上)上,必须角相同,边成比例。
第一组是,二是,三不是,形状不同(或说边不成比例),四和三一样也不是答案:C例2:下列图形相似的是()(1)放大镜下的图片与原来的图片;(2)幻灯的底片与投影在屏幕上的图像;(3)同一棵树上的两片树叶;(4)同一角度远距离和近距离拍摄的二七纪念塔A.4组B.3组C.2组D.1组分析:找的方法和例一相同,(1)、(2)、(4)是。
(3)不是答案:B【课堂作业】1、你能画出两个相似图形吗?2、判断下列图形是不是相似3、如果两个图形相似应该具备哪些条件?《作业答案与解析》1.略2.都不相似3.边数相同,形状相同,大小不一定相同【教学反思】形状相同而大小不一定相同的图形称为相似形,相似形在日常生活中经常碰到。
华师大版九年级上册数学第23章图形的相似导学案.doc

第23章图形的相似§24.1相似的图形【学习目标】1、通过实例理解相似图形的概念;2、会识别相似图形,通过图形识别提高自己的观察能力;3、能按照要求画出相似的图形,会根据条件制作岀相似的图形。
【学习重点】:相似图形的概念【学习难点】:相似图形的识别与作图【快乐学习】1、什么是全等图形:2、观察上述图形,写出你的发现:3、小组内交流你的发现。
你的补充:4、阅读课木第42页,然后快速写出你的答案:(1)、什么是相似图形。
__________________________________________________(2)、牛活中还有那些相似图形,请举例并与同学交流补充:【一显身手】1、请把相似的图形连线:3.下列图形是不是相似图形:所有的圆形;所有的正方形;所有的直角三角形;平面镜屮的图形与实际图形;哈哈镜中的图形与实际图形;放大镜下的图形与原来的图形5、相似图形与全等图形的区别与联系是什么?/、 O U通过以上练习,请自己总结一下,你是如何判断两个图形形似,请写出來并与同学交流,自己补充完整。
【做小画家】1、请在课本上画一画“试一试”中的四边形。
画完后请借助于测量工具,通过测量计算,请写出有前后两个图形的边长与内角度数的变化,并与同学交流。
2、(★★★)请观察如下图形,看看有什么发现,你能否设计出一个类似的图3、请在课余时间里白己找一幅耳欢的画,在画上打上方格,把图画分成若干小方格,然后自己再放大(或缩小)一定的比例,画一个方格,然后在每一个方格内画出原图,这样可以自己画一幅放大(或缩小)的图画了。
4、有条件的同学可以观察十字绣的制作过程,看看样品中的图怎样被放大(或缩小)绣岀来的。
【反思小结】总结本节最大的收获与存在的问题,写下來并与同学交流。
§24.2相似的图形性质(1)成比例线段【学习目标】1、通过计算作图掌握概念:线段的比、成比例线段。
2、掌握并会推导比例的性质。
3、会用比例的性质进行解题。
初中数学单元整体教学设计的探索——以华东师大版“图形的相似—相似三角形”为例

新教育 上旬刊51《义务教育数学课程标准(2022年版)》强调以“单元教学”为主要方式的教学活动。
单元目标上接学科学段目标、下连课时课堂目标,能有效避免教学过程中目标脱节的现象,能把“碎片化”的课时目标“整体化”,让学科目标、学段目标、单元目标、课时目标形成有机的统一体。
因此,探索单元整体教学设计成为义务教育实施新课程标准的重要途径。
一、单元教学整体设计存在的主要问题1.目标导向方面,行为结果没有体现核心素养的导向,教学目标缺乏整体设计,难以真正引领教学在进行相似三角形教学时,一些教师只关注单个知识点的传授,如对应角相等、对应边成比例、相似比等,而忽略了相似三角形作为一个整体的结构化设计,没有进一步引导学生去理解相似三角形在生活中的应用以及相似比对图形形状的影响。
这样的设计使得教学目标缺乏对学生在相似三角形知识方面的综合应用能力和问题解决能力的关注。
没有考虑到与其他几何知识(如平行线、垂直等)的关联和整合,导致学生无法建立起相似三角形与其他几何概念之间的联系,从而无法形成完整的几何思维体系。
2.目标层次方面,教学目标之间逻辑不清晰,缺乏层次性教学目标对教学的导向作用不能有效发挥在学习相似三角形的内容之前,执教老师根据相似三角形目标层次设计了一系列活动,帮助学生理解相似三角形的定义、性质、定理和应用。
然而在教学过程中教师发现学生的学习情况并不如预期,有些学生对于基本概念的理解存在困难,教学的相应策略就需要及时调整。
