外国文献
国外文献引用格式

国外文献引用格式国外文献引用格式的准确性对于科研工作者极其重要。
不仅可以保证文章的规范性和严谨性,而且可以避免可能存在的抄袭和引用不实的状况。
本文将介绍一般情况下国外文献的几种引用格式,以帮助读者正确的引用他人的研究成果。
1. APA 格式APA 格式是一种用于学术研究中的引用格式,全称为“American Psychological Association”。
这种格式通常用于社会科学领域,包括心理学、教育、经济学和政治科学等。
具体的引用格式为:作者名字,出版年,文章题目,期刊名称,卷号,页码。
例如,一个 APA 格式的参考文献如下:Smith, J. (2010). The effects of social media on mental health. Journal of Social Psychology, 24(3), 135-149.在文章中的引文格式为:(Smith, 2010)或Smith (2010) 指出……2. MLA 格式MLA 格式全称为“Modern Language Association”,是一种学术研究中常用的引用格式。
这种格式通常用于人文科学领域,如文学、语言学和文化研究等。
具体的引用格式为:作者名字,出版年,文章题目,期刊名称,卷号,页码。
例如,一个 MLA 格式的参考文献如下:Johnson, L. (2015). The impact of technology on society. Digital Humanities Quarterly, 9(1), 64-77.在文章中的引用格式为:(Johnson 64)或Johnson (64) 指出……3. Chicago 格式Chicago 格式是一种学术研究中常用的引用格式,也叫做脚注格式。
这种引用格式可适用于多种学科领域,如文学、法律和历史学等。
具体的引用格式为:作者名字,文章标题,期刊名称,出版年,卷号,页码。
查外国文献的方法

查外国文献的方法外国文献在学术领域中具有重要意义,通过它们可以拓展我们的研究视野、提高学术水平。
但对于一些刚刚开始从事学术研究的学生,可能会遇到外国文献查找难的问题。
本文将从以下几个方面介绍查外国文献的方法,希望对大家有所帮助。
一、利用学术搜索引擎学术搜索引擎是查找外国文献的重要工具。
例如,Google Scholar、Web of Science、SCI Hub等,这些搜索引擎都可以在全球范围内检索各种类型的学术文献。
搜索时可以通过关键词、作者名、机构等不同的检索方式,找到与自己课题相关的文献。
二、利用图书馆数据库图书馆中的数据库是另一种获取外国文献的好方法。
不同的图书馆可能提供不同的数据库,如EBSCO、ProQuest、Springer等,这些都是著名的图书馆数据库。
在数据库中,可以使用更多的检索方式,如主题检索、全文检索、作者检索等,更方便快捷地找到需要的文献。
三、寻找学科论文库有些大学或学科可能有自己的学科论文库,它们可以提供一些深入研究某一领域的文献。
学科论文库主要涵盖该领域内的学术刊物、博硕士论文、会议论文等,因此对于一些研究单一领域的学生来说,学科论文库是一个非常适合的选择。
在学校的图书馆或网站可以找到这些库。
四、向国外同行查询如果对某一领域的外国文献了解不多,不能有效地利用搜索引擎或数据库,建议向国外的同行询问。
可以通过国外优秀的学术论坛、专业社交媒体(如ResearchGate)、对外合作项目等途径,与研究该领域的国外学者联系,请求他们提供有关文献的信息。
以上便是查外国文献的几种方法,通过这些方法可以很快锁定目标文献并获取需要的信息。
当然,不同的搜索方式和工具都有各自的特点和使用方法,需要合理选择和搭配使用,方能达到事半功倍的效果。
希望大家在研究学习时有所帮助!。
如何阅读英文文献

面对海量的文献信息我们往往会感觉无从下手,更不要提阅读外国文献了。
但是阅读外国文献对于把握最新科研动态,扩充自己的知识是非常有必要的,今天我们一起来看看牛人们是怎样阅读外国文献的~~学术牛人1:用自己的话概括和梳理文献及时回顾心得和经验:我现在每天还保持读至少2-3 篇的文献的习惯.读文献有不同的读法.但最重要的自己总结概括这篇文献到底说了什么,否则就是白读,读的时候好像什么都明白,一合上就什么都不知道,这是读文献的大忌,既浪费时间,最重要的是,没有养成良好的习惯,导致以后不愿意读文献.1.回顾重要内容每次读完文献 (不管是细读还是粗读), 合上文献后,想想看,文章最重要的 take home message 是什么, 如果不知道,就从abstract,conclusion 里找, 并且从discuss 里最好确认一下. 这样一来, 一篇文章就过关了. take home message 其实都不会很多, 基本上是一些concepts,如果你发现你需要记得很多,那往往是没有读到重点.2.扩充知识面的读法重点读introduction, 看人家提出的问题,以及目前的进展类似的文章, 每天读一两篇,一个月内就基本上对这个领域的某个方向有个大概的了解.读好的review也行, 但这样人容易懒惰.3.为了写文章的读法读文章的时候, 尤其是看discussion 的时候,看到好的英文句型, 最好有意识的记一下,看一下作者是谁,哪篇文章,哪个期刊, 这样以后照猫画虎写的时候,效率高些.比自己在那里半天琢磨出一个句子强的多. 当然,读的多,写的多,你需要记得句型就越少.其实很简单,有意识的去总结和记亿, 就不容易忘记.学术牛人2:根据文献重要程度编号精读综述和摘要一、先看综述先读综述,可以更好地认识课题,知道已经做出什么,自己要做什么,,还有什么问题没有解决。
对于国内文献一般批评的声音很多.但它是你迅速了解你的研究领域的入口,在此之后,你再看外文文献会比一开始直接看外文文献理解的快得多。
常用于评价国外文献的检索工具

常用于评价国外文献的检索工具一、引言在学术研究和文献综述中,检索工具起着至关重要的作用。
它们帮助我们快速、准确地找到所需的外国文献,为研究提供有力的支持。
以下将介绍几种常用于评价国外文献的检索工具。
二、检索工具介绍1.PubMed:PubMed是NCBI(美国国立生物技术信息中心)推出的一种生物医学文献检索系统,是国际上最常用的生物医学文献数据库之一。
它提供了丰富的摘要和全文链接,可以帮助用户快速找到需要的文献。
2.WebofScience:WebofScience是全球领先的高影响力学术出版机构,提供了丰富的期刊引文索引数据库。
用户可以通过学科领域、发表时间、作者、机构等关键词进行文献检索,快速获取相关文献。
3.GoogleScholar:GoogleScholar提供了基于Google搜索引擎的学术搜索服务,收录了大量的学术论文。
它通过高级搜索功能,如主题、作者、期刊、出版社等,帮助用户快速找到所需的国外文献。
4.Scopus:Scopus是Elsevier公司推出的数据库平台,收录了大量的外文学术文献。
它提供了多种搜索方式,如主题、作者、机构、期刊等,同时提供了引文和被引分析功能,帮助用户更好地了解学术研究趋势。
三、评价方法1.收录范围:检索工具的收录范围反映了其涵盖的学科领域和语种。
选择收录范围广泛的检索工具可以扩大研究范围。
2.更新频率:检索工具的更新频率反映了其保持文献更新及时的能力。
更新频率高的检索工具可以提供最新的研究成果。
3.文献质量:检索工具收录的文献质量会影响研究结果的可信度。
选择收录高质量文献的检索工具可以提高研究质量。
4.用户体验:检索工具的用户体验包括界面设计、搜索功能、结果排序等。
用户体验好的检索工具可以提高用户查找和阅读文献的效率。
四、结论以上几种检索工具在评价国外文献时各有优势,PubMed提供生物医学文献数据库,WebofScience和Scopus则提供全面的外文学术文献,而GoogleScholar则以其广泛的信息覆盖和简便的搜索方式受到用户青睐。
关于农村经济外国文献

关于农村经济外国文献文章题目:探究农村经济发展——外国文献综述引言:农村经济作为国家经济发展的重要组成部分,一直以来备受关注。
为了更好的探寻农村经济的现状与发展,本文将从国外文献的角度出发,综述当前农村经济的研究现状和趋势。
一、农村经济的研究现状1. 农村的现实问题Gustavo Anríquez和Kostas Stamoulis的文献《农村变革和扶贫:政策设计,实施和评估的主要考虑因素》指出,目前全球农村地区存在许多问题,包括贫困、低收入、半失业、低技能和优惠政策不透明等等,对农村经济的发展造成了极大的阻碍。
2. 农村经济的主要产业Andrew Schmitz和Robert Dinterman的文献《农村经济发展的主要产业》指出,种植业、畜牧业和林业是农村经济中的主要产业。
其中,种植业是农村经济的核心产业,但畜牧业和林业的发展也在不断加速。
二、农村经济的发展趋势1. 农村创业的发展FL Liu在《中国农村创业文化研究》中指出,在当前经济形势下,建设“双创”示范基地是当前实施乡村振兴战略的必然趋势。
同时,农村创业也有望在未来得到更好的发展。
2. 农村电子商务Cuihua Shen在《如何推动农村电子商务发展?——基于国际比较》中认为,目前,全球很多国家都在积极推动农村电子商务的发展。
这项技术不仅可以扩大销售范围,还可以加强农村经济和城市经济的联系,并在适当的时候调节物价。
结论:本文通过对国外文献的综述,呈现出当前农村经济的研究现状和发展趋势。
文章指出,农村经济在发展过程中面临许多困难,但应在政策层面加强管理,促进“双创”等多种方式,积极推动农村经济的发展。
毕业论文外国文献

毕业论文外国文献毕业论文外国文献在撰写毕业论文的过程中,外国文献的引用和参考是不可或缺的一部分。
通过引用外国文献,我们能够借鉴国外学者的研究成果,拓宽我们的研究视野,提升论文的质量和深度。
本文将探讨毕业论文中引用外国文献的重要性,以及如何选择和使用外国文献。
首先,引用外国文献对于提升论文的质量和深度非常重要。
国外学者在各个领域都有着丰富的研究经验和深入的洞察力。
他们的研究成果可以为我们提供新的理论观点、研究方法和数据分析技巧。
通过引用外国文献,我们能够将自己的研究与国际学术界的前沿水平连接起来,使论文更具学术价值。
其次,选择合适的外国文献是至关重要的。
在选择外国文献时,我们应该根据自己的研究主题和目标来确定。
首先,我们可以通过搜索学术数据库、图书馆目录和在线期刊等渠道,查找与自己研究主题相关的外国文献。
其次,我们应该对文献的质量进行评估。
