【精编】2017-2018年湖北省武汉市东西湖区九年级(上)数学期中试卷和参考答案
(解析版)2017~2018学年度武汉市部分学校九年级调研测试数学试卷

④ ∠AED+∠BFE+∠CDF=180°,其中成立的个数是( B )
A.1 个
B.2 个
C.3 个
D.4 个
解析:②④成立
10.二次函数 y=-x2-2x+c 在-3≤x≤2 的范围内有最小值-5,则 c 的值是( D )
A.-6
B.-2
C.2
D.3
答案:D
1/7
点题卷·只做原创精品
武汉市点题卷命题组命制
AB 2
16.在 O 中, AB 所对的圆心角∠AOB=108°,点 C 为 O 上的动点,以 AO,AC 为边构造平行四变形 AODC,
当∠A=
时,线段 BD 最长.
16 解:如图,连接 AD,交 CO 于 M,延长 AO 交圆 O 于 N 点,则 AM=DM.所以 ND=2OM=OA, 所以 D 点在以 N 为圆心,半径等于 OA 的圆上运动,连接 BN 交圆 N 于点 D,则此时 BD 最长,此时可证 OCDN 为菱形,∠CON=∠ONB =∠B =54°,所以∠CAO=27°
后放回,再随机摸出一个小球,再次取出的小球标号的和等于 5 的概率是______. 【答案】 1 .
4
14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的 高度比,可以增加视觉美感,按照比例,如果雕像的高为 2 m,那么上部应设计为多高?设雕像的上 部高为 x m,列方程,并化为一般形式是______________.
点题卷·只做原创精品
武汉市点题卷命题组命制
2017~2018 学年度武汉市部分学校九年级调研测试数学试卷解析
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.方程 x(x-5)=0 化成一般形式后,它的常数项是( C)
2017-2018东西湖区九上期中试卷

