2019年对口高考数学练习题
江苏省2019对口高考数学试卷.doc

江苏省中 2019 年普通高校对口单招文化统考《数学》试卷一、单项选择题(本大题共 10 小题,每小题4 分,共 40 分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满.涂黑)1.已知集合 M={1,3,5} , N={2,3,4,5,},则 M ∩N 等于( )A.{3}B . {5}C . {3,5}D . {1,2,3,4,5} 2.若复数 z 满足 z · i=1+2i ,则 z 的虚部为()A .2B .1C . 3D . 63.已知数组 a=( 2, -1,0), b=(1,-1,6), 则 a ·b 等于()A .-2B . 1C . 3D . 64.二进制数() ?换算成十进制的结果是( )A .(138) 10B .( 147) 10C .( 150) 10D .( 162) 105.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为( )A .4πB . 4 2 πC . 5 πD . 36. ( x 2 +1 )6 展开式中的常数项等于( )2x315512A .B .C .D.83162327.若 sin(,则 cos2等于( ))2 7 5715 18A .25B .C .D .25252838.已知 (f x )是定义在() ( )£x ,2 则 f (- 7) 等于( )B . - 2C . 2D .19.已知双曲线的焦点在y 轴上,且两条渐近线方程为y = ?3x ,则该双曲线的离心率为( )2A .13B .135D .532C .3210.已知( m , n )是直线 x+2y-4=0 上的动点,则 3m + 9n 最小值是()A .9B .18C . 36D . 81二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11.题 11 图是一个程序框图,若输入m 的值是 21,则输出的m 值是_12.题 12 图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是_13. 已知 9a 3 ,则y cosax 的周期是_14. 已知点 M 是抛物线C:y2 2 px( p 0) 上一点,F为C的焦点,线段MF的中点坐标是(2,2),则 p=_2x , x015.已知函数 f ( x),令 g( x)=f(x)+x+a.若关于 x 的方程 g( x) =2 有两个实根,则log 2 x, x0实数 a 的取值范围是三、解答题(本大题共8 小题,共计90 分)16.(8 分)若关于x 的不等式x2-4ax+4a﹥ 0 在 R 上恒成立 .( 1)求实数 a 的取值范围;( 2)解关于x 的不等式log a23x 2log a 16 .17.( 10 分)已知f( x)是定义在R 上的奇函数,当x 0 时, f (x)log 2 ( x 2) ( a 1)x b ,且 f (2) 1 .令 a n f (n 3) (n N ) .(1)求 a, b 的值;(2)求a1a5a9的值 .18.( 12 分)已知曲线C:x2 +y2+mx+ny+1=0, 其中 m 是从集合M={-2,0} 中任取的一个数,n 是从集合N={-1,1,4} 中任取的一个数.( 1)求“曲线 C 表示圆”的概率;( 2)若 m=-2,n=4 ,在此曲线C上随机取一点Q( x, y),求“点 Q 位于第三象限”的概率 .19.( 12 分)设△ ABC 的内角 A,B,C 的对边为a,b,c,已知 2sinBcosC-sinC=2sinA.( 1)求角 B 的大小;( 2)若b 2 3, a c 4 ,求△ABC的面积.20.(10 分)通过市场调查知,某商品在过去90 天内的销售量和价格均为时间t (单位:天, t∈ N*)的函数,其中日销售量近似地满足q(t) 36 1 t (1 t 90) ,价格满足41 t 28, 1 t40P(t)4,求该商品的日销售额 f (t )的最大值与最小值 .1t 52, 41t90221.( 14 分)已知数列 {a n } 的前 n 项和 S n3 n 2 1n ,数列 {b n } 是各项均为正数的等比数列,且22a 1b 1 ,a 6 b 5 .( 1)求数列 {a n } 的通项公式;( 2)求数列 {b 2n } 的前 n 项和 Tn ;1 1 1 1( 3)求a 2 ?a 3...的值 .a 1 ? a 2 a 3 ?a 4a 33? a3422.( 10 分)某房产开发商年初计划开展住宅和商铺出租业务,每套住宅的平均面积为 80 平方米,每套商铺的平均面积为60 平方米,出租住宅每平方米的年利润是30 元,出租商铺每平方米的年利润是 50 元 .政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000 平方米 .若当年住宅和商铺的最大需求量分别为450 套和 600 套,且开发的住宅和商铺全部租空.问房产开发商出租住宅和商铺各多少套,可使年利润最大并求早最大年利润.23.( 14 分)已知圆 O :x 2+y 2=r 2(r>0 )与椭圆 C :x 2y 2 1(a b 0) 相交于点 M (0,1),n ( 0,y 2b 2-1),且椭圆的一条准线方程为x=-2.(1) 求 r 的值和椭圆 C 的方程;( 2)过点 M 的直线 l 另交圆 O 和椭圆 C 分别于 A,B 两点 .uuuv uuuv ①若 7MB 10MA, 求直线 l 的方程;②设直线 NA 的斜率为 k 121=2k 2.,直线 NB 的斜率为 k ,求证 :k。