我们可以查看文献的作者背景、发表的期刊或出版社的声誉、引用次数等指标来评估文献的可靠性和学术价值。
最后,我们还应该考虑文献的时效性。
选择最新的文献可以使我们的研究更具前瞻性和创新性。
在使用外国文献时,我们需要注意以下几点。
首先,我们应该正确引用外国文献,遵守学术道德规范。
我们应该在论文中明确标注引用的外国文献的作者、标题、出版年份、出版地点等信息,并在文末列出参考文献列表。
其次,我们应该避免滥用外国文献。
虽然引用外国文献可以提升论文的质量,但我们不应该过度依赖外国文献,而忽略了国内学者的研究成果。
我们应该根据自己的研究目标和需求,合理选择和使用外国文献。
最后,我们应该对外国文献进行适当的解读和批判。
我们不能简单地照搬外国学者的观点和结论,而应该对其进行深入思考和分析,结合自己的研究进行合理的补充和修正。
除了引用外国文献,我们还可以通过与国外学者的交流和合作来进一步拓宽我们的研究视野。
通过参加国际学术会议、访问交流项目等方式,我们能够与国外学者进行面对面的交流和讨论,分享彼此的研究成果和经验,建立起合作关系。
写论文时,如何查找外国文献

NO.1中科院大博士是如何进行文献检索和阅读的(好习惯受益终生)1.如何进行文献检索我是学自然科学的,平时确实需要不少外文文献,对于自然科学来讲英文文献检索首推Elsevier,Springer等。
虽然这些数据库里面文献已经不算少了。
但是有时还会碰到查不到的文献,而这些文献的数据库我们所在研究所或大学又没有买,怎么办?我基本通过以下向个途径来得到文献。
1.首先在Google 学术搜索里进行搜索,里面一般会搜出来你要找的文献,在Google学术搜索里通常情况会出现“每组几个”等字样,然后进入后,分别点击,里面的其中一个就有可能会下到全文,当然这只是碰运气,不是万能的,因为我常常碰到这种情况,所以也算是得到全文文献的一条途径吧。
可以试一下。
同时,大家有没有发现,从Google学术搜索中,还可以得到一些信息,Google学术搜索中会显示出你搜索文章的引用次数,不过这个引用次数不准确,但是从侧面反应了这篇文章的质量,经典文章的引用次数绝对很高的.同时如果你用作者进行搜索时,会按引用次数出现他写的全部的文章,就可以知道作者的哪些文章比较经典,在没有太多时间的情况下,就可以只看经典的.2.如果上面的方法找不到全文,就把文章作者的名字或者文章的title在Google 里搜索(不是Google 学术搜索),用作者的名字来搜索,是因为我发现很多国外作者都喜欢把文章的全文(PDF)直接挂在网上,一般情况下他们会把自己的文章挂在自己的个人主页(home page)上,这样可能也是为了让别的研究者更加了解自己的学术领域,顺便推销自己吧。
这样你就有可能下到你想要的文献的全文了。
甚至可以下到那个作者相近的内容的其它文章。
如果文献是由多个作者写的,第一作者查不到个人主页,就接上面的方法查第二作者,以此类推。
用文章的title来搜索,是因为在国外有的网站上,例如有的国外大学的图书馆可能会把本校一年或近几年的学术成果的Publication的PDF全文献挂在网上,或者在这个大学的ftp上也有可能会有这样类似的全文.这样就很可能会免费下到你想要的全文了.3.如果上面两个方法都没有查到你要的文献,那你就直接写邮件向作者要。
外国文学参考文献

外国⽂学参考⽂献2019-07-26参考⽂献⼀:[1]刘⽲着,宋伟杰等译.跨语际实践[M].三联书店,2002[2]胡安江.⽂本旅⾏与翻译研究[J].四川外语学院学报.2007(05)[3]郭延礼着.中国近代翻译⽂学概论[M].湖北教育出版社,1998[4]孟昭毅,李载道主编.中国翻译⽂学史[M].北京⼤学出版社,2005[5]张南峰着.中西译学批评[M].清华⼤学出版社,2004[6]谢天振着.译介学[M].上海外语教育出版社,1999[7](美)爱德华·W.赛义德(EdwardW.Said)着,谢少波,韩刚等译.赛义德⾃选集[M].中国社会科学出版社,1999[8]冯庆华,主编.⽂体翻译论[M].上海外语教育出版社,2002[9]陈福康着.中国译学理论史稿[M].上海外语教育出版社,2000[10]刘宓庆着.当代翻译理论[M].中国对外翻译出版公司,1999[11]冯庆华编着.实⽤翻译教程[M].上海外语教育出版社,1997[12]唐⽟娟,谭少青.译者措辞中的意识形态因素--《简·爱》两个中译本的⽐较[J].成都教育学院学报.2006(11)[13]符⽩⽻.从旅⾏理论看⽂学作品在翻译中的旅⾏[J].长沙⼤学学报.2006(04)[14]赵俊姝.⽂学多元系统理论视⾓解读胡适翻译思想[J].昆明师范⾼等专科学校学报.2005(02)[15]李坤,贾德江.《简爱》两个中译本的历时⽐较[J].河北理⼯学院学报(社会科学版).2007(01)[16]苏留华.⼩说对话的翻译--从符号学⾓度分析《简·爱》[J].⼴州⼤学学报(社会科学版).2004(11)[17]Clifford,James.Routes:TravelandTranslationintheLateTwentiethCentury..1997[18]AndreLefevere.Translation/History/Culture-ASourceBook..2004[19]LefevereAndre.Translation,RewritingandtheManipulationofLiteraryFame..2004[20]于德英.⽤另⼀只眼睛看多元系统论--多元系统论的形式主义分析[J].中国翻译.2004(05)参考⽂献⼆:[1]刘美玲.操控理论视⾓下《世界是平的》两中译本的研究[D].华中师范⼤学2013[2]杨晓琳.从翻译共性的⾓度探析英译汉中的“翻译⽂体”[D].浙江⼤学2013[3]伊塔马·埃⽂-佐哈尔,张南峰.多元系统论[J].中国翻译.2002(04)[4]张书玲.英国博物馆资料翻译实践报告[D].中南⼤学2013[5]笪鸿安,陈莉.从《简·爱》两汉译本谈直译与意译的运⽤[J].河海⼤学学报(社会科学版).1999(03)[6]叶荷.翻译与改写[D].华侨⼤学2009[7]王晓元.意识形态与⽂学翻译的互动关系[J].中国翻译.1999(02)[8]廖秋忠.篇章与语⽤和句法研究[J].语⾔教学与研究.1991(04)[9]周忠良.重思抵抗式翻译[D].⼴东外语外贸⼤学2009[10]张焰明.剩余信息在翻译中的应⽤--兼评祝庆英和黄源深的《简·爱》译本[J].韩⼭师范学院学报(社会科学版).2004(01)[11]葛中俊.翻译⽂学:⽬的语⽂学的次范畴[J].中国⽐较⽂学.1997(03)[12]蒋骁华.意识形态对翻译的影响:阐发与新思考[J].中国翻译.2003(05)[13]杨⾃俭.语篇和语境--《衔接与连贯理论的发展及应⽤》序[J].解放军外国语学院学报.2003(02)[14]谢世坚.从中国近代翻译⽂学看多元系统理论的局限性[J].四川外语学院学报.2002(04)[15]郑雪青.《简·爱》两个译本翻译⽐较[J].齐齐哈尔⼤学学报(哲学社会科学版).2001(01)[16]潘红.夹缝⾥的风景--谈黄源深先⽣《简爱》译本的审美特点[J].福州⼤学学报(哲学社会科学版).2002(02)[17]颜凡博.从⽂化差异⾓度谈中式菜名的英译[D].中北⼤学2011[18]赵伟.鲁迅⼩说两个英译本的对⽐研究[D].上海海运学院2000[19]ZhangHaifeng.APrinciplewiththeEnglishTranslationofChineseClassicalPoetry[D].⼴东外语外贸⼤学2001[20]陈王青.虚构专名英译中的⾏为常式[D].⼴东外语外贸⼤学2007[21]杜洪洁.政治与翻译:西⽅(后)现代主义⼩说在中国的译介(1979-1988)[D].天津理⼯⼤学2008参考⽂献三:[1]姜晓丽.⼥权主义对翻译的影响探析[D].西安电⼦科技⼤学2013[2]王君.英语经济类语篇汉译实践报告[D].辽宁师范⼤学2014[3]赵菁婕.论⽂学翻译中的创造性叛逆[D].青岛⼤学2014[4]李夏.⼥性哥特视⾓下《简爱》与《呼啸⼭庄》的对⽐分析[D].中国海洋⼤学2013[5]阳英.关联理论视⾓下《雾都孤⼉》荣译本与何译本⽐较研究[D].湖南⼯业⼤学2014[6]沈蔼亲.操纵学派“忠实观”与传统“忠实观”的对⽐研究[D].湖南⼯业⼤学2014[7]郭慧.操纵论视⾓下理雅各与许渊冲《诗经》英译本的对⽐研究[D].湖南⼯业⼤学2013[8]王番.概念隐喻理论视⾓下的情感隐喻翻译[D].南京⼯业⼤学2013[9]姜姗.语境视域下的英语经济新闻⽂本汉译实践报告[D].辽宁师范⼤学2014[10]蔡莹莹.风景抒情唐诗英译的象似性研究[D].辽宁师范⼤学2014[11]王凯华.帕尔默⽂化语⾔学视⾓下的宋词英译意象传递研究[D].辽宁师范⼤学2014[12]滕娇⽉.概念整合理论视阙下唐诗颜⾊词的英译研究[D].辽宁师范⼤学2014[13]王筱.默认值图式视域下的《聊斋志异》英译研究[D].辽宁师范⼤学2014[14]⽀翠霞.新闻翻译的后殖民视⾓[D].湖南⼯业⼤学2012[15]薛颖然.⽬的论视野下的英汉字幕翻译[D].湖南⼯业⼤学2012[16]贺倩.⼥性主义翻译理论与⼩说JaneEyre的翻译[D].新疆师范⼤学2012[17]何婧舒.操纵理论视⾓下《简·爱》两个中译本的⽂化再现⽐较研究[D].四川师范⼤学2012[18]吴云云.《简爱》的⼥权话语研究[D].华北电⼒⼤学(北京)2010[19]纪娜.成长路上的逃离与皈依[D].湖南师范⼤学2008[20]胡娟娟.《简·爱》在20世纪中国的经典化建构及其⼥主⼈公的形象变迁[D].