最新惠斯登电桥原理及应用
惠斯通电桥测量的实验原理

惠斯通电桥测量的实验原理
惠斯通电桥是一种用来测量电阻的仪器,其基本原理是通过改变电桥中的元件参数,使得电桥上的电流为零,从而测量未知电阻。
电桥由四个电阻器和一个伏特表组成,其中两个电阻器称为已知电阻R1和R2,另外两个电阻器称为未知电阻R3和R4。
这四个电阻器通过导线连接成一个封闭电路。
假设电桥接通电源后,流经封闭电路的电流为I,而电桥两边的电压分别为V1和V2。
根据欧姆定律,电流和电压之间的关系可以表示为V1 = I*R1, V2 = I*R2。
在电桥中,通过改变电阻R3和R4来使电流为零。
当电流为零时,有V1 = V2,即I*R1 = I*R2。
将此等式变形后可得到R3/R4 = R1/R2.
由此可见,要使电桥上的电流为零,需要满足R3/R4 = R1/R2的等式。
因此,通过改变R3和R4的数值,可以测量未知电阻R4。
在实际测量中,通常先选定一个已知电阻R1,然后通过调节R3和R4来使电桥上的电流为零。
当电流为零时,我们就可以通过测量R3和R4的数值来得到未知电阻R4的数值。
需要注意的是,为了保证电桥测量的精度,电桥的各个电阻器应具有较高的稳定
性和准确性。
此外,使用恰当的电源和仔细的接线也对测量结果十分重要。
总的来说,惠斯通电桥测量的原理是通过改变电桥中的元件参数,使得电桥上的电流为零,然后根据电桥平衡条件来测量未知电阻。
这种测量方法简单而准确,广泛应用于电阻测量和电学实验中。
惠斯登电桥的原理与应用

温度、压力传感器原理---惠斯登电桥的应用这里介紹一种測量电阻值大小的方法,這种方法称为惠斯登电桥測量法。
它的特別之处,是在于精确、精細,几乎省去人在判读時所形成的誤差。
並且由于它的精細,我們要用它去測量电阻阻值和測量电阻随温度变化的情形,也就是电阻的温度系数。
究竟惠斯登电桥是如何能够达到精确、精細的功能?以下就来了解它的原理。
一、惠斯登电桥(平衡电桥)测电阻的原理.惠斯登电桥原理图1中,接通电源,调节电桥平衡,即调节电桥四个“臂”R1、R2、R3、Rx,当检流计G的指针指零,B、D两点电位相等,则有箱式惠斯登电桥的比率K有0.001,0.01,0.1,1,10,100,1000七档。
根据待测电阻Rx大小选择K,调节R3使检流计G为零,由Rx=KR3求出Rx值。
电流计G的B、D两点电位:(1--2)(1--3)由上式看出,当R1R3=R2Rx时,电流计G的B、D两点电位差Uo=0,电桥处于平衡,这就是惠斯登电桥。
1-1二、箱式惠斯登电桥的结构线路(以QJ23型箱式直流单臂电桥为例)图(a)分析箱式惠斯登电桥的结构线路。
提示:当比率转换开关K连接到0.001的挡位时,R1代表一只电阻的值,而R2代表7只电阻串联值。
在不同的挡位时,R1R2所代表的电阻串联值。
各不相同。
Rx:被测电阻接线柱R3:由四个可变电阻箱串联组成。
每个可变电阻箱的挡位X1Ω、X10Ω、X100Ω、X1000Ω构成。
箱式惠斯登电桥的操作法1.检流计的指针作调零处理。
2.确定待测量电阻的大致数值,在Rx被测电阻接线柱间接上被测量电阻。
3.根据被测量电阻的大小值选定比率转换开关K连接的挡位。
4.测量时用跃接法按下"B"和"G"按钮(按下后立即松开),若指针偏向"+"方向。
则增加R3的数值;若指针偏向"-"方向,则减小R3的数值,反复调节直至电桥平衡.5.测量有感电阻(如电机、变压器等)时,应先接通"B"和后接通"G"按钮,断开时应先放开"G"再放开"B"。
惠斯通电桥实验原理