2019年江西省三校生对口升学考试高等职业学校高考数学试题及参考答案

1.已知集合 A x | 0 x 2,B x |1 x 3,则A B x | 0 x 3
(A B)
2.函数 f x lnx 的定义域是 0,
x 1 3. 若a b 0,则 1 1
ab 4.已知向量 a=(2,3)b=(-3,2)则 a⊥b
断,对的选 A,错的选 B)
1. A
2. B
3. B
4. A
26.(本大题满分 8 分)
已知函数 f x 6 sin x sin π x .
2
(1)求 f x 的最小正周期 T. (2)求 f x 的最大值,并求出自变量 x 相应的取值集合
27.(本大题满分 8 分)
已知函数 f x ax ba 0且a 1,b R,且 f 1 3,f 2 5 . (1)求 f x 的解析式
2
分组 频数
频率
40,50
4
0.08
50,60
8
0.16
60,70
10
0.20
70,80
14
0.28
80,90
9
0.18
90,100
5
0.10
合计
50
1.00
表 1 全体学生频率分布表
G 数学试卷第 3页
数学试题答案
一、是非选择题(本大题共 10 小题,每小题 3 分,共 30 分,对每小题的命题作出判
B. x | x 6
C.x | 1 x 6
D.x | x 6或x 1
13.已知 a,b R ,则 a b 是 lg a lg b 的 A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
山西省2019-2015近五年高职高考对口升学考试(数学)试题及答案

山西省近五年对口升学高考2019-2015数学真题目录山西省2019年对口升学高考数学试题 (1)参考答案 (3)山西省2018年对口升学高考数学试题 (4)参考答案 (6)山西省2017年对口升学高考数学试题 (7)参考答案 (10)山西省2016年对口升学考试数学试题 (11)参考答案 (14)山西省2015年对口升学高考数学试题 (15)参考答案 (17)山西省2019年对口升学高考数学试题本试卷分选择题和非选择题两部分,满分100分,考试时间90分钟。
一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设A={x |x ≥0}则下列正确的是()A.{}A∈0 B.A⊂0 C.A∈∅ D.A⊂∅2.下列函数在定义域内为增函数的是()A.21xy = B.xy 21log = C.xy -=2 D.xy 1=3.已知21log 3=x ,则=x ()A.23x = B.321=x C.x=213 D.321⎪⎭⎫⎝⎛=x 4.已知等差数列的前三项和123=S ,则=2a ()A.4B.3C.12D.85.已知()1,2-=AB ,()4,m BC =,当A 、B 、C 三点共线时,m 的值为()A.2B.-2C.8D.-86.= 60cos ()A.21 B.21- C.23 D.23-7.下列函数为奇函数的是()A.x x y +=2 B.xx y +=3 C.12+=x y D.xy =8.=+4lg 3lg ()A.7lg B.4lg 3lg ⋅ C.12 D.12lg 9.,//,,//βαβα⊥n m 则()A.nm // B.nm ⊥ C.α//n D.β//m10.抛物线12+=y x 的准线方程为()A.45-=x B.43=x C.1-=x D.41-=x 二、填空题(本题共8小题,每题4分,共计32分)1.632aa a ⋅=_____________________.2.()⎩⎨⎧<-≥-=0,10,x x x x x f ,则()()1f f =______________________.3.设0cos >x ,则x 的取值范围为___________________.4.,6021 ===b a b a 则()=-⋅b a a ________________.5.设直线012=+-y x 与01=-+y ax 垂直,则a =________________.6.设正方体的边长为1,则它的外接球的直径为________________.7.平面内有5个点,任意3点都不在同一条直线上,共可以连_____条直线.8.()21101转化为十进制数为___________________.三、解答题(本大题共6小题,共38分)1.(6分)求函数x x x y 2ln 22+--=的定义域.2.(6分)三个数构成等比数列,这三个数的和为14,积为64,求这三个数.3.(6分)在ABC ∆中,1312cos ,54cos ==B A ,求C cos .4.