上海外国语⼤学2012注:本⽂为⽹友上传,不代表本站观点,与本站⽴场⽆关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E cient computational algorithms for forward and backward analysis of a dynamic pavement systemRobert Y.Liang *,J.X.ZhuDepartment of Civil Engineering,Center for Infrastructure Materials and Rehabilitation,The University of Akron,Akron,OH 44325-3905,U.S.A.Received 11December 1996;accepted 21August 1997AbstractA simple dynamic analysis algorithm is presented in this paper for both forward and backward calculations of a pavement system consisting of an asphalt concrete layer,underlain by a uniform subgrade to a depth H wherein the bedrock is located.The subgrade soil is represented by a higher-order continuum modelÐthe modi®ed Vlasov model.The asphalt concrete layer is represented by a three-parameter complex compliance function in a frequency domain.The governing equations of the dynamic pavement system,along with the solution algorithms for both forward and backward computations,are presented in detail.A numerical example is provided to illustrate the importance of considering dynamic e ect in predicting pavement response under dynamic load.In addition,numerical examples are given to demonstrate the use of nondestructive testing data to back calculate the material properties,such as the modulus,damping,creep compliance and fatigue cracking speed for an asphalt concrete layer and the modulus damping for the subgrade layer.#1998Elsevier Science Ltd.All rights reserved.Keywords:Dynamic;Pavement;Forward;Backward;Numerical algorithms1.IntroductionIn recent years,the dynamic response of a pavement system subjected to moving tra c loads or dynamic loads from nondestructive testing (e.g.Falling Weight De¯ectometer and Dyna¯ect)has been the subject of intensive studies.Earlier,Kausel and Roesset [1]devel-oped the solutions for Green's functions of a layered medium on a rigid ter,Roesset and Shao [2]used these Green's functions to analyze the test results of Falling Weight De¯ectometer (FWD)and Dyna¯ect tests.Cebon [3]and Hardy and Cebon [4]used the nu-merical convolution theory for calculating the response of a pavement subjected to moving dynamic loads.The e ects of vehicle speed,frequency of loading on the pavement response were considered.Trochanis et al .[5]developed a uni®ed procedure based on the fastFourier transform (FFT)technique for analyzing the steady-state response of an in®nite long beam sup-ported on a linear elastic,damped foundation and sub-jected to moving loads.Luco and Wong [6]developed an identi®cation tech-nique that can be used to determine dynamic soil prop-erties such as wave velocities and material damping ratios from the knowledge of experimentally deter-mined impedance functions.In particular,it is interest-ing to note that the soil properties can be identi®ed by use of just one impedance function (say the vertical impedance function).Uzan [7]presented a dynamic lin-ear back calculation procedure for estimating pave-ment material properties.It was found that the parameters of the generalized power law of the creep compliance of the asphalt concrete from back calcu-lation and laboratory results do not compare well.He suggested that the sample tested in the laboratory may not be representative of the asphalt concrete layer.Computers and Structures 69(1998)255±2630045-7949/98/$-see front matter #1998Elsevier Science Ltd.All rights reserved.PII:S 0045-7949(97)00107-7PERGAMON*Corresponding author.There are various approaches for representing sub-grade support in pavement analysis.The simplest approach of all is the use of a Winkler model.In fact,some of most commonly used computer programs have been developed based on the ®nite element method for pavements on Winkler's foundation.These include ILLISLAB of the University of Illinois [8],KENSLAB of the University of Kentucky [9]and DYNASLAB of University of California at Berkeley [10].However,the Winkler assumption is insu cient to represent a continuous medium.Realizing the inadequacy of the Winkler model,Vlasov and Leont'ev [11]developed a two-parameter model for a beam on an elastic subgrade.The so-called Vlasov model requires an estimate of a parameter,g ,that controls the decay of the stresses in the conti-nuum.Vlasov did not give a precise value for g ,instead he recommended arbitrary values for g .Vallabhan and Das [12,13]developed a unique itera-tive technique to determine a consistent value of the g parameter.Their model is called a modi®ed Vlasov model.In this paper,the modi®ed Vlasov model previously developed for the static conditions is further expanded for dynamic conditions involving an asphalt concrete layer underlain by Vlasov subgrade.The proposed sub-grade model is considered to be more realistic and accurate compared to the traditional Winkler model.A back calculation algorithm based on a dynamic com-pliance function with a high rate of convergence is also developed.The methodology