惠斯通电桥实验原理惠斯通电桥实验是一种用于测量电阻的实验方法,由英国物理学家惠斯通于1843年发明。
它的主要原理是利用电桥的平衡条件来测量未知电阻值。
本文将详细介绍惠斯通电桥实验的原理和应用。
一、惠斯通电桥实验原理惠斯通电桥实验由四个电阻组成的电路组成,如图1所示。
其中,R1、R2为已知电阻,R3为待测电阻,R4为可变电阻,E为电源。
当电桥平衡时,有如下公式:R1/R2 = R3/R4其中,R1、R2、R4为已知电阻,R3为待测电阻。
通过改变R4的值,使电桥平衡,再根据公式计算R3的值,就可以测量出待测电阻的电阻值。
图1 惠斯通电桥实验电路二、惠斯通电桥实验的应用1.测量电阻值惠斯通电桥实验是用于测量电阻值的常用方法。
通过改变可变电阻R4的值,使电桥平衡,可以测量出待测电阻R3的电阻值。
这种方法比直接测量电阻值更为精确,特别适用于较小电阻值的测量。
2.测量电容值惠斯通电桥实验也可以用于测量电容值。
这时,电桥电路中的电阻要换成电容,如图2所示。
通过改变可变电容C4的值,使电桥平衡,可以测量出待测电容C3的电容值。
这种方法比直接测量电容值更为精确。
图2 惠斯通电桥实验测量电容电路3.测量电感值惠斯通电桥实验还可以用于测量电感值。
这时,电桥电路中的电阻要换成电感,如图3所示。
通过改变可变电感L4的值,使电桥平衡,可以测量出待测电感L3的电感值。
这种方法比直接测量电感值更为精确。
图3 惠斯通电桥实验测量电感电路三、惠斯通电桥实验的优缺点1.优点惠斯通电桥实验具有测量精度高、测量范围宽、操作简单等优点。
特别是对于较小电阻值、电容值、电感值的测量,比直接测量更为精确。
2.缺点惠斯通电桥实验的缺点是需要使用相对较高精度的电阻、电容、电感等元件。
另外,实验过程中需要进行多次调节,比较费时。
四、结语惠斯通电桥实验是一种常用的电阻、电容、电感测量方法,具有测量精度高、测量范围宽、操作简单等优点。
通过本文的介绍,希望读者能够更好地了解惠斯通电桥实验的原理和应用。
惠斯登电桥的原理操作要点

惠斯登电桥的原理操作要点惠斯登电桥是一种常用于测量电阻值的电路,它的原理操作要点如下:1. 基本原理惠斯登电桥利用了电流在不同电阻上的分配性质,通过调整未知电阻和已知电阻之间的比例关系,使得整个电路达到平衡状态。
当电路平衡时,无电流通过检测线圈,可以利用平衡条件求出被测电阻。
2. 电路组成惠斯登电桥主要由四个电阻组成,分别为未知电阻RX、已知电阻R1、R2和R3,在检测线圈的两端分别接入一个电压源U0和一个电流表。
3. 原理操作步骤(1) 将已知电阻R1、R2和R3与未知电阻RX按照电桥电路图的连接方式连接好。
(2) 调节电桥电路中的滑动变阻器或电位器,改变已知电阻R3的电阻值,使得电桥每个支路都达到平衡状态。
(3) 平衡状态下,电流表显示电流为0,此时可以通过平衡条件求解未知电阻RX。
4. 平衡条件的推导根据基尔霍夫电压定律和欧姆定律,可以推导出电阻平衡条件。
在平衡状态下,电桥电路中各支路电流满足以下关系:U0 = I1*R1U0 = I2*R2Ux = I3*RX其中,U0是电源电压,I1、I2和I3分别是电流表示读数。
根据电桥的物理特性,平衡状态下电流I1和I2的大小相等,即I1 = I2。
将上述两个方程联立可得:R1/R2 = U1/U2同理,平衡状态下I3和I2可认为大小相等,即I3 = I2。
将上述两个方程联立可得:RX/R3 = Ux/U2将上述两个关系组合在一起,可以得到电阻平衡的条件:RX = R1*R3/R25. 误差分析与校正实际测量中,由于电桥电路中元件阻值的精度限制和测量仪器的精度限制,会引入一定的误差。