(6分)已知直线b x y +=,圆02222=+-+y x y x 中,b 为何值时,直线与圆相切.5.(6分)某人射击4次,每次射中的概率均为0.6,求他在4次射击中,至少射中2次的概率.6.(8分)已知三角形两边之和为4,这两条边的夹角为60º,求此三角形的最小周长.山西省2019年对口升学高考数学试题数学参考答案一、选择题1-5DACAD,6-10ABDBB 二、填空题1.a2.-23.⎭⎬⎫⎩⎨⎧∈+<<-z k k x k x ,2222ππππ4.0 5.2 6.37.108.13三、解答题1.解:依题意⎩⎨⎧>≥--02022x x x ,解得2≥x ,所求定义域为[)+∞,22.解:因为三个数成等比数列,所以可设这三个数分别为m,mp,mp²于是有m+mp+mp²=14(1)m•mp•mp²=64(2)由(2)得mp=4(3)代入(1)得m+4+4p=14(4)解(3)(4)得m=2p=2或m=8p=1/2于是这三个数分别是2,4,8或8,4,23.解:2235sin 1cos 1cos 513A AB B =-==-()6533)sin sin cos (cos )cos(]cos[cos -=--=+-=+-=B A B A B A B A C π4.解:圆02222=+-+y x y x 的圆心,半径分别为(1,-1),2由d=r 得:()211)1(122=-++--b,解得4,021-==b b 5.设所求概率为P()()8208.010144=--=P P P 6.设三角形已知两边中一边为x,则另一边为4-x,第三边长为()4231612360cos )4(2)4(2222+-=+-=---+x x x x x x x 当x=2时,第三边长最小为2,于是所求三角形最小周长为4+2=6.山西省2018年对口升学高考数学试题一、单项选择题(本题共10题,每小题3分,共30分)1.设全集U=R ,集合A={X I IX-1I ≤2},B={X I X ≤0},则A ∩(C U B)=()A.[0,3]B(0,3]C[-1,0]D(-1,0]2.在等比数列{a n }中,已知a 1=3,a 2=6,则a 4=()A.12B.18C.24D.483.lg3+lg5=()A.lg8B.lg3*lg5C.15D.lg154.下列函数为偶函数的是()A.y=sinxB.y=sin(π+x)C.y=sin(π-x)D.y=sin(2π-x)5.下列函数在定义域内为增函数的是()A.Y=x 0.5B.y=log 0.5xC.y=2-xD.y=x16.已知向量a =(m,-1),b =(m,6-m),而且b a ⊥则m=()A.-3B.2C.-3或2D.-2或37.已知log 3x=2,则()A.X 2=3B.X=23C.32=XD.3X =28.如果角α的终边过点P (-3,4)则cos α=()A.-3/5B.3/5C.-4/5D.4/59.设直线m 平行于平面α,直线n 垂直于平面β,而且α⊥β,n ⊄α则必有()A.m//nB.m ⊥nC.m ⊥βD.n//α10.已知F 1,F 2是椭圆191622=+Y X 的两焦点,过点F 2的直线交椭圆于A,B 两点,若二、填空题(共8题,每小题4分共计32分)1.=+-3324)271(2.设⎩⎨⎧<-≥-=0,0,)(x x x x x f 则=-+)1()1(f f 3.已知曲线y=2sin(x-3π)与直线y=α有交点,则α的取值范围是4.已知向量a ,b 满足I a I=I b I=I a -b I=1,则=∙b a 5.如果直线x+ay+3=0与直线2x+y-3=0垂直,则a=6.一个圆锥高为4,母线长为5,则该圆锥的体积是7.设(1-2x )5=a 0+a 1x+…+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=8.十进制15的二进制是三.解答题(本大题共6小题,共38分)1.(6分)求函数)(2x 2ln )(X x f -=的定义域和最大值2.(6分)设{an}是公差为正数的等差数列a 1=1,而且a 1,a 2,a 5成等比,求通项公式a n3.(6分)已知2cos sin 3=-αα,求sin α的值4.(6分)已知过原点的直线l 与圆x 2+(y-5)2=16相切,求直线l 的方程5.(6分)从0,1,2,3这四个数中任取两个数a ,b (a ≠b )求随机变量X=ab 的分布列6.(8分)已知在∆ABC 中,∠BAC=1200,BC=3,AC=1,(1)求∠B;(2)若D 为BC 边上一点,DC=2BD ,求AD 的长度。
(完整word版)江苏省2019普通高考对口单招文化统考数学试卷(word版,图片答案)

