新人教版九年级数学下册期末测试题1

合集下载

新人教版九年级数学下册期末测试卷及答案【全面】

新人教版九年级数学下册期末测试卷及答案【全面】

新人教版九年级数学下册期末测试卷及答案【全面】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是()A.3B.13C.13-D.3-2.已知x+1x=6,则x2+21x=()A.38 B.36 C.34 D.32 3.已知m=4+3,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<64.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20 B.2 C.2或﹣20 D.1 25.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3 6.一个等腰三角形的两条边长分别是方程27100x x-+=的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或97.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.分解因式:x3﹣16x=_____________.3.若代数式1﹣8x与9x﹣3的值互为相反数,则x=__________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、C5、C6、A7、C8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)12、x (x +4)(x –4).3、24、8.5、40°6、①③④.三、解答题(本大题共6小题,共72分)1、2x =2、(1)y=﹣x 2﹣2x+3;(2)抛物线与y 轴的交点为:(0,3);与x 轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)相切,略;(2).4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)120件;(2)150元.。

新人教版九年级数学下册期末考试【及参考答案】

新人教版九年级数学下册期末考试【及参考答案】

新人教版九年级数学下册期末考试【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13C .18D .92.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .29.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70° 10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.因式分解:a 3-ab 2=____________.3.函数2y x =-x 的取值范围是__________.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB .(1)求BC 的长;(2)求证:PB 是⊙O 的切线.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、B6、C7、A8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、a (a+b )(a ﹣b )3、2x ≥4、125、5.6、49三、解答题(本大题共6小题,共72分)1、1x =2.3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,2--. 4、(1)2(2)略5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)4元或6元;(2)九折.。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

人教版九年级下册数学期末测试卷(含解析)

人教版九年级下册数学期末测试卷(含解析)

人教版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、一个矩形按如图1的方式分割成三个直角三角形,最小三角形的面积为S,把较大两个三角形纸片按图2方式放置,图2中的阴影部分面积为S2,1若S2=2S1,则矩形的长宽之比()A.2B.C.D.2、某物体三视图如图,则该物体形状可能是( ) .A.长方体.B.圆锥体.C.立方体.D.圆柱体.3、如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化4、同圆的内接正三角形与内接正方形的边长的比是()A. B. C. D.5、如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则E点的坐标为().A.( ,0)B.( ,)C.( ,)D. (2,2)6、在Rt△ABC中,∠C=90°,若斜边上的高为h,sinA=,则AB的长等于()A. hB. hC. hD. h7、太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B.15 C.10 D.8、如图几何体的主视图是()A. B. C. D.9、如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③S△AEF :S△CAB=1:4;④AF2=2EF2.其中正确的结论有()A.4个B.3个C.2个D.1个10、如图,在正方形中,对角线相交于点O,点E在BC边上,且,连接AE交BD于点G,过点B作于点F,连接OF并延长,交BC于点M,过点O作交DC于占N,,现给出下列结论:① ;② ;③ ;④ ;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④11、函数y=- ,当x>0时的图象为()A. B. C. D.12、如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数y=,在第一象限内的图象经过点D,且与AB、BC 分别交于E、F两点.若四边形BEDF的面积为6,则k的值为()A.3B.4C.5D.613、如图,某一时刻,小宁站在斜坡AC上的A处,小李在大楼FD的楼顶F 处,此时小宁望小李的仰角为18.43°.5秒后,小宁沿斜坡AC前进到达C处,小李从大楼F处下楼到大楼E处,此时小李望小宁的俯角为22.6°;然后小李继续下楼,小宁沿CD前往楼底D处,已知小宁的速度为5.2米/秒,大楼FD的高度为30米,斜坡AC的坡度为1:2.4,小李、小宁都保持匀速前进,若斜坡、大楼在同一平面内,小李、小宁的身高忽略不计,则当小李达到楼底D处时,小宁距离D处的距离为()米.(已知:tan18.43°≈ ,sin18.43°≈ ,cos22.6°≈ ,tan22.6≈ )A.10B.15.6C.20.4D.2614、如图1是一个手机的支架,由底座、连杆和托架组成(连杆始终在同一平面内),垂直于底座且长度为的长度为的长度可以伸缩调整.如图2,保持不变,转动,使得,假如时为最佳视线状态,则此时的长度为(参考数据:)()A. B. C. D.15、如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠CB.∠ADB=∠ABCC.D.二、填空题(共10题,共计30分)16、如图,在矩形OAHC中,OC=8,OA=12,B为CH中点,连接AB,动点M从点O出发沿OA边向点A运动,动点N从点A出发沿AB边向点B运动,两个动点同时出发,速度都是每秒1个单位长度,连接CM、CN、MN,设运动时间为t (秒)(0<t<10).则________时,△CMN为直角三角形.17、若是反比例函数,则m=________ .18、如图,在Rt△ABC中,∠ACB=90°,CD是高,如果∠A=α,AC=4,那么BD=________.(用锐角α的三角比表示)19、等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为________.(用科学计算器计算,结果精确到0.1°)20、如图,△ABC与△DEF是位似图形,位似比为2:3,若AB=6,那么DE=________21、如图,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?________ ________________ ________22、如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是________.23、近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则眼镜度数与镜片焦距之间的函数关系式为________.24、已知y=是反比例函数,那么k的值是________ .25、如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为________.三、解答题(共5题,共计25分)26、先化简,再求代数式的值,其中x=4cos60°+3tan30°.27、如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)28、已知:y=y1+y2, y1与x成正比例,y2与x成反比例,当x=2时,y=﹣4;当x=﹣1时,y=5,求y与x的函数表达式.29、如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)30、如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为48°,测得底部处的俯角为53°,求甲、乙建筑物的高度和(结果用含非特珠角的三角函数表示即可).参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、A5、C6、C7、B8、B9、B10、D11、B13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

