非线性混沌实验
非线性电路混沌实验

C2
L
R C1
~
R 有源非线性负阻元件, G 电导(diàn dǎo),C1和C2 电容。
各区域的作用(zuòyòng):黄色区: 产生振荡,蓝色区: 移相, 粉色 区:有源非线性元件。
第36页,共36页。
有源非线性元件的电压(diànyā)、电流特性: I
0
V
上图是一个(yī ɡè)非线性负阻的电压电流特性曲线, 实现方法有许多种,本实验使用的是Kennedy于1993年提 出的方法。它采用了两个运算放大器和六个配置电阻来 实现的。由于我们主要研究的是元件的外部效应,即电 路两端的电压和流过其电流的关系,因此我们可以把上 述元件看成是一个(yī ɡè)黑匣子即—有源非线性负阻。
值得注意的是,周期倍增过程没有限制,可以一直这样分下去,但 对应的 值却有一个极限 ,,到达 ,时,迭代的稳定(wěndìng)解 是2 周期解---周期无穷大,也就是没有周期。所以这时得到的是非周 期解,迭代的数据到处乱跑,无法把握,系统进入混沌状态。
倍周期分岔产生的混沌,在心脏生理学方面有潜在的应用价值。心 律不齐,心肌梗塞这些医学难题,有可能找到正确的答案。
第36页,共36页。
实验(shíyàn)现象的观察二
阵发(zhèn fā)混沌 第36页,共36页。
实验(shíyàn)现象的观察三
三倍周期 (zhōuqī)
奇异(qíyì)吸引子
第36页,共36页。
实验(shíyàn)现象的观察四
双吸引(xīyǐn) 子
第36页,共36页。
混沌(hùndùn)和现代科学
第36页,共36页。
身边的混沌(hù ndù n)现象
1. 当您的妈妈对这您大叫:“你的房间简直一片混沌(混 乱)!”她的话可能正确,但是她一定不会知道:混沌里蕴 含着秩序。那些乱七八糟的书籍、五颜六色的果皮糖纸、 臭气熏天的袜子里都隐藏着一种秩序,只是等待您的发现。
非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节实验者:班级材料0705学号 XX67025 姓名童凌炜同组者:班级材料0705学号 XX67007 姓名车宏龙实验地点:综合楼 404实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括:1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3, 100kHz正弦波振荡波作为参考信号2. 低频信号发生器用以输出正弦波信号,提供给约结作为交流信号 3. 数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1. 了解混沌的产生和特点2. 掌握吸引子。
倍周期和分岔等概念3. 观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。
混沌的最本质特征是对初始条件极为敏感。
1. 非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。
除此之外,非线性关系还具有某些不同于线性关系的共性:1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因2. 倍周期,分岔,吸引子,混沌借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。
虫口方程如下:xn?1???xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。
在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。
非线性电路中的混沌现象实验报告

非线性电路中的混沌五:数据处理:1.计算电感L在这个实验中使用了相位测量。
根据RLC 谐振定律,当输入激励频率时LCf π21=,RLC 串联电路达到谐振,L 和C 的电压反向,示波器显示一条45度斜线穿过第二象限和第四象限。
实测:f=32.8kHz ;实验仪器标记:C=1.095nF 所以:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估计不确定性:估计 u(C)=0.005nF ,u(f)=0.1kHz 但:32222106.7)()(4)(-⨯=+=CC u f f u L L u 这是mH L u 16.0)(=最后结果:mH L u L )2.05.21()(±=+2、有源非线性负电阻元件的测量数据采用一元线性回归法处理: (1) 原始数据:(2) 数据处理:根据RU I RR =流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11对应的1R I 值。