江苏省2019年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩N等于A.{3}B.{5}C.{3,5}D.{1,2,3,4,5}2. 若复数z满足z·i=1+2i,则z的虚部为A.2B.1C.-2D.-13. 已知数组a=(2,-1,0),b=(1,-1,6),则a·b等于A.-2B.1C.3D.64. 二进制数(10010011)2换算成十进制数的结果是A.(138)10B.(147)10C.(150)10D.(162)105. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为 A.π4B.π22C.π5D.π36. 6212⎪⎭⎫ ⎝⎛+x x 展开式中的常数项等于A.83 B.1615 C.25 D.3215 7. 若532πsin =⎪⎭⎫ ⎝⎛+α,则α2 cos 等于 A.257- B.257 C.2518 D.2518-8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于A.-1B.2-C.2D.19. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线的离心率为 A.313 B.213 C.25 D.35 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m +9n 的最小值是 A.9B.18C.36D.81二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .题11图12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .题12图13.已知9a=3,则αxy cos=的周期是 .14.已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,线段MF的中点坐标是(2,2),则p= .15.已知函数f (x)=⎪⎩⎪⎨⎧,2,log2xx,令g (x)=f (x)+x+a.若关于x的方程g (x)=2有两个实根,则实数a的取指范围是 .三、解答题(本大题共8小题,共90分)16.(8分)若关于x的不等式x2-4ax+4a>0在R上恒成立.(1)求实数a的取值范围;(2)解关于x的不等式16log2log23axa<-.x≤0x>017.(10分)已知f (x)是定义在R上的奇函数,当x≥0时,f (x)=log2(x+2)+(a-1)x+b,且f (2)=-1.令a n=f (n-3)(n∈N*).(1)求a,b的值;(2)求a1+a5+a9的值.18.(12分)已知曲线C:x2+y2+mx+ny+1=0,其中m是从集合M={-2,0}中任取的一个数,n是从集合N={-1,1,4}中任取的一个数.(1)求“曲线C表示圆”的概率;(2)若m=-2,n=4,在此曲线C上随机取一点Q(x,y),求“点Q位于第三象限”的概率.19.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sinC =2sin A .(1)求角B 的大小;(2)若b =23,a +c =4,求△ABC 的面积.20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221,求该商品的日销售额f (x )的最大值与最小值.1≤t ≤4041≤t ≤9021.(14分)已知数列{a n }的前n 项和n n S n 21232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式; (2)求数列{2n b }的前n 项和T n ;(3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+Λ的值.22.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C :()012222>>=+b a bya x 相交于点M(0,1),N (0,-1),且椭圆的一条准线方程为x =-2. (1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点. ①若MA MB 107 ,求直线l 的方程;②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .题23图2019年江苏省普通高校对口单独招生数学参考答案。
江苏省2019年普通高考对口单招文化统考数学试卷(word版,图片答案)

江苏省2019年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分、在下列每小题中,选出一个正确答案,将答题卡上对应选项得方框涂满、涂黑)1、已知集合M ={1,3,5},N ={2,3,4,5},则M ∩N等于A、{3}B、{5}C、{3,5}D、{1,2,3,4,5}2、若复数z满足z·i=1+2i,则z得虚部为A、2B、1C、-2D、-13、已知数组a=(2,-1,0),b=(1,-1,6),则a·b等于A、-2B、1C、3D、64、二进制数(10010011)2换算成十进制数得结果就是A、(138)10B、(147)10C、(150)10D、(162)105、已知圆锥得底面直径与高都就是2,则该圆锥得侧面积为A 、π4B 、π22C 、π5D 、π3 6、 6212⎪⎭⎫ ⎝⎛+x x 展开式中得常数项等于 