for predicting moduli and damping of asphalt and subgrade layers and creep compliance,fatigue cracking growth and fatigue life of the asphalt concrete layer in the ®eld using the backcalculation procedure in conjunction with nondestruc-tive testing data is developed as well.2.Problem statementThe pavement system is idealized as shown in Fig.1.An in®nite beam with width b and thickness h is rested on a uniform viscoelastic soil subgrade of thickness H ,which,in turn,is underlain by a bedrock.A plane strain condition is assumed,hence the beam width b is considered as unity.The pavement layer is assumed to be an asphalt concrete material and is subjected to a tra c load q (t )traveling at a constant speed V and oscillating vertically with circular frequency o .A con-venient approach for deriving the governing equations of motion for such a complex dynamic boundary value problem is to use Hamilton's principle,which is given by:d t 1t 0& I ÀI r r d "w d t 2d x b 2 I ÀIH 0r s d w d t 2d z d xÀ12I ÀIE p I p d 2"wd x 2 2d xÀb 2 I ÀIH 0r s s x e x s z e z g xz t xz 2v d z d x 'd t t 1t 0 IÀIq x ,t d "w d x d t 0, 1where w (x ,z ,t )="w(x ,t )f (z ,t )is the vertical displace-ment and f (0)=1and f (H )=0;s x ,s z and t xz are components of stress at a point in the soil;E x ,E z and g xz are corresponding strains in the soil;E p =E *p (1+i 2D p ),where E *p is Young's modulusofFig.1.Dynamic pavement±subgrade interaction model.R.Y.Liang,J.X.Zhu /Computers and Structures 69(1998)255±263256Table1Material properties of asphalt concrete pavement and soilParameter Symbol ValueParameters of AC pavement D00.5Â10À8psfÀ1(0.1044GpaÀ1)D10.5Â10À7psfÀ1(1.044GpaÀ1)m0.4Mass density of pavement r p 4.46lb s2/ft4(2300kg/m3) Poisson's ratio of pavement u s0.35Width of pavement b1ft(0.3048m)Thickness of pavement h1ft(0.3048m)Young's modulus of soil E s0.432Â107psf(0.2069GPa) Mass density of soil r s 3.98lb s2/ft4(2052kg/m3) Poisson's ratio of soil u s0.4Damping ratio of soil D s0.05Depth of soil H25ft(7.62m)the pavement layer,D p is the damping ratio and I p is the moment of inertia,E*p t and D p(t)will vary with time;E s=E*s(1+i2D s),where E*s is Young's mod-ulus and D s is damping ratio of the soil;r p and r s are mass densities of the pavement and soil,respectively. The material properties of asphalt concrete pavement and soil are summarized in Table1.3.Representation of asphalt concrete pavementA generalized time-domain power law representation of asphalt concrete layer,a three-parameter represen-tation,is adopted as follows:D t D0 D1t m, 2 where D(t)is the compliance,t is time,D0is the elastic compliance,D1is the intercept at t=1s and m is the slope of the log creep compliance vs log time. Because of the reciprocal relationship between com-pliances and moduli,the®rst and second compliances in Eq.(2)can be written as follows:D0 EÀ10 3a andD1 EÀ11, 3b where E0is the elastic modulus and E1is the viscoelas-tic modulus at t=1s.Expressing Eq.(2)in terms of the modulus in Eqs.(3a)±(b),one getsD t 1a E0 t m a E1 4 This representation is equivalent to two springs inseries when evaluated at t=1s.The time-domain creep compliance functions can be transformed into the frequency domain for use in the dynamic analysis.The frequency-domain represen-tation is called the complex compliance because it can be expressed as a complex number having a real part and an imaginary part.Performing a Fourier integral transform on Eq.(2),one obtains the following three-parameter complex compliances[14]:D o D0 D1G 1 m oÀm cos m p a2 Ài sin m p a2 ,5 where G is the gamma function.The complex modulus is directly related to the com-plex compliance by:E p o E*p o 1 i2D p o1D o, 6 where7aD p o 12D1G 1 m oÀm sin m p a2D0 D1G 1 m oÀm cos m p a2X 7bThe Young's modulus E*p and the material dammingratio D p of the asphalt concrete will vary with fre-quency,o and can be determined frequency by fre-quency using Eqs.(7a)±(b).R.Y.Liang,J.X.Zhu/Computers and Structures69(1998)255±263257erning equationsBy taking variations of the energy and virtual work functions,Eq.(1),with respect to w and f ,the follow-ing dynamic equation for the pavement system is obtained:E p I pd 4"w d x 4Àt s d 2"w d x 2 k s "w m s m p d 2"wd t2 q x ,t for ÀI `x ` I ,8where t s G s bHF 2d z ,9k s l s 2G s b H 0d F d x 2d z ,10m s r s b HF 2d z X11Introducing a moving coordinate X traveling with the load,i.e.X =x ÀVt ,where x is the spatial coordi-nate along the tra c moving direction,as shown in Fig.1and concentrating on steady state solutions ofthe form "w(X ,t )=W (X )e i o t for the pavement de¯ec-tion and q (X ,t )=Q (X )i o t for the moving load,the explicit time dependence in Eq.