常见的误差主要有接触电阻、电源内阻、温度对电阻的影响等。
为了减小误差,可以采取以下措施:(1) 使用低接触电阻的导线和接插件;(2) 选择稳定的电源,避免电源内阻对测量结果的影响;(3) 控制温度变化范围,或者采用温度补偿方法进行校正。
总结:惠斯登电桥的原理操作要点主要包括电路的组成、原理操作步骤、平衡条件的推导以及误差分析与校正。
惠斯登电桥的原理

惠斯登电桥的原理一、什么是惠斯登电桥惠斯登电桥(Wheatstone bridge)是一种用来测量未知电阻的电路,该电路由英国物理学家查尔斯·惠斯登(Charles Wheatstone)于1843年发明。
惠斯登电桥是一种平衡电桥,通过平衡原理来测量未知电阻。
二、平衡电桥的原理平衡电桥是基于平衡原理的一种电路,通过调节电桥的各个部分,使得电桥中的电流为零,从而达到平衡的状态。
惠斯登电桥也是一种平衡电桥。
惠斯登电桥由四个电阻和一个潜在变阻器(未知电阻)组成。
电桥的基本原理是通过调节电桥中的潜在变阻器,使得电桥中的电流为零,从而确定未知电阻的值。
当电桥中的电流为零时,可以使用已知的电阻值来计算出未知电阻的阻值。
三、惠斯登电桥的工作原理惠斯登电桥的工作原理可以通过以下步骤来解释:1.设置电桥的初始状态:将已知电阻分别接到电桥的两个相对端点上,并将未知电阻连接到电桥的两个相邻端点。
2.调节潜在变阻器:通过调节潜在变阻器的电阻值,使得电桥的电流为零。
3.检测电流为零的条件:使用电流表等仪器来检测电桥中的电流是否为零。
如果电流为零,则表示已经达到平衡状态。
4.计算未知电阻:根据已知电阻的阻值和电桥达到平衡时潜在变阻器的电阻值,可以使用惠斯登电桥的公式来计算未知电阻的值。
四、惠斯登电桥的公式惠斯登电桥的计算公式为:其中,R1、R2、R3为已知电阻的阻值,而R为未知电阻的阻值。
五、应用领域惠斯登电桥在科学实验、电子工程等领域有着广泛的应用。
1. 科学实验在科学实验中,惠斯登电桥被用来测量物质的电阻,从而获得有关材料特性的信息。
例如,在材料科学中,可以使用惠斯登电桥来测量材料的电导率、电阻率等。
2. 电子工程在电子工程中,惠斯登电桥被用来测量电路中的未知电阻。
通过测量电阻,可以更好地设计和优化电路,提高电路的性能。
惠斯登电桥还可以应用于传感器的设计和测试中。
3. 物理实验在物理实验中,惠斯登电桥被用来测量电阻与其它物理量之间的关系。
惠斯通电桥的原理与应用

惠斯通电桥的原理与应用原理介绍惠斯通电桥是一种用于测量电阻的电路配置。
它由英国物理学家萨缪尔·亨利·惠斯通发明于1843年,是一种基于电阻平衡原理的测量仪器。
惠斯通电桥由四个电阻器组成,它们分别被连接在一个平衡电路中。
当电路处于平衡状态时,电桥中的电流为零,这意味着两侧电压相等。
通过测量电桥中各个电阻器的电流和电压,可以计算出待测电阻的值。
惠斯通电桥原理的基本方程是:Whitstone-bridgeWhitstone-bridge其中,R1、R2、R3和Rx分别为四个电阻器,V1、V2为两个点之间的电压。
该方程表明,在电桥平衡时,R1/R2 = Rx/R3。
根据这一方程,可以通过测量电桥两侧的电压来计算出未知电阻Rx的值。
应用领域1. 电阻测量惠斯通电桥是用于测量电阻的一种常用仪器。
它可以精确测量小到几个毫欧姆的电阻值,具有很高的精度和灵敏度。
因此,在科学研究、电子工程、电路设计和电阻测试等领域都广泛应用。