对于非线性负电阻R1,将实验测量的每个(I ,U )实验点标记在坐标平面上,可以得到:从图中可以看出,两个实验点( 0.0046336 ,-9.8)和( 0.0013899 ,-1.8)是折线的拐点。
因此,我们采用线性回归的方法,分别在V U 8.912≤≤-、 、 和8V .1U 9.8-≤<-三个区间得到对应的 IU 曲线。
0V U 1.8≤<-使用 Excel 的 Linest 函数找到这三个段的线性回归方程:⎪⎩⎪⎨⎧≤≤≤≤+-≤≤= 0U 1.72- 0.00079U - -1.72U 9.78- 30.000651950.00041U - 9.78U 12-20.02453093-0.002032U I经计算,三段线性回归的相关系数非常接近1(r=0.99997),证明区间IV 内的线性符合较好。
应用相关绘图软件可以得到U<0范围内非线性负电阻的IU 曲线。
非线性混沌实验报告

非线性混沌实验报告非线性混沌实验报告引言在现代科学研究中,混沌理论是一门重要的交叉学科。
混沌现象的出现使我们对于非线性系统的行为有了更深入的理解。
本实验旨在通过实际操作,观察和分析非线性混沌系统的特点和行为。
实验设备和方法实验中我们使用了一台计算机,并安装了相应的混沌模拟软件。
通过该软件,我们可以模拟出不同的非线性混沌系统,并观察其动态行为。
实验过程中,我们选择了几个具有代表性的混沌系统进行模拟。
实验结果1. 洛伦兹系统洛伦兹系统是混沌理论中最经典的例子之一。
通过模拟软件,我们可以观察到洛伦兹系统的奇特行为。
当参数设定在一定范围内时,系统的状态会呈现出周期性的振荡;而当参数发生微小变化时,系统的状态将变得极其复杂,呈现出随机性和不可预测性。
这种不可预测性正是混沌系统的重要特征之一。
2. 双螺旋系统双螺旋系统是另一个具有混沌行为的非线性系统。
在模拟软件中,我们可以调整系统的参数,并观察到系统的状态随时间的演化。
当参数设定在某一范围内时,系统呈现出稳定的双螺旋结构;而当参数发生微小变化时,系统的状态将变得极其复杂,出现无序的运动。
这种无序运动正是混沌系统的又一个典型特征。
3. 分形系统分形是混沌理论中的一个重要概念。
通过模拟软件,我们可以生成各种各样的分形图形。
分形图形的特点是具有自相似性,即无论放大多少倍,都可以看到相似的结构。
这种自相似性是混沌系统中非线性行为的产物。
讨论与分析通过实验观察和分析,我们可以得出以下结论:1. 非线性混沌系统具有极其复杂和不可预测的行为。
微小的参数变化可能会导致系统状态的巨大变化,这使得我们无法准确预测系统的未来状态。
2. 混沌系统具有自相似性和分形结构。
这种结构使得我们能够用较简单的规则生成复杂的图形。
3. 混沌系统的研究对于理解自然界中的复杂现象具有重要意义。
例如,气象学中的天气预报、经济学中的股市波动等都可以通过混沌理论进行解释。
结论本实验通过模拟软件,观察和分析了几个具有代表性的非线性混沌系统。
[实验报告]用非线性电路研究混沌现象
![[实验报告]用非线性电路研究混沌现象](https://img.taocdn.com/s3/m/f09c2d0fde80d4d8d15a4fdc.png)
用非线性电路研究混沌现象一. 实验目的掌握用示波器观察正弦波形的周期分岔及混沌现象的方法。
学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。
二. 实验原理1.非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。
电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。
本实验中所用的非线性元件R 是一个三段分段线性元件。
图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为:1121)(1C C C C U g U U G dtdU C ⋅--⋅= L C C C i U U G dt dU C +-⋅=)(21122 (1)2C L U dt di L -=式中,导纳V R G /1=,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。