A 、83 B 、1615 C 、25 D 、3215 7、 若532πsin =⎪⎭⎫ ⎝⎛+α,则α2 cos 等于 A 、257- B 、257 C 、2518 D 、2518- 8、 已知f (x )就是定义在R 上得偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于A 、-1B 、2-C 、2D 、19、 已知双曲线得焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线得离心率为 A 、313 B 、213 C 、25 D 、35 10、 已知(m,n )就是直线x +2y -4=0上得动点,则3m +9n 得最小值就是A 、9B 、18C 、36D 、81二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图就是一个程序框图,若输入m 得值就是21,则输出得m 值就是 、题11图12、题12图就是某项工程得网络图(单位:天),则完成该工程得最短总工期天数就是 、题12图13、已知9a =3,则αx y cos =得周期就是 、14、已知点M 就是抛物线C :y 2=2px (p >0)上一点,F 为C 得焦点,线段MF 得中点坐标就是(2,2),则p = 、15、已知函数f (x )=⎪⎩⎪⎨⎧,2,log 2x x, 令g (x )=f (x )+x +a 、若关于x 得方程g (x )=2有两个实根,则实数a 得取指范围就是 、三、解答题(本大题共8小题,共90分)16、(8分)若关于x 得不等式x 2-4ax +4a >0在R 上恒成立、(1)求实数a 得取值范围;(2)解关于x 得不等式16log 2log 23a x a <-、17、(10分)已知f (x )就是定义在R 上得奇函数,当x ≥0时,f (x )=log 2(x +2)+(a -1)x +b ,且f (2)=-1、令a n =f (n -3)(n ∈N *)、(1)求a ,b 得值;(2)求a 1+a 5+a 9得值、18、(12分)已知曲线C :x 2+y 2+mx +ny +1=0,其中m 就是从集合M ={-2,0}中任取得一个数,n 就是从集合N ={-1,1,4}中任取得一个数、(1)求“曲线C 表示圆”得概率;(2)若m =-2,n =4,在此曲线C 上随机取一点Q (x ,y ),求“点Q 位于第三象限”得概率、19、(12分)设△ABC 得内角A ,B ,C 得对边分别为a ,b ,c ,已知2sin B cos C -sin C =2sin A 、(1)求角B 得大小;(2)若b =23,a +c =4,求△ABC 得面积、20、(10分)通过市场调查知,某商品在过去得90天内得销售量与价格均为时间t (单位:天,t ∈N *)得函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 x ≤0 x >0 1≤t ≤40P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221 ,求该商品得日销售额f (x )得最大值与最小值、21、(14分)已知数列{a n }得前n 项与n n S n 21232-=数列{b n }就是各项均为正数得等比数列,且a 1=b 1,a 6=b 5、(1)求数列{a n }得通项公式;(2)求数列{2n b }得前n 项与T n ; (3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+Λ得值、 22、(10分)某房产开发商年初计划开展住宅与商铺出租业务、每套住宅得平均面积为80平方米,每套商铺得平均面积为60平方米,出租住宅每平方米得年利润就是30元,出租商铺每平方米得年利润就是50元,政策规定:出租商铺得面积不能超过出租住宅得面积,且出租得总面积不能超过48000平方米、若当年住宅与商铺得最大需求量分别为450套与600套,且开发得住宅与商铺全部租空,问房产开发商出租住宅与商铺各多少套,可使年利润最大?并求最大年利润、23、(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C:()012222>>=+b a by a x 相交于点M (0,1),N (0,-1),且椭圆得一条准线方程为x =-2、(1)求r 得值与椭圆C 得方程;(2)过点M 得直线l 另交圆O 与椭圆C 分别于A ,B 两点、 ①若107=,求直线l 得方程;②设直线NA 得斜率为k 1,直线NB 得斜率为k 2,求证:k 1=2k 2 、题23图2019年江苏省普通高校对口单独招生数学参考答案41≤t ≤90。
河南省2019年对口升学高考数学试题