(8)can be eliminated.An ordinary di erential equation for W (X )is written as:E p I p d 4W d X 4Àt sd 2W d X 2 k s W m s m p  V 2d 2W d X 2Ài 2o Vd Wd X Ào 2W Q d X for ÀI `X ` I X12The displacement under the load is obtained for a con-stant load Q with a constant speed V (o =0):W movingQ8E p I p k s 4E p I p s k s 4E p I pst s À m s m p V 2 4E p I p v u u t X 13For a stationary harmonic load Q e i o t (V =0):W dynamicQ8E p I pk s À m s m p o 2 4E p I p sk s À m s m p o 24E p I p s t s4E p I pv u u t X 14For the static load Q (V =0and o =0):W staticQ8E p I pk s 4E p I p s k s 4E p I p s t s 4E p I pv u u t X 155.Fatigue of asphalt concrete pavementFatigue is the phenomenon of fracture e ected byrepeated application of stresses less than the strength of the material.Under tra c loading,the asphalt con-crete pavement is subjected to ¯exural action in which ¯exural strain is dependent on the wheel loading con-ditions,the thickness of the pavement and the proper-ties of the pavement material and subgrade soil.Fatigue transfer functions are used to relate the num-ber of load repetitions to reach certain pavement cracking failure conditions (i.e.crack initiation,10%area cracking,etc.)to the maximum tensile strain in the asphalt concrete pavement.The strain-based fatigue relationship [15±17]has been the most commonly used phenomenologically-based fatigue equation:f K 1a E n ,16where N f is the number of load repetitions to failure,Eis the maximum tensile strain,and K and n are re-gression constants.The constants K and n are derived from regression analysis of laboratory test data.A large variability of these constants for various asphalt concrete mixtures is noted.There is no unique asphalt concrete pavement fati-gue algorithm that can be utilized in a mechanistic empirical pavement design procedure.However,the strain-based fatigue algorithm is utilized in The Transportation and Road Research Laboratory [18],Nottingham University [19],the Mobil Pavement Design Guide [20],the National Road Directorate of Denmark [21],The Belgian Road Research Center [22]and Illinois DOT/University of Illinois [23,24].In general,the strain-based approach has provided a reasonably simple procedure that has been widely adopted.However,it bears the limitation that it can-R.Y.Liang,J.X.Zhu /Computers and Structures 69(1998)255±263258not take into account both crack initiation and propa-gation.Such a di erentiation may be quite important in estimating fatigue life.If a pavement material is brittle,the time required to initiate the crack will con-stitute the major portion of its fatigue life and crack propagation will be rather rapid.On the other hand, as the pavement material becomes more ductile,the time needed to propagate the crack to failure will con-stitute an increasing portion of the fatigue life of the pavement.A fracture mechanics approach for predicting the fatigue life of the asphalt concrete has been developed by Majidzadeh et al.[25]and Little and Mahboub[17]. Both studies indicated that in the fracture mechanics approach,the rate of crack propagation in asphalt concrete can be predicted by using an empirical power law relationship developed by Paris:d c a d N A D K n, 17 where N is the number of load cycles,D K is the ampli-tude of stress intensity factor,and A and n are fracture parameters of the material.The Paris equation relates the rate of crack growth (d c/d N)to the induced stress intensity factor(K)in the form of a power law.With the knowledge of material properties A and n,Eq.(17)can be integrated over a given range of crack length to calculate fatigue life(N f): N f cfc0d c a A K n , 18where c0is initial crack length,c f is®nal crack length and K is the stress intensity factor for cyclic zero-to-tension loading.At a constant loading amplitude(s),K is de®ned as: K s p C1a2 X 19 Combining Eq.