2. 動態測量惠斯通电桥还可以用于动态测量,例如根据电桥的平衡情况来判断风速、温度等的变化。
这种应用可以通过将传感器与电桥连接,利用变化的电阻值来转换为相应的物理量。
3. 温度传感器由惠斯通电桥构成的电阻温度传感器广泛应用于温度测量领域。
传感器中的电阻器受温度变化影响,通过电桥平衡情况来测量温度。
4. 液位测量惠斯通电桥还可以应用于液位测量。
在液位传感器中,测量液位的传感器与电桥相连,根据液位的变化导致电阻值的变化,通过电桥的平衡情况来测量液位。
5. 影像处理在某些影像处理领域,惠斯通电桥可以用于图像传感器的校准。
根据传感器感知到的图像信号和标准图像之间的差异,通过电桥来调整传感器输出的电压,从而实现图像的校准和优化。
优缺点分析优点•惠斯通电桥可以测量非常小的电阻值,具有很高的精度和灵敏度。
•可以广泛应用于电子工程、电路设计、科学研究以及温度和液位测量等领域。
•惠斯通电桥结构简单,易于实现。
惠斯登电桥物理实验
惠斯登电桥物理实验引言:惠斯登电桥是一种用来测量电阻的电路。
它由英国物理学家惠斯登于1854年发明,是一种经典的电阻测量方法。
本文将介绍惠斯登电桥的原理、实验步骤以及实验结果的分析和应用。
一、原理惠斯登电桥的基本原理是平衡条件下电桥两侧的电势差为零。
当电桥平衡时,通过电桥的电流为零,此时可以通过测量电桥两侧的电势差来计算未知电阻的值。
二、实验步骤1. 连接电路:将待测电阻与已知电阻R1、R2和R3连接成一个平衡电桥。
其中R1、R2和R3为已知电阻,待测电阻为Rx。
2. 调节电阻:通过调节变阻器或电位器,使得电桥两侧的电势差为零。
此时电桥达到平衡状态。
3. 测量电势差:使用电压计或万用表测量电桥两侧的电势差,记录下测量值。
4. 计算电阻:根据已知电阻和电势差的测量值,使用惠斯登电桥的公式计算待测电阻Rx的值。
三、实验结果分析根据惠斯登电桥的公式,可以计算出待测电阻Rx的值。
在实际实验中,由于电路的精度、测量仪器的误差等因素,测量结果可能存在一定的误差。
因此,在实验中需要注意以下几点:1. 保证电路连接的良好:电路的连接应牢固可靠,避免因接触不良而引起测量误差。
2. 注意电桥的平衡状态:在调节电阻时,应仔细观察电桥两侧的电势差是否为零,确保电桥处于平衡状态。
3. 多次测量取平均值:为了提高测量结果的准确性,可以进行多次测量并取平均值,减小误差的影响。
四、应用领域惠斯登电桥是一种常用的电阻测量方法,广泛应用于科学研究和工程实践中。
它可以用来测量各种类型的电阻,包括金属电阻、电解质电阻、半导体电阻等。
惠斯登电桥还可以用于测量温度、湿度等物理量的变化,以及检测电路中的故障。
结论:通过惠斯登电桥物理实验,我们可以准确测量电阻的值。
这种电桥方法简单可靠,适用范围广泛。
在实际应用中,我们需要注意实验步骤的正确性和实验结果的准确性,以保证测量结果的可靠性。
注:本文描述的是惠斯登电桥的基本原理和实验步骤,并未涉及具体的实验数据和计算方法。
惠斯通电桥实验原理与操作
惠斯通电桥实验原理与操作惠斯通电桥是一种常用的电路实验仪器,用于测量电阻、电容、电感等元件的值。
它可以通过比较两个电路中的电压差来确定未知元件的值,被广泛应用于物理学、电子工程等领域。
在本文中,我们将介绍惠斯通电桥的工作原理和操作步骤。
一、原理介绍惠斯通电桥基于惠斯通电桥定律,即在电桥平衡时,四个支路中的电压之比相等。
在电桥平衡时,可以通过调节电桥中的不同元件值来求解未知元件的值。
电桥中一般包括一个电源、两个已知元件和一个未知元件。