3.目标内容方面,核心素养目标与学习内容的切入点及切入方式不够清晰,导致目标要求定位不准、表述不清、缺乏行为条件等问题 比如要测量教学楼的高度。
我们可以通过相似三角形的原理,在教学楼顶端的影子处立一根竹竿,借助太阳光线构成两个相似三角形,楼高与竿高之比等于两者影长之比,由此便可计算出教学楼的高度。
这样我们才能更好地利用相似三角形的原理来解决实际问题。
4.目标主体方面,不能体现出以学生为主体的教学理念以学生为主体的教学理念强调的是激发学生的学习兴趣,培养学生的主动性和创新能力。
23.2相似图形教学设计-2024-2025学年华东师大版数学九年级上册

- 《相似图形的判定方法解析》:这篇文章详细解析了相似图形的判定方法,通过阅读,学生可以巩固和加深对相似图形判定方法的理解。
2. 鼓励学生进行课后自主学习和探究:
- 相似图形的性质和判定方法:学生可以进一步研究相似图形的性质和判定方法,通过查阅资料或进行实验,探索更多的性质和判定方法。
此外,我也会根据学生的兴趣和需求,调整教学内容和教学方式。如果我发现学生对某个相关的话题或问题感兴趣,我会增加相关的教学内容,提供更多的学习资源和学习机会,让学生可以更深入地学习和探索。如果学生对某个教学方式有更好的建议或意见,我也会积极地考虑和尝试,以提高教学的效果和学生的学习积极性。
5.数据分析:通过观察和分析相似图形,学生能够培养数据分析能力,理解和处理图形信息。
学情分析
九年级的学生在数学学习方面已经具备了一定的基础,对一些基本的数学概念和运算规则有一定的了解。然而,他们在相似图形的理解和应用方面可能还存在一些困难。首先,学生可能对相似图形的定义和性质不够清晰,需要通过具体的示例和操作来加深理解。其次,学生在解决与相似图形相关的实际问题时,可能缺乏有效的解题策略和方法,需要通过练习和指导来提高解决问题的能力。此外,学生的逻辑推理和数学建模能力也需要进一步培养和提高。
2.新课讲解(15分钟):
- 使用多媒体课件,讲解相似图形的定义和性质。
- 通过示例和练习题,让学生理解和掌握相似图形的判定方法。
3.课堂练习(10分钟):
- 分发练习题,让学生独立完成,巩固对相似图形知识的理解和应用。
4.应用拓展(10分钟):
- 提供一些实际问题,让学生运用相似图形的知识解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变.
(3).求两条线段的比时要注意的问题
①两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;
②两条线段的比,没有长度单位,它与所采用的长度单位无关;
23.1.2平行线分线段成比例
第二课时
教学目标
知识技能:在理解的基础上掌握平行线分线段成比例定理和三角形一边平行线的性质与判定定理,并会灵活应用.会作已知线段成已知比的作图题.
数学思考:平行线分线段成比例定理的正确性的说明.
解决问题:通过学习定理再次锻炼类比的数学思想,能把一个稍复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.
这就是我们前面所学的平行线等分线段定理,他讨论的是平行线截直线相等的情况,那么如果截的线段不相等呢?这就是我们今天要学习的内容:平行线分线段成比例定理.
活动二.分析探索,新知学习
1.三条平行直线L1//L2//L3截直线AE上的线段AC、CE长度之间(除相等外)存在着什么关系呢?同样截直线BF上的线段BD、DF长度之间存在着什么关系呢?
1.这两个图形有什么联系?
它们都是平面图形,它们的形状相同,大小不相同,是相似形。
2.这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。
二、新课讲解
1.两条线段的比
(1)回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小?
(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?
例题2:如图,已知 =3,求 和 ;
例题:3:如果 =k(k为常数),那么 成立吗?为什么?