(18)and(19)and performing the inte-gration,one obtains:N f 2a 2Àn A s n p n a2 c 1Àn a2f Àc 1Àn a220Jayawickrama and Lytton[26]in their study have shown that the relationship:n 2a m 21 can be used to predict n value with reasonable accu-racy,where m is the slope of the log creep compliance vs the log time relationship.They indicated that a lin-ear relationship exists between n and log A.For tra c-associated loading,the following relationship was pro-posed by Lytton and Shanmugan[27]:n À1X558À0X401log A X 22 6.Back calculation algorithmIn the back calculation procedure,the falling weight drops to a pavement surface,generating both body waves and surface waves.The geophone sensors pick up the vertical velocity of the pavement surface and a single analog integration of the signal produces the de¯ection vs time ually these signals are used to extract the maximum force and the maximum de¯ection from each geophone and to print them out for analysis by static methods.But there is much more information in these signals than simply their maxima. One method of tapping this additional information is to perform a fast Fourier transform on the force±time impulse and on each de¯ection±time response. The transform breaks up a signal into its component frequencies and produces a complex number for each frequency.If the transform of the de¯ection signal is divided,frequency by frequency,by the transform of the load impulse,the result is a transfer function, which is also a complex number and a function of fre-quency.The magnitude is the de¯ection per unit of force at each frequency and the phase angle represents the time lag of the response behind the impulse at each frequency.The complex frequency response function(dynamic compliance function)of the pavement±soil system from Eq.(14)is given as F(o)=W dynamic/Q.The com-plex frequency response function contains information about the mechanical properties of the pavement sys-tem.It is convenient to split the complex frequency re-sponse function into its real part and imaginary part in the form:F oH3E p I pf R o iH3E p I pf I o , 23where f R(o)and f I(o}are the real and imaginary parts of the nondimensional dynamic compliance function, respectively.Supposing that these functions derived from exper-imental data are represented by"f R o and"fIo XDenote m=[D0,D1,m,E s,D s]as the vector contain-ing the unknown properties of the pavement±soil sys-tem.For the inversion process,a set of frequencies o r(r=1,N l)is selected and it is required that the model m minimize the sum of squares:E mN lr 1f f R o r,m À"f R o r 2 f I o r,m À"f I o I 2g X24 The conditions for an extreme corresponding tod Ed m i0(i=1,2,3,4,5)are given by:R.Y.Liang,J.X.Zhu/Computers and Structures69(1998)255±263259N i r 1& f R o r ,m À"f Ro r d f R d m if I o r ,m "f Io I d f I d m i' 0,25which are implicit equations for the minimizing model m .In the following numerical examples,®ve frequen-cies are used;i.e.,0.1,0.5,1,5and 10Hz.7.Numerical examples and discussions 7.1.Example of forward calculationTo demonstrate the calculatoin results of a forward analysis,the following properties are assumed for as-phalt concrete:D 0=0.5Â10À8psf À1(0.1044GPa À1),D 1=0.5Â10À7psf À1(1.044Gpa À1)and m =0.4,the mass density of pavement r p =4.46lb s 2/ft 4(2300kg/m 3),width of pavement b =1ft (0.3048m),thickness of pavement h =1ft (0.3048m),speed of vehicle V =0,Young's modulus of soilE s =0.432Â107psf (0.2069GPa),mass density of soil r s =3.98lb s 2/ft 4(2052kg/m 3),Poisson's ratio of soil u s =0.4,damping ratio of soil D s =0.05,depth of subgrade H =25ft (7.62m)and 50ft (15.24m).The calculated complex frequency response functions are shown in Fig.2.As can be seen,the displacements computed using a dynamic analysis can be quite di erent from those computed using a static analysis (Young's modulus of asphalt concrete pavement E p =2.0Â108psf).The di erences in displacement for the case of thick sub-grade (H =50ft)are much smaller than those for the case of thin subgrade (H =25ft).A signi®cant ampli-®cation is observed near the fundamental frequencyofFig.2.(a)E ect of depth of subgrade on dyamic displacement;(b)e ect of depth of subgrade on dynamic displacement;(c)e ect of depth of subgrade on dynamic displacement;and (d)e ect of depth of subgrade on dynamic displacement.R.Y.Liang,J.X.Zhu /Computers and Structures 69(1998)255±263260the asphalt concrete pavement±subgrade soil system.This numerical example clearly shows the importance of considering dynamic e ects in analyzing pavement responses.7.2.Example of back calculationThe approach used in the back calculation pro-cedure is basically an iterative scheme in which the parameters of asphalt concrete pavementÐD 0,D 1,m and Young's moduli E s and damping D s ratios of the subgrade soilÐare assumed to be unknown and are determined by minimizing the di erences between the calculated and the measured frequency response func-tions.When the absolute sum of the di erences in the frequency response functions