电桥的平衡条件可以表述为:\[ \frac{Z_1}{Z_2} = \frac{Z_3}{Z_4} \]其中,\(Z_1\)、\(Z_2\)为已知元件值,\(Z_3\)、\(Z_4\)为未知元件值。
二、操作步骤1.搭建电桥电路首先,按照实验要求搭建惠斯通电桥电路,连接电源、已知元件和未知元件。
确保电路连接正确,无误接或短路。
2.调节电桥平衡开启电源,使用电桥平衡实验仪器,逐步调节已知元件的值,直到电桥平衡为止。
在平衡点时,电桥中的两个支路电压相等。
3.记录数据在电桥平衡时,记录已知元件的值和调节量,以及未知元件的值。
这些数据将用于后续的计算和分析。
4.计算未知元件值根据惠斯通电桥定律,利用记录的数据计算未知元件的值。
根据电桥平衡条件,求解未知元件的阻抗、电容或电感值。
5.实验验证最后,验证计算结果是否与实际值相符。
可以进行多次实验以提高准确性,并比较实验结果的一致性。
三、实验应用惠斯通电桥广泛用于电工、电子、物理等领域的实验中。
通过使用电桥可以测量各种元件的参数,了解电路中元件之间的关系,为实际应用提供参考。
结语惠斯通电桥是一种简单而有效的电路实验仪器,具有广泛的应用价值。
通过本文介绍的原理和操作步骤,希望读者能够更深入了解电桥的工作原理,掌握电桥的正确使用方法,为相关领域的实验研究提供帮助。
惠斯顿电桥原理
惠斯顿电桥原理
惠斯顿电桥是一种用来测量电阻值的电路,它利用了电桥平衡
的原理,通过调节电桥中的电阻值,使得电桥两端的电压差为零,
从而可以准确地测量未知电阻的数值。
惠斯顿电桥广泛应用于科研
实验和工程技术中,是一种非常重要的电路原理。
惠斯顿电桥的基本原理是基于基尔霍夫定律和欧姆定律。
当电
桥平衡时,电桥中的两个对角线上的电压相等,即满足基尔霍夫定律。
根据欧姆定律,电桥中的电流与电阻成正比,通过调节电桥中
的电阻值,使得电桥两端的电压差为零,即可求得未知电阻的数值。
惠斯顿电桥由四个电阻组成,分别为R1、R2、R3和R4。
当电
桥平衡时,满足以下条件:
R1/R2 = R3/R4。
其中,R1和R2是已知电阻,R3是待测电阻,R4是用来调节的
电阻。
通过调节R4的大小,使得电桥两端的电压差为零,即可计算
出R3的数值。
惠斯顿电桥的平衡条件可以用数学公式表示为:
R3 = R1 (R4/R2)。
通过这个公式,我们可以得出未知电阻R3的数值。
在实际测量中,通常会使用一个标准电阻作为R1,然后通过调节R4的大小,
使得电桥平衡,从而可以测量出待测电阻R3的数值。
除了用于测量电阻值,惠斯顿电桥还可以用来测量电感和电容
的数值。
通过在电桥中加入电感或电容,同样可以利用电桥平衡的
原理,测量它们的数值。
总之,惠斯顿电桥原理是一种非常重要的电路原理,它通过电
桥平衡的方法,可以准确地测量电阻、电感和电容的数值。
在科研
实验和工程技术中具有广泛的应用,是电路测量中不可或缺的工具。
惠斯通电桥实验的原理及应用
惠斯通电桥实验的原理及应用引言在物理学中,惠斯通电桥实验是一种用来测量电阻、寻找未知电阻以及检查电阻特性的实验方法。
该实验基于物理学家塞缪尔惠斯通于1843年发明的电桥,因此得名。
本文将介绍惠斯通电桥实验的基本原理以及现实生活中的应用。
我们将首先阐述实验的原理,然后探讨实验在不同领域的应用。
一、原理惠斯通电桥实验的原理基于电桥的平衡条件,即当桥路中的电流达到平衡时,通过不同的电阻测量和调节,可以计算出未知电阻的值。
1. 电桥的结构惠斯通电桥由四个电阻均匀的分支组成,通常分别用A、B、C、D表示。
A和B为已知电阻,C为未知电阻,D为可变电阻。