2023年人教版九年级数学下册期末考试卷(完整版)

2023年人教版九年级数学下册期末考试卷(完整版)

2023年人教版九年级数学下册期末考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间2.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定 4.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或35.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣b 27.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度8.下列图形具有稳定性的是()A.B.C. D.9.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次=+的图象可能是:()函数y kx bA. B.C. D.10.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(本大题共6小题,每小题3分,共18分)123.2.因式分解:2x-=_______.21832-+=,则m-n的值为__________.m n3(1)04.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为__________.5.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为__________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x -=--2.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、A5、B6、A7、C8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1.2、2(x+3)(x﹣3).3、44、5、6、8.三、解答题(本大题共6小题,共72分)1、3x=2、(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.3、(1)略;(2)S平行四边形ABCD=244、(1)1.8(015)2.49(15)x xx x>≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m3、28m35、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。

人教版九年级下册数学期末试卷及答案

人教版九年级下册数学期末试卷及答案

人教版九年级下册数学期末试卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-35.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为 ( )A.180 B.182 C.184 D.1869.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°10.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.化简:9=__________.2.因式分解:(x+2)x﹣x﹣2=_______.3.若式子x1x+有意义,则x的取值范围是_______.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x +2≤ax +c 的解为__________.6.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数k y x=(k 是常数,k ≠0) 的图象经过点M ,交AC 于点N ,则MN 的长度是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241x -+1=11x x -+2.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85 高中部85 80 1006.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、B6、D7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、(x+2)(x ﹣1)3、x 1≥-且x 0≠4、10.5、x ≤1.6、5三、解答题(本大题共6小题,共72分)1、无解.2、(1)详见解析(2)k 4=或k 5=3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1P 235,),P 3),P 4.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。

人教版初三下册《数学》期末考试卷及答案【可打印】

人教版初三下册《数学》期末考试卷及答案一、选择题(每题1分,共5分)1. 如果一个等边三角形的周长是15厘米,那么它的每条边长是()。

A. 3厘米B. 5厘米C. 10厘米D. 15厘米2. 下列哪一个数是有理数?()A. √3B. √9C. √1D. π3. 下列函数中,哪一个函数是增函数?()A. y = x^2B. y = x^3C. y = 2x + 1D. y = 1/x4. 已知一组数据的平均数是10,方差是4,那么这组数据中的数值()。