is less than a certain tol-erance,then D 0,D 1,m ,E s and D s used in the fre-quency response computations are considered to be representative of these materials in the ®eld.In Table 2,the initial guess of the material parameters is shown inthe ®rst row.The forward calculation results of pre-vious examples are used as measured dynamic compli-ance functions.This is a back calculation example,so that material properties can be identi®ed.In this nu-merical example,it is assumed that the mass densities,Poisson's ratios and thicknesses of the asphalt concrete layer and the subgrade soil layer are known.The sum of the square of the errors corresponding to the iter-ation number is shown in Fig.3.The results clearly in-dicate that it is possible to deduce the parameters of the asphalt concrete layer and the Young's modulus and damping ratio of the subgrade soil,from the measured complex frequency response functions from FWD test.It is noted that the initial estimate of nu-merical values of unknown variables does not signi®-cantly a ect the ®nal converged results.However,to ensure convergence,the initial estimate needs to be reasonable.7.3.Prediction of fatigue life of AC layer from nondestructive testingIn this numerical example,the parameters A ,n ,c 0,c f in the Paris law will be determined on the basis of nondestructive test results.The constant c 0is related to size and statistical variability in the initial ¯aws in the asphalt concrete material.Majidzadeh et al .[28]reported that c 0varies between 0.025and 0.1in.for sand±asphalt and asphalt concrete mixtures.The con-stant c f is determined based on the failure conditions,where the critical size may be regarded as the pave-ment depth or some fraction of it.The constants A ,n ,Eqs.(21)and (22)are determined from the back calcu-lation technique,which is depicted in Fig.4in a ¯ow-chart format.s is the state of stress and is determined from the forward calculation.The relationship of the crack growth rate d c /d N vs stress intensity factor K relationships for the asphalt concrete pavement±subgrade soil system are shown in Fig.5for m =0.4,0.5,0.6and n =5.0,4.0,3.33.As can be seen,these crack growth reactions are quiteTable 2Back calculation of parameters for asphalt concrete pavement and soil Iteration Errors D 0/108psf À1D 1/107psf À1m E s Â107psf D s Initial Ð0.2000.2000.2000.2000.020014606000000.2400.2400.2400.2400.023821259000000.2880.2880.2830.2880.02853293600000.3450.3450.3250.3450.0342454850000.3770.4140.3630.4090.0411********.4290.4870.3910.4350.0477634220.5010.4990.4000.4320.04997 3.440.4990.5000.3990.4310.050080.040.5000.5000.4000.4320.0500ActualÐ0.5000.5000.4000.4320.0500Fig.3.Backcalculation of parameters for asphalt concrete pavement and subgrade soil.R.Y.Liang,J.X.Zhu /Computers and Structures 69(1998)255±263261di erent for various values of the parameter m .Majidzadeh et al .[28]pointed out that at low tempera-ture,A and n can be considered as material constants.However,at high temperature,due to pronounced creep e ect in asphalt concrete,parameters A and n can no longer be considered as constants.It is possible to predict the crack growth and fatigue life of the as-phalt concrete layer in the ®eld using the nondestruc-tive test data,as demonstrated in this example.8.Conclusions(1)A new dynamic analysis procedure for the pave-ment layer±subgrade soil interaction,cast in both for-ward and back calculations,is developed.The soil is represented by a high-order continuum-based on modi-®ed Vlasov model.The proposed dynamic analysis method provides a more realistic and accurate rep-resentation of subgrade soil compared to the tra-ditional Winkler model.Further,the calculation is fairly e cient,compared to other techniques such as ®nite element methods.(2)A back calculation algorithm with a high rate of convergence is also developed.The back calculation method can be used to predict moduli,damping,creep compliance and fatigue cracking properties of the as-phalt concrete layer and the modulus and damping of the subgrade soil in the ®eld,using NDT data.(3)In this paper,the parameters in the Paris fatigue equation of asphalt concrete layer are predicted based on NDT data.The slope of log creep compliance vs log time,m ,is actually determined from the back cal-culation.Then,the corresponding constants in the Paris fatigue equation,A and n ,are calculated from the correlations established by Lytton and his associ-ates.It is possible to predict the crack growth and fati-gue life of the asphalt concrete layer in the ®eld immediately from the nondestructive testing data.References[1]Kausel E and Roesset JM.Sti ness matrices for layeredsoils.Bulletin of Seismological Society of America.1981;71(6):1743±61.