四.探究延伸,拓展思维(想一想再回答)
(1)如果 ,那么 成立吗?为什么?
(2)如果 ,那么 成立吗?为什么?
(3)如果 ,那么 成立吗?为什么.
利用比例的性质,会求出未知线段的长。
过程与方法:培养学生灵活解题及合作探究的能力
情感态度价值观:感受数学逻辑推理的魅力
教学重点:成比例线段的定义;比例的基本性质及直接运用
教学难点:比例的基本性质的灵活运用,探索比例的其它性质
教学准备:白卡纸、作图工具、
课 型:新授课
教学过程:
一、复习引入:挂上两张照片,问:
情感态度:通过定理的学习知道认识事物的一般规律是从特殊到一般,并能欣赏数学表达式的对称美.
教学重点:定理的应用.
教学难点:定理的推导证明.
教学过程设计:
活动一.创设情景,引入新课
问题:一组等距离的平行线截直线a所得的线段相等,那么在直线b上所截的线段有什么关系呢?(请同学们观看课件中的验证过程)
引导学生回答后教师作如下总结:一组等距离的平行线在直线a所截得的线段相等,那么在直线b上所截得的线段也相等.
四条线段a,b,c,d中,如果a与b的比等于c与d的比,即 ,那么这四条线段.比例的基本性质
两条线段的比实际上就是两个数的比.如果a,b,c,d四个数满足 ,那么ad=bc吗?反过来,如果ad=bc,那么 吗?与同伴交流.
如果 ,那么ad=bc。
若ad=bc(a,b,c,d都不等于0),那么 .
③两条线段的长度都是正数,所以两条线段的比值总是正数.
问:两条线段长度的比与所采用的长度单位有没有关系?(学生讨论)
(答:线段的长度比与所采用的长度单位无关)
2.成比例线段的定义
你还记得八年级上册中“变化的鱼”吗?如果将点的横坐标和纵坐标都乘以(或除以)同一个非零数,那么用线段连接这些点所围成的图形的边长如何变化?
板书:由L1//L2//L3可得: ; 所以:
2.彷上分析得:
板书:由L1//L2//L3可得: ; 所以:
3.引导学生初步总结出平行线分线段成比例定理,然后师生共同归纳得出定理并板书定理.
平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段的比相等。
如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.
如果把 表示成比值k,则 =k或AB=k·CD.
注意:在量线段时要选用同一个长度单位.
(2).做一做
量出数学书的长和宽(精确到0.1cm),并求出长和宽的比.
4.线段的比和比例线段的区别和联系
线段的比有顺序性,四条线段成比例也有顺序性.如 是线段a、b、c、d成比例,而不是线段a、c、b、d成比例.
三、例题讲解
例题1:在某市城区地图(比例尺1∶9000)上,新安大街的图上长度与光华大街的图上长度分别是16cm、10cm.
(1)新安大街与光华大街的实际长度各是多少米?
华师大版图形的相似全章教案
———————————————————————————————— 作者:
———————————————————————————————— 日期:
第23章图形的相似
23.1 相似图形的特征
第一课时成比例线段
教学目标 :知识与技能:了解成比例线段的意义,会判断四条线段是否成比例。
(4)如果 =…= (b+d+…+n≠0),那么 成立吗?为什么.
(小组讨论完成上面的问题)
五、课堂练习
1.已知 =3,求 和 , = 成立吗?
2.已知 = =2 (b+d+f≠0),求:(1) ;(2) ;
(3) ;(4) .(小组讨论并上黑板)
六、课时小结:
1、注意点:(1)两线段的比值总是正数;(2)讨论线段的比时,不指明长度单位;(3)对两条线段的长度一定要用同一长度单位表示.
2、比例尺:图上长度与实际长度的比
3、熟记成比例线段的定义;2.掌握比例的基本性质,并能灵活运用.
七、作业:P55:1、2、3;
八、板书设计
九、反思及感想:这节课多给学生提供自主学习,自主操作、自主活动的机会。不论是回顾旧知,还是探究新知,都是教师引导,学生自主探索。比如画一画、量一量、算一算这些设计都能给学生提供自主探索新知的空间,体现了学生是数学学习的主人的新理念。