河南省2019年普通高等学校对口招收中等职业学校毕业生考试数 学考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分)1.命题“若022=+b a ,则0=a 且0=b ”的逆否命题是 ( )A. “若0≠a 或0≠b ,则022≠+b a ”B. “若022≠+b a ,则0≠a 或0≠b ”C. “若0=a 且0=b ,则022=+b a ”D. “若022≠+b a ,则0≠a 且0≠b ”2.若R c b a ∈,,,且0<<b a ,则下列结论正确的是 ( )A. 22bc ac <B. b a 11<C. b aa b > D. 22b ab a >>3.下列各组函数中是同一个函数的是 ( ) ①32)(x x f -=与x x x g 2)(-= ②x x f =)(与2)(x x g =③2)(x x f =与4)(x x g = ④12)(2+-=x x x f 与12)(2+-=t t t g A. ①② B. ②③ C. ③④ D. ②④4.已知函数)1(+=x f y 的定义域是[]4,2-,则函数)12(+x f 的定义域是 ( ) A. []5,1- B. []2,1- C. []3,3- D. []7,5-5.已知等差数列{}n a 的前n 项和为n S ,若12323=-S S ,则数列{}n a 的公差是 ( )A.21B. 1C. 2D. 3 6.已知)1,2(A ,)3,1(-B ,)4,3(C ,则AC AB ⋅= ( )A. 4-B. 4C. 3-D. 37.抛物线y x 82=的焦点到准线的距离是 ( ) A. 8 B. 4 C. 2 D. 18.如图1,正三棱柱111C B A ABC -各棱长都是2,其侧棱与底面垂直,点E 、F 分别是AB ,11C A 的中点,则EF 与侧棱C C 1所成角的余弦值是 ( ) A.552 B. 55C.21D. 229.一次掷甲、乙两颗骰子的试验中,基本事件的个数是 ( )A. 12B. 24C. 36D. 4810.从10名候选人中选取2人担任学生会正、副主席,不同的选法数是( ) A. 45 B. 90 C. 100 D. 180 二、填空题(每小题3分,共24分)11.集合{}a A ,3,1=,{}2,3a B =,若{}a B A ,3= ,则a 的值是 . 12.不等式0322<--x x 的解集是 .13.已知3tan =θ,则θθ2sin 1sin 22+= .14.已知向量()2,1=→a ,()1,3-=→b ,则))((→→→→-⋅b a b a = . 15.侧棱长和底面边长都为1的正三棱锥的体积是 . 16.直线0632=++y x 在y 轴上的截距是 .17.把4个不同的球放入3个不同的盒子,则共有 种不同的放法. 18.若事件A 与事件A 互为对立事件,且4.0)(=A P ,则)(A P = . 三、计算题(每小题8分,共24分) 19.在ABC ∆中,4π=∠A ,4=AC ,31cos =B . (1)求C sin 的值; (2)求ABC ∆的面积.20.已知双曲线过点)2,3(-且与椭圆369422=+y x 有相同的焦点,求双曲线的标21.已知99109)12(x a x a a x +++=+ ,求820a a a +++ 的值.四、证明题(每小题6分,共12分)22.若函数)(x f 是R 上的增函数,对任意实数a ,b ,若0>+b a ,证明:)()()()(b f a f b f a f -+->+.23.如图2所示,矩形ABCD 所在的平面与直角三角形ABE 所在的平面互相垂直,BE AE ⊥,证明:平面BCE ⊥平面ADE .五、综合题(10分)24.已知等比数列{}n a 的公比不为1,前n 项和为n S ,满足32636=S ,且2a ,4a ,3a 成等差数列.(1)求数列{}n a 的通项公式; (2)求数列{}n a 前n 项和n S .。
(推荐)2019江苏省对口高考数学试卷

江苏省2019年普通高校对口单招文化统考数 学 试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑) 1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩ N 等于 A.{3} B.{5} C.{3,5} D.{1,2,3,4,5} 2. 若复数z 满足z ·i =1+2i ,则z 的虚部为 A.2 B.1 C.-2 D.-1 3. 已知数组a =(2,-1,0),b =(1,-1,6),则a ·b 等于 A.-2 B.1 C.3 D.64. 二进制数(10010011)2换算成十进制数的结果是 A.(138)10 B.(147)10 C.(150)10 D.(162)10 5. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为 A.π4B.π22C.π5D.π36. 6212⎪⎭⎫ ⎝⎛+x x 展开式中的常数项等于A.83 B.1615 C.25 D.3215 7. 若532πsin =⎪⎭⎫ ⎝⎛+α,则α2 cos 等于 A.257-B.257 C.2518 D.2518-8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于 A.-1B.2-C.2D.19. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线的离心率为 A.313 B.213 C.25 D.35 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m+9n的最小值是 A.9 B.18 C.36 D.81 二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .题11图12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .题12图 13.已知9a=3,则αx y cos =的周期是 .14.已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,线段MF 的中点坐标是(2,2),则p = .15.已知函数f (x )=⎪⎩⎪⎨⎧,2,log 2x x, 令g (x )=f (x )+x +a .若关于x 的方程g (x )=2有两个实根,则实数a 的取指范围是 . 三、解答题(本大题共8小题,共90分)16.(8分)若关于x 的不等式x 2-4ax +4a >0在R 上恒成立. (1)求实数a 的取值范围; (2)解关于x 的不等式16log 2log 23a x a <-.17.(10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)+(a -1)x +b ,且f (2)=-1.令a n =f (n -3)(n ∈N *). (1)求a ,b 的值; (2)求a 1+a 5+a 9的值.18.(12分)已知曲线C :x 2+y 2+mx +ny +1=0,其中m 是从集合M ={-2,0}中任取的一个数,n是从集合N ={-1,1,4}中任取的一个数. (1)求“曲线C 表示圆”的概率;(2)若m =-2,n =4,在此曲线C 上随机取一点Q (x ,y ),求“点Q 位于第三象限”的概率.x ≤0 x >019.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sin C =2sin A .(1)求角B 的大小; (2)若b =23,a +c =4,求△ABC 的面积.20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221,求该商品的日销售额f (x )的最大值与最小值.21.(14分)已知数列{a n }的前n 项和n n S n 21232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式; (2)求数列{2n b }的前n 项和T n ; (3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+ 的值.1≤t ≤40 41≤t ≤9022.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C :)0>>(12222b a by a x =+相交于点M (0,1),N (0,-1),且椭圆的一条准线方程为x =-2.(1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点.①若107=,求直线l 的方程;②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .题23图(注:文档可能无法思考全面,请浏览后下载,供参考。
河南省2019年对口高考数学卷

河南省2019年普通高等学校对口招收中等职业学校毕业生考试数学试卷一、选择题(每小题3分, 共30分. 每小题只有一个选项是正确的,请将正确选项涂在答题卡上)1.已知2200,0a b a b 则+===.下列哪一个是前述命题的逆否命题( ) A .如果0a ¹或0b ¹,则220a b +?;B .如果220a b +?,则0a ¹或0b ¹;C .如果0a ¹,0b ¹,则220a b +>;D .如果220a b +?,则0a ¹且0b ¹. 2.已知,,,a b c R ab c 且?<,则下列式子中,正确的是( )A .22ac bc >B .11a b <C .b aa b> D .22a ab b >>3.已知函数(1)f x +的定义域为[24],-,则函数(21)f x +的定义域为( )A .33[]22,- B .[33],- C .[39],- D .[12],-4.下列各组函数中,表示同一函数的是( )①()()f x g x ==②()()f x x g x 和==③2()()f x x g x 和==④22()21()21f x x x g t t t 和=-+=-+A .①②B .①③C .③④D .①④ 5.已知等差数列{}n a 的前n 项和为n S ,若32132S S -=,数列{}n a 的公差d 的值为( )A .12B .1-C .2D .3 6.已知点(2,1),(1,3),(3,4)A B C -.则AB BC u u u r u u u rg =( )A .4-B .4C .3-D .37.