2.有源非线性负阻元件的实现有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路,采用两个运算放大器和六个配置电阻来实现其电路如图4所示,实验所要研究的是该非线性元件对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非线性现象。
图3有源非线性器件图4双运放非线性元件的伏安特性实际非线性混沌实验电路如图5所示。
图5非线性电路混沌实验电路图三.实验步骤测量一个铁氧体电感器的电感量,观测倍周期分岔和混沌现象。
1.按图5所示电路接线,其中电感器L由实验者用漆包铜线手工缠绕。
可在线框上绕70-75圈,然后装上铁氧体磁心,并把引出漆包线端点上的绝缘漆用刀片刮去,使两端点导电性能良好。
非线性混沌实验报告

非线性混沌实验报告实验报告:非线性混沌1. 实验目的本实验旨在通过模拟和观察非线性混沌现象,探索混沌的数学本质、规律和应用。
2. 实验原理2.1. 什么是混沌?混沌(chaos)是指某些动力系统中的一种行为模式,它表现出极其复杂而又看似无序的运动规律,但却又有一定的确定性和不可重复性,并在很多领域中具有应用价值。
2.2. 非线性混沌的定义和特征非线性混沌(Nonlinear Chaos)是指某些非线性动力系统中的一类特殊混沌状态。
它们通常表现出以下几个特征:(1)极为敏感的初始条件:微小的初值差别会导致在长时间内产生极大的漂移。
(2)随机性行为:混沌状态下的系统呈现出高度复杂且表现随机性的运动规律,与绝大多数稳定系统完全不同。
(3)多周期态:非线性混沌的运动规律常常呈现出多个周期,周期的长度也呈现出一种统计规律。
2.3. 几个著名的非线性混沌系统著名的非线性混沌系统有Lorenz系统、Henon映射、Rössler系统、Mandelbrot集等。
3. 实验过程与结果我们选取了Henon映射系统作为本次实验的对象,通过Matlab 软件对其进行了模拟分析。
实验过程中我们首先设置了Henon映射系统的参数和初值,然后观察了其在不同参数下的运动轨迹和相空间分布情况,并对其进行了一些统计分析和图像处理。
(1)观察Henon映射在不同参数下的运动轨迹和相空间分布情况我们首先选取了较为典型的Henon映射参数a=1.4,b=0.3,并对其初值进行了一些微小扰动。
然后,我们通过Matlab软件调用Henon方程进行了计算和绘图,结果如下图所示:(2)对Henon映射进行分形维数计算和Lyapunov指数统计我们还对Henon映射的分形维数进行了计算和统计,结果为:通过对Henon映射系统的分形维数统计和图像处理,我们发现其分形维数存在着一定的统计性质,并表现出非线性混沌的明显特征。
4. 实验结论通过本次实验,我们得出了关于非线性混沌系统的一些结论和启示:(1)非线性混沌是一种高度复杂的运动模式,表现出极其敏感的初值依赖性,这使得其在现实世界中很难被精确预测和控制。
非线性电路中的混沌现象实验报告

竭诚为您提供优质文档/双击可除非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间:20XX年11月8日,第十一周,周一,第5-8节实验者:班级材料0705学号20XX67025姓名童凌炜同组者:班级材料0705学号20XX67007姓名车宏龙实验地点:综合楼404实验条件:室内温度℃,相对湿度%,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号)1.约结电子模拟器约结电子模拟器的主要电路包括:1.1,一个压控震荡电路,根据约瑟夫方程,用以模拟理想的约结1.2,一个加法电路器,更具电路方程9-1-10,用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3,100khz正弦波振荡波作为参考信号2.低频信号发生器用以输出正弦波信号,提供给约结作为交流信号3.数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1.了解混沌的产生和特点2.掌握吸引子。
倍周期和分岔等概念3.观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。
混沌的最本质特征是对初始条件极为敏感。
1.非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。
除此之外,非线性关系还具有某些不同于线性关系的共性:1.1线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化1.4非线性是引起行为突变的原因2.倍周期,分岔,吸引子,混沌借用T.R.malthas的人口和虫口理论,以说明非线性关系中的最基本概念。