A. 都大于10B. 都小于10C. 大于10和小于10的都有D. 无法确定5. 下列哪一个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 矩形D. 正方形二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 0的任何次幂都等于0。

()3. 两个负数相乘,结果是正数。

()4. 一元二次方程的解可以是两个相同的数。

()5. 任何一个数都有相反数。

()三、填空题(每题1分,共5分)1. 如果一个数的平方是36,那么这个数是______。

2. 任何数的零次幂都等于______。

3. 两个数的乘积为负数,那么这两个数______。

4. 一元二次方程ax^2 + bx + c = 0的判别式是______。

5. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的面积是______平方厘米。

四、简答题(每题2分,共10分)1. 请简要说明等差数列和等比数列的定义。

2. 请简要说明一元二次方程的求解方法。

3. 请简要说明概率的意义和计算方法。

4. 请简要说明相似三角形的性质。

5. 请简要说明圆的周长和面积的计算公式。

五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2、5、8,求这个数列的第10项。

2. 解方程:2x^2 5x 3 = 0。

3. 已知一个长方体的长、宽、高分别是10厘米、6厘米、4厘米,求这个长方体的体积。

2023年人教版九年级数学(下册)期末试卷含答案

2023年人教版九年级数学(下册)期末试卷含答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x -3.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 5.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥36.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ).A .1-B .1C .0D .27.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a+b >0;③b 2﹣4ac >0;④a ﹣b+c >0,其中正确的个数是( )A .1B .2C .3D .49.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.364 的平方根为__________.2.分解因式:2x 2﹣8=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,在直角△ABC 中,∠C=90°,AC=6,BC=8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ =________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.关于x 的一元二次方程x 2+3x+m-1=0的两个实数根分别为x 1,x 2.(1)求m 的取值范围.(2)若2(x 1+x 2)+ x 1x 2+10=0.求m 的值.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、D5、D6、C7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±22、2(x+2)(x ﹣2)3、0或14、154或3075、6、245三、解答题(本大题共6小题,共72分)1、x=32、(1)m ≤134. (2)m=-3.3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭ 4、(1)答案略;(2)45°.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。

A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。

A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。

A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。

A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。

A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。

()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。

()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。

()4. 两个平行线上的任意一点,到这两条平行线的距离相等。

()5. 一个数的立方根和它的平方根是同一个数。

()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。

()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。

()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。

()4. 下列函数中,是一次函数的是y = 3x + 2。

()5. 一个数的立方根和它的平方根是同一个数。

()四、简答题(每题2分,共10分)1. 简述一次函数的定义。

2. 简述相似三角形的性质。

3. 简述等差数列的定义。

4. 简述平行线的性质。

5. 简述立方根和平方根的区别。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

2023年人教版九年级数学(下册)期末试题(附答案)