抛物线28x y =的焦点到准线的距离为( ) A .1 B .2 C .4 D .88.三棱柱ABC-A 1B 1C 1的侧棱长和两个底面的边长都为2,侧棱垂直于底面,E ,F 分别为AB ,A 1C 1的中点,直线EF 与C 1C 所成角的余弦值为( ) A.2 B.5 C.5 D.29.一次掷甲乙两枚骰子的基本事件个数为( ) A .12 B .36 C .6 D .6610.从10个人中选出2人分别为正副班长,选法种数为( ) A .45 B .90 C .30 D .180 二、填空题(每小题3分, 共24分)11.已知集合{}{}{}21,3,,3,,3,A a B a A B a I 且===,则a = . 12.不等式2230x x --<的解集为 .13.已知22sin 1tan 3sin 2,则q q q+== . 14.若向量(12)(31)a b r r,,,==-,则()()a b a b r r r r g -= . 15.直线:2360l x y ++=在y 轴上的截距为 .16.已知正三棱锥的侧棱和底面连长都为1,则它的体积为 . 17.把4个不同的球分别放入不同的3个盒子里,一共有 种放法. 18.已知事件A 的对立事件为()0.4()A P A P A ,且,则== . 三、计算题(每小题8分, 共24分)19.在ABC D 中,1,cos , 4.43A B AC p ?== (1)求sin ;C ; (2)求ABC D 的面积.20.已知双曲线经过点()32,-,且与椭圆224936x y +=有相同的焦点,求双曲线的标准方程.21.已知()92390123921.x a a x a x a x a x L +=+++++ 求02468a a a a a ++++的值.四、证明题(每小题6分, 共11分)22.若函数()f x 是R 上的增函数,对任意实数a ,b ,若0a b +>, 求证:()()()()f a f b f a f b +>-+-.23.如图,已知矩形ABCD ,点E 为平面ABCD 外一点,EAD ABCD 平面平面^,且AE DE ^.求证EAB ECD 平面平面^.五、综合题(10分)24.等比数列{}n a 中,公比1q ¹,它的前n 项和为n S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年对口高考数学练习题
一、选择题
1.函数y = 3 sinx + 4 cosx 的最小正周期为( )
A. π
B. 2π
C. 2
π D. 5π 2.函数y = ㏒2(6-x-x 2)的单调递增区间是( )
A.(-∞,- 21]
B.( -3,-21)
C. [-21,+∞)
D. [-2
1,2) 3.函数y =log 3( x +x
1) (x>1)的最大值是( ) A.-2 B.2 C.-3 D.3
4.直线L:4x+3y-12=0与两坐村轴围成三角形的面积是( )
A.24
B.12
C.6
D.18
5.函数f(x)=3cos 2x+2
1sin2x 的最大值为( ) A.1-23 B. 23+1 C. 2
3-1 D.1 6.在等差数列中,已知S 4=1 ,S 8=4则a 17 + a 18 + a 19+ a 20( )
A.8
B.9
C.10
D.11
7. |a |=|b |是a 2=b 2的( )
A 、充分条件而悲必要条件,
B 、必要条件而非充分条件,
C 、充要条件,
D 、非充分条件也非必要条件
8.在⊿ABC 中内角A,B 满足anAtanB=1则⊿ABC 是( )
A 、等边三角形,
B 、钝角三角形,
C 、非等边三角形,
D 、直角三角形
9.函数y=sin(43x +4
π )的图象平移向量(- 3π,0)后,新图象对应的函数为y=( ) A.Sin 43x B.- Sin 43x c. Cos 43x D.-Cos 4
3x 10.顶点在原点,对换称轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是
( )
A.y 2=16x
B. y 2=12x
C. y 2=-16x
D. y 2=-12x
二、填空题
11.x 2-3
2y =1的两条渐近线的夹角是 12.若直线(m-2)x+2y-m+3=0的斜率等于2,则直线在轴上的截距2是
13.等比数列{a n }中,前n 项和S n = 2 n + a 则a =
14.函数f(x)=log310
4 2
x
则f(1)=
15.函数y=2x-3+x
4
13的值域
三、解答题
16.解不等式:log3( 3 +2x-x2)>log3( 3 x+1)
17.设等差数列{a
n }的公差是正数,且a
2
a
6
= -12, a
3
+a
5
= -4求前项20的和
18.如图所示若过点M(4,0)且斜率为-1的直线L与抛物线C:y2=2px(p>0),交于A、B两点,若OA⊥OB
求(1)直线L的方程,(2)抛物线C的方程,(3)⊿ABC的面积
19.B船位于A船正东26公里处,现A、B两船同时出发,A船以每小时12公里的速度朝正北方向行驶,B船以每小时5公里的速度朝正西方向行驶,那么何时两船相距最近,最近距离是多少?。