虫口方程如下:xn?1xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。
在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。
非线性混沌电路实验报告

非线性混沌电路实验报告一、实验目的本实验旨在通过设计和搭建一个非线性混沌电路,了解混沌理论的基本原理,并观察和分析混沌电路的输出特性。
二、实验原理混沌理论是一种描述非线性系统行为的数学理论。
混沌系统有着极其敏感的初始条件和参数,微小的初始条件差异可能导致系统行为的巨大差异。
混沌电路是模拟混沌系统行为的电路,通过合适的电路设计和参数设置,可以实现混沌现象。
三、实验步骤及结果1.搭建电路2.参数设置根据实验要求,设置电路中的参数:L1=0.67H,L2=0.07H,C=0.001F,V1=2V,V2=0.6V。
3.实验观察连接电路电源后,用示波器观察电路输出的波形,并记录实验结果。
在实验观察中,我们可以看到输出波形呈现出混沌现象。
混沌信号的特征是没有周期性,具有高度的随机性和复杂性。
四、实验分析通过实验观察结果,我们可以看到混沌电路输出的波形呈现出混沌现象。
混沌信号的特征是没有周期性,具有高度的随机性和复杂性。
这是由于混沌系统对初始条件和参数的敏感性所导致的。
混沌电路通过合适的电路设计和参数设置,模拟了混沌系统的行为。
通过调整电路中的元件值和电源电压,可以改变混沌电路的输出特性。
这为混沌系统的研究和应用提供了重要的实验手段。
五、实验总结本实验通过设计和搭建一个非线性混沌电路,对混沌理论的基本原理进行了实践探究。
通过观察和分析混沌电路的输出特性,我们认识到混沌系统的随机性和复杂性。
混沌电路有着广泛的应用领域,例如密码学、通信和图像处理等。
这些应用都是基于混沌信号具有的随机性和复杂性。
通过深入研究混沌电路,我们可以更好地理解和应用混沌系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性电路混沌实验
实验目的
1、学会双踪示波器观测两个波形组成的相图。
2、改变RC移相器中可调电阻R的值,观察相图周期变化。
记录倍周期分岔、阵发混沌、
三倍周期、吸引子和双吸引子相图。
3、了解LF353双运放构成的有源非线性负阻“元件”的伏安特性,结合非线性电路的动力
学方程,解释混沌产生的原因。
实验仪器
非线性混沌仪。
双踪示波器
实验原理
实验电路如图1所示,图中只有一个非线性元件R,它是一个有源非线性负阻器件。
电感器L和电容器C2组成一个损耗可以忽略的谐振回路;可变电阻RV和电容器C1串联将振荡器产生的正弦信号移相输出。
Rv
C2
V(R)
图1电路的非线性动力学方程为:
dt dUc C 1
1=G (Uc2-Uc1)-gUc1 C2dt
dUc 2=G(Uc1-Uc2)+i L L dt
diL = -Uc2 式中,导纳G=1/Rv,Uc2和Uc1分别是加在电容器C2和C1上的电压,i L 表示流过电感器L的电流,g 表示非线性电阻的导纳。
实验内容和步骤
1、打开机箱,将铁氧化介质电感连接到与面板上对应接线柱相接。
2、用同轴电缆线将实验仪面板上的CH2插座连接示波器的Y输入。
CH1插座连接示波
器的X输入,并置X和Y输入为DC。
以观测二个正弦波构成的李萨如图。
3、按非线性电路图接好电路。
接通实验板的电源,这时数字电压表有显示,对应+15V
和-15V电源指示灯都为亮状态,且有电压输出。
4、调节示波器,用示波器观察相图周期变化
5、调节图中的W1和W2的大小,观察并描绘相图周期的分岔混沌现象。
将一个环形相图
定为P,那么要求观测并记录2P 、4P 、阵发混沌、3P、单吸引子(混沌)、双吸引子(混沌)共六个相图和相应的CH1-地和CH2-地两个输出波形。
注意事项
1、双运算放大器的正负极不能接反,地线与电源接地点必须接下来触良好。
2、关掉电源以后,才能拆实验板上的接线。
3、一起预热10分钟以后才开始测数据。
所测图形如下:
L
1.按图接好实验面板图,将方程(1)中的1/G即Rv1+Rv2值放到较大某值,这时示波器出现李萨如图,用扫描档观测为两个具有一定相移的正絃波.
2.逐步减小1/G值,开始出现两个”分列”的环图,出现了分岔现象,即由原来1倍周期变为2倍周期.
3.继续减小1/G值,出现4倍周期等与阵发混沌交替现象.
4.再减小1/G,出现单个吸引子和双吸引子。