四个电阻分别构成了一个平衡的桥路。
2. 平衡条件当电桥达到平衡时,桥路上的电压差为零。
这意味着,在平衡条件下,桥路中的电流分布是均匀的,每个电阻上的电压降相等。
3. 计算未知电阻的值根据平衡条件,可以通过测量其他已知电阻的值,来计算未知电阻的值。
具体的计算公式根据实际电桥的结构和电流分布情况而异。
二、应用惠斯通电桥实验在现实生活中有许多应用,下面我们将介绍其中几个常见的应用领域。
1. 电阻测量惠斯通电桥实验被广泛应用于电阻的测量。
通过调节可变电阻,当电桥达到平衡时,可以计算未知电阻的值。
这在工程领域,特别是电子电路设计中非常重要。
2. 寻找未知电阻惠斯通电桥实验也可以用于寻找未知电阻。
通过实验中多次调节桥路达到平衡,可以逐步逼近未知电阻的准确值。
3. 电阻特性检查电阻的特性非常重要,包括电阻值、温度特性和频率特性等。
惠斯通电桥实验可以用于检查和测量电阻的这些特性,帮助工程师和科学家了解电阻的性能。
4. 传感器的校准许多传感器的工作原理涉及电阻的变化。
通过使用惠斯通电桥实验,可以校准传感器并确定其输出与电阻之间的关系,从而提高传感器的准确性和可靠性。
5. 生物学实验惠斯通电桥实验在生物学研究中也有应用。
例如,可以使用电桥来测量细胞的电阻或电导率,从而研究细胞的生物电活动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惠斯登电桥原理及应
用
惠斯登电桥的原理与应用
大学物理基础性实验
乐山电大幸荣安
【摘要】惠斯登电桥是大学物理基础性实验之一。
教学辅导中发现,在理工科中,不同专业的学员,对惠斯登电桥原理的学习要求各不相同,有的专业学员对惠斯登电桥原理只作一般性了解和使用;而电子工程技术类的学员则作一般性了解和使用外,还要求对每一个原理在其它项目中的应用。
本文对惠斯登电桥原理作了一般性的论证分析外,还对对惠斯登电桥原理在温度控制技术作了入门式讨论分析。
【关键词】惠斯登电桥交换测量法热敏电阻
这里介紹一种測量电阻值大小的方法,這种方法称为惠斯登电桥測量法。
它的特別之处,是在于精确、精細,几乎省去人在判读時所形成的誤差。
並且由于它的精細,我們要用它去測量电阻阻值和測量电阻随温度变化的情形,也就是电阻的温度系数。
究竟惠斯登电桥是如何能够达到精确、精細的功能?以下就来了解它的原理。
一、惠斯登电桥(平衡电桥)测电阻的原理. 惠斯登电桥原理图1中,接通电
源,调节电桥平衡,即调节电桥四个“臂”R1、R2、R3、Rx,当检流计G 的指针指零,B、D两点电位相等,则有
式称为比率k。
箱式惠斯登电桥的比率K有0.001,0.01,0.1,1, 10,100,
1000七档。
根据待测电阻Rx大小选择K,调节R3使检流计G为零,
由R x = KR3求出待测电阻Rx值。
电流计G 的 B、D两点电位
(7--2)
(7--3)
由上式看出,当R1R3= R2R x时,电流计G 的 B、D两点电位差Uo=0,电桥处于平衡,这就是惠斯登电桥。
2、箱式惠斯登电桥的结构线路(以QJ23型箱式直流单臂电桥为例)图(a)
分析箱式惠斯登电桥的结构线路.提示: 当比率转换开关K连接到0.001的挡位时, R1代表一只电阻的值,而R2代表7只电阻串联值.在不同的挡位时,R1
R2所代表的电阻串联值.各不相同.Rx:被测电阻接线柱R3:由四个可变电阻箱串联组成.每个可变电阻箱的挡位X1Ω、X10Ω、X100Ω、X1000Ω构成.箱式惠斯登电桥的操作法1.检流计的指针作调零处理.