东西湖区2017~2018学年 度上学期九年级数学期中测试卷一、 选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.一元二次方程4x (x +2)=25化成一般形后二次项的系数、一次项的系数和常数项分别是( )A .4、2、25B .4、8、25C .4、2、-25D .4、8、-253.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x +2)2=9C .(x -1)2=6D .(x -2)2=93.如果-2是方程x 2-m =0的一个根,则m 的值为( )A .4B .-4C .2D .-24.将二次函数y =(x -1)2的图象先向右平移1个单位,再向上平移1个单位后顶点为( )A .(0,1)B .(2,1)C .(1,-1)D .(-2,1)5.下列四个图中是中心对称图形的是( )6.已知x 1、x 2是一元二次方程x 2-3x -1=0的两个根,则x 1+x 2的值为( )A .3B .-3C .1D .-17.如图,在同一平面内,将△ABC 绕A 点逆时针旋转到△ADE 的位置.若AC ⊥DE ,∠ABD =62°,则∠ACB 的度数为( )A .56°B .44°C .40°D .34°8.函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠09.某市2018年应届初中毕业生人数约6.8万,比去年减少约0.2万,其中报名参加中考的学生人数约6.5万,比去年增加0.3万,下列结论:① 与2017年相比,2018年该市应届初中毕业生人数下降了%1008.62.0⨯ ② 与2017年相比,2018年该市应届初中毕业生报名参加中考人数增加了%1005.63.0⨯ ③ 与2017年相比,2018年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了%100)72.68.65.6(⨯-.其中正确的结论个数是( ) A .0 B .1 C .2 D .310.下列命题:① 若b =a +c 时,一元二次方程ax 2+bx +c =0一定有实数根;② 若方程ax 2+bx +c =0有两个不相等的实数根,则方程cx 2+bx +a =0也一定有两个不相等实数根;③ 若二次函数y =ax 2+c ,当取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时函数值为0;④ 若b 2-4ac >0,则二次函数y =ax 2+bx +c 的图像与坐标轴的公共点的个数是2或3,其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填一填, 看看谁仔细(本大题共6小题,每小题3分,共18分)11.一元二次方程x 2-x =0的解是____________12.函数y =4(x -3)2+7的顶点坐标是__________13.已知点A (3,4),将OA 绕原点O 逆时针旋转90°得到OA ′,则点A ′的坐标是__________14.若二次函数y =kx 2+x +1的函数值恒为正数,则k 的取值范围是__________15.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次(无滑动)进行下去…….若点A (35,0)、B (0,4),则点B 2018的坐标为_____________16.如图,在△ABC 中,∠ACB =90°,D 为边AB 的中点,E 、F 分别为边AC 、BC 上的点,且AE =AD ,BF =BD .若DE =2,DF =2,则AB 的长为__________三、 解一解,试试谁更棒(本大题共8小题,共72分)17.(本题8分)请按指定的方法解方程,否则不得分(1) x 2-4x -21=0(配方法) (2) x 2-x -5=0(公式法)18.(本题8分)已知关于x 的方程x 2+2x +1-p 2=0(1) 若p =2,x 1、x 2是方程x 2+2x +1-p 2=0的两根,求(1+x 1)(1+x 2)的值(2) 求证:无论p 为何值,方程总有两个实数根19.(本题8分)一个二次函数,当自变量x =0时,函数值y =-1;当x =-2与21时,y =0(1) 求这个二次函数的解析式(2) 当y >0时,x 的取值范围是__________(直接写出结果)20.(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,1)、B(5,1)、C(4,4)(1) 将△ABC向左平移5个单位得到△A1B1C1,写出△A1B1C1三顶点的坐标(2) 将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请你写出三顶点的坐标(3) △A1B1C1与△A2B2C2重合部分的面积为__________(直接写出)21.(本题8分)世博会中国国家馆的平面示意图如图,其外框是一个大正方形,中间四个全等的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个全等的正方形是展厅.已知核心筒的边长比展厅的边长的一半多一米,外框的面积刚好是四个核心筒面积和的9倍,求核心筒的边长22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已其中a为常数,且80≤a≤100(1) 若产销甲乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式(2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10分)在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,分别交直线AB 、AC 于点M 、N(1) 如图1,当α=90°时,求证:AM =CN(2) 如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系,并证明之(3) 如图3,当α=45°时,旋转∠MON ,问线段之间BM 、MN 、AN 有何数量关系?并证明之24.(本题12分)如图,已知一次函数y 1=x +b 的图象l 与二次函数y 2=-x 2+mx +b 的图象C ′都经过点B (0,1)和点C ,且图象C ′过点A (52-,0)(1) 求y 1和y 2的解析式(2) 设使y 2>y 1成立的x 取值的所有整数和为n ,若n 是关于x 的方02211=-+⎪⎭⎫ ⎝⎛-+x x a a 的根,求a 的值(3) 若点F 、G 在图象C ′上,长度为22的线段DE 在线段BC 上移动,EF 与DG 始终平行于y 轴.当四边形DEFG 的面积最大时,在x 轴上求点P ,使PD +PE 最值小,求出点P 的坐标。
2017-2018年湖北省武汉市洪山区九年级上学期数学期中试卷与解析

2017-2018学年湖北省武汉市洪山区九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)一元二次方程x2+3x﹣a=0的一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣32.(3分)已知x1、x2是一元二次方程x2﹣3x+2=0的两个实数根,则x1+x2等于()A.﹣3 B.﹣2 C.2 D.33.(3分)如图,一座石拱桥是圆弧形其跨度AB=24米,半径为13米,则拱高CD为()A.3米B.5米 C.7米 D.8米4.(3分)将抛物线y=2(x+1)2﹣2的图象先向左平移1个单位长度,再向上平移3个单位长度,则顶点坐标为()A.(﹣2,1)B.(2,1) C.(0,1) D.(﹣2,﹣5)5