[2]Roesset JM and Shao KY.A note on de¯ections ofplates on a viscoelastic foundation.J Applied Mechanics 1985;25:144±5.[3]Cebon,D.An investigation of the dynamic interactionbetween wheeled vehicles and road surfaces.Ph.D.thesis,University of Cambridge,Cambridge,UK,1985.[4]Hardy MSA,Cebon D.Response of continuous pave-ments to moving dynamic loads.Journal of Engineering Mechanics,ASCE 1993;119(9):1762±80.[5]Trochanis AM,Chelliah R,Bielak J.Uni®ed approachfor beams on elastic foundation under moving loads.Journal of Geotechnical Enineering,ASCE 1987;113(8):879±95.[6]Luco JE,Wong HL.Identi®cation of soil propertiesfrom foundation impedance functions.Journal of Geotechnical Engineering,ASCE 1992;118(5):780±95.[7]Uzan J.Dynamic linear back calculation of pavementmaterial parameters.Journal of Transport Engineering,ASCE 1994;120(1):109±25.[8]Tabatabaie AM and Barenberg EJ.Finite element analy-sis of jointed or cracked concrete pavements.Transportation Research Record No.671,Transp.Res.Board,Washington,DC1978;11±19.Fig.4.Back calculation algorithm of AC pavement±soil sys-tem.Fig.5.Crack growth rate vs stress intensity factor for AC pavement±subgrade soil system.R.Y.Liang,J.X.Zhu /Computers and Structures 69(1998)255±263262[9]Huang YH.Pavement analysis and design.Prentice Hall,Englewood Cli s,NJ,1993.[10]Chatti K,Lysmer J and Monismith CL.Dynamic modelfor analysis of concrete pavements.Proc Struct Congress XII.Baker NC,Goodno BJ,editors.ASCE,New York, N.Y.1994;984±9.[11]Vlasov VZ and Leont'ev,NN.Beams,plates and shellson elastic foundations.Israel Program for Scienti®c Translations,Jerusalem,Israel,1966.[12]Vallabhan CVG,Das YC.Parametric study of beams onelastic foundations.Journal of Engineering Mechanics, ASCE1988;114(12):2072±82.[13]Vallabhan CVG,Das YC.Modi®ed Vlasov model forbeams on elastic foundations.Journal of Geotechnical Engineering,ASCE1991;117(6):956±66.[14]Lytton RL.Backcalculation of pavement layer proper-ties.Nondestructive testing of pavements and backcalcu-lation of moduli.ASTM STP1989;1026:7±38.[15]Monismith CL,Secor KE,Blackmer EW.Asphalt mix-ture behavior in repeated¯exure.Proceedings of the American Association of Paving Technologists 1961;30:188±222.[16]Pell PS,McCarthy PF.Rheological Acta1962;1(2):174±9.[17]Little DN,Mahboub K.Engineering properties of®rstgeneration plasticized sulfur binders and low temperature fracture evaluation of plasticized sulfur paving mixtures.Transportation Research Record1985;1034:103±11. [18]Powell WD et al.,The Structural Design of BituminousPavements.TRRL Laboratory Report1132,Transport and Road Research Laboratory,UK,1984.[19]Brunton JM,Brown SF,Pell PS.Developments to theNottingham analytical design method for asphalt pave-ments.Proc6th Int Conf on Structural Design of asphalt pavements.Ann Arbor,MI,1987.[20]Asphalt Pavement Design Manual for the U.K.MobilOil Company Ltd,London,1985.[21]Shell Pavement Design Manual,Shell InternationalPetroleum Co.,Ltd.,London.1978.[22]Verstraeteu J,Romain JE,Veverka V.The Belgian RoadResearch Center'overall approach to asphalt pavement structural design.Proc4th Int Conf on Structural Design of Asphalt Pavements.Vol.1,August,1977.[23]Thompson MR,Cation K.A proposed full-depth asphaltconcrete thickness design procedure.Civil Engrg studies.Transportation Engineering Series No.45,University of Illinois at Urbana-Champaign,1986.[24]Thompson MR,Elliott RP.ILLI-PAVE based responsealgorithms for design of conventional¯exible pavements.Record No.1043.Transportation Research Board, 1985;30±40.[25]Majidzadeh K,Buranrom C,Karakouzian M.Applications of Fracture Mechanics for Improved Design of Bituminous Concrete.FHWA Report,1976, pp.76±91.[26]P.W.Jayawickrama and R.L.Lytton,Methodology forpredicting asphalt concrete overlay life against re¯ection cracking.Proceedings of the Sixth International Conference on Structural Design of Asphalt Pavements, Ann Arbor,MI,1987.[27]Lytton RL,Shanmugham U.Fabric Reinforced Overlaysto Retard Re¯ection Cracking.Report RF-3424-5,Texas A&M Research Foundation,TX,1983.[28]Majidzadeh K,Kau mann EM,Saraf CL.Analysis offatigue of paving mixtures from the fracture mechanics viewpoint.Fatigue of Compacted Bituminous Aggregate Mixtures.ASTM STP508,1972,pp.67±83.R.Y.Liang,J.X.Zhu/Computers and Structures69(1998)255±263263。