2.确定待测量电阻的大致数值,在Rx被测电阻接线柱间接上被测量电阻.
3.根据被测量电阻的大小值选定比率转换开关K连接的挡位.
4.测量时用跃接法按下"B"和"G"按钮(按下后立即
松开),若指针偏向"+"方向.则增加R3的数值;若指针偏向"-"方向,则减小R3的数值,反复调节直至电桥平衡.
5.测量有感电阻(如电机、变压器等)时,应先接通"B"和后接通"G"按钮,断开时应先放开"G"再放开"B".
6.使用完毕,必须断开"B"和"G"按钮,并且将检流计的联接片接在"内接"位置,也保护检流计.
2.箱式惠斯登电桥的结构(以QJ23型箱式直流单臂电桥为例) 版面布置图. 图(B)
三、测量方法
1.在被测电阻位置接待测电阻Rx按惠斯登电桥的操作方法直接测量.
2.交换测量法:
当比率K不变,R x和R3的位置相互交换,得到R`3= K R x , R`3是交换
后电桥平衡的新值,将Rx=KR3和R`3=KRx两式整理得
得到的结果与比率K系统无关,说明此法可以抵消系统误差的影响.
四、惠斯登电桥原理在温度控制技术中的应用
惠斯登电桥原理的应用:惠斯登电桥可以测量电阻、电容、电感、温度、频率、及压力等许多物理量,同时广泛应用在自动控制技术中.
3. 惠斯登电桥原理在温度控制技术中的应用若R1、R2、R3为固定电
阻,Rx为热敏电阻,即随温度变化的电阻,Rx=R (t)。
设室温t= t0时,
Rx= Rx0,当温度t = t0+Δt时,Rx = Rx0+ΔRx,由(4-22-3)式求得电
压Uo为:
(7--4)
在室温t0时要预调平衡,即调节R1、R2和R3,使R1R3=R2Rx0,
则(4-22-4)式变为:
(7--5)
若Rx电阻变化很小,ΔRx<< R1、R2、R3,则(4-22-5)式分母中ΔRx项
可以略去,(7--5)式变为:
(7--6)
这个电压Uo是温度升高引起的,可以用这个电压Uo去控制温度调控设备。
五、惠斯登电桥各桥臂之间的三种典型情况,下面分别进行分析讨论:
①等臂电桥:R1=R2=R3=Rx0 ,(7--6)式变为:
(7--7)
②输出对称电桥(电流计端等臂),也称卧式电桥:当R1=Rx0,
R2=R3,且R1≠R3,(7--6)式变为:
(7--8)
③电源对称电桥(电源端等臂),也称为立式电桥:当R1=R2,
R3=Rx0,且R1≠R3,(4-22-6)式变为:
(7--9)
由上三式可以看出,当ΔRx << R1、R2、R3 时,三种电桥的输出电压Uo均与成线性关系. 若Rx0、ΔRx相同情况下,等臂电桥、卧式电桥
输出电压Uo比立式电桥输出电压Uo高,故灵敏度也高;而立式电桥测量范围大,从(7--9)式中的
(7--10)
项看出可以通过选择R1、R3来扩大测量范围,R1、R3差距越大,Rx测量
范围也越大。
而测量电压Uo后,计算出ΔRx,从而求得Rx= Rx0+ΔRx 。
六、思考题
1、了解惠斯登电桥的原理和桥式电路的特点;
2、学会使用电桥测电阻的方法;
3、学会消除系统误差的一种方法-------交换测量法
4.平衡电桥与非平衡电桥有哪些不同?
5.什么时候用平衡电桥测电阻较好,什么时候用非平衡电桥测电阻较好?
6.非平衡电桥中立式桥为什么比卧式桥测量范围大?
7.若用惠斯登平衡电桥测出一只热敏电阻在常温下的阻值,当温度升到50°C
时,电阻值增加多少并绘制Rx- t曲线,再计算出电阻温度系数α(=K/R0)的测量
值。
参考文献??普通物理学实验讲义? 作者钱昆明张少刚? 电工手册? 作者电工手册编写组。