2023年人教版九年级数学(下册)期末试题(附答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15C .﹣5D .52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.已知12a b +=,则代数式223a b +﹣的值是( ) A .2 B .-2 C .-4 D .132- 7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式:a 3-a =___________3.若实数a ,b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =__________.4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图,四边形ABCD 的对角线相交于点O ,AO=CO ,请添加一个条件_________(只添一个即可),使四边形ABCD 是平行四边形.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、B6、B7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、(1)(1)a a a -+3、-12或14、3x <-或1x >.5、BO=DO .6、 1三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、3x3、详略.4、(1)略;(2)45°;(3)略.5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版九年级数学下册期末测试题
一、选择题
1.如图所示的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是( )
2.(2016·玉林)sin 30°=( ) A.
22 B.12 C.32 D.33
3.△ABC 在网格中的位置如图,则cos B 的值为( ) A.
55 B.255 C.12
D .2 4.(2016·新疆)如图,在△ABC 中,D ,
E 分别是AB ,AC 的中点,下列说法中不正确的是( )
A .DE =12BC B.AD A
B =AE AC
C .△ADE ∽△ABC
D .S △AD
E ∶S △ABC =1∶2
,第3题图) ,第4题图) ,第5
题图)
,第6题图)
5.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函
数y =k
x
的图象经过点B ,则k 的值是( )
A .1
B .2 C. 3 D .2 3
6.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为1
3
,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( ) A .(2,1) B .(2,0) C .(3,3) D .(3,1)
7.(2016·铜仁)如图,在同一直角坐标系中,函数y =k
x
与y =kx +k 2的大致图象是( )
,第8题图) ,第9题图)
,第10题图)
8.如图,△ABC 与△A ′B ′C ′都是等腰三角形,且AB =AC =5,A ′B ′=A ′C ′=3,若∠B +∠B ′=90°,则△ABC 与△A ′B ′C ′的面积比为( )
A .25∶9
B .5∶3 C.5∶ 3 D .55∶3 3
9.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD 长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC 高度应该设计为( )
A .(11-22)米
B .(113-22)米
C .(11-23)米
D .(113-4)米
10.(2016·荆州)如图,在Rt △AOB 中,两直角边OA ,OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数y =k
x 的图
象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )
A .3
B .4
C .6
D .8
二、填空题
11.如图,P(12,a)在反比例函数y =60
x
的图象上,PH ⊥x 轴于点H ,则tan ∠POH 的值为____.
,第11题图) ,第12题图)
,第15题图)
12.如图,▱ABCD 中,点E 是边BC 上一点,AE 交BD 于点F ,若BE =2,EC =3,则
BF
DF
的值为____. 13.如图,将直角三角形纸片ABC 按如下方式裁剪后,所得的图形恰好是一个正方体的平面展开图,如果AB =10,则该正方体的棱长为____.
,第13题图) ,第14题
图) ,第15题图)
14.如图,在平面直角坐标系中,△ABC 的边AB ∥x 轴,点A 在双曲线y =5
x (x <0)上,
点B 在双曲线y =k
x
(x >0)上,边AC 中点D 在x 轴上,△ABC 的面积为8,则k =____.
15.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E ,且cos α=4
5.下列结论:①△ADE ∽△ACD ;②当BD =
6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或25
2;④0<CE ≤6.4.其
中正确的结论是____.(填序号)
三、解答题 16.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求△ABC 的周长.(结果保留根号)
17.如图①是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.
(1)请说出这个几何体模型的最确切的名称是____;
(2)如图②是根据a,h的取值画出的几何体的主视图和俯视图(图中的粗实线表示的正方形(中间一条虚线)和三角形),请在网格中画出该几何体的左视图;
(3)在(2)的条件下,已知h=20 cm,求该几何体的表面积.
18.如图,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF,BE相交于点P.
(1)求证:AF=BE,并求∠APB的度数;
(2)若AE=2,试求AP·AF的值.
19.(2016·重庆)如图,在平面直角坐标系中,一次函数y =ax +b(a ≠0)的图象与反比例函数y =k
x (k ≠0)的图象交于第二、四象限内的A ,B 两点,与y 轴交于C 点,过点A 作AH
⊥y 轴,垂足为H ,OH =3,tan ∠AOH =4
3
,点B 的坐标为(m ,-2).
(1)求△AHO 的周长;
(2)求该反比例函数和一次函数的解析式.
20.(2016·赤峰)为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查.如图,一测量船在A 岛测得B 岛在北偏西30°方向,C 岛在北偏东15°方向,航行100海里到达B 岛,在B 岛测得C 岛在北偏东45°,求B ,C 两岛及A ,C 两岛的距离.(结果保留到整数,2≈1.41,6≈2.45)
21.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若OF∶OB=1∶3,⊙O的半径为3,求BD
AD的值.
22.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ∶S△ABC=9∶100?若存在,求出t的值;若不存在,说明理由;
(3)当t为何值时,△CPQ为等腰三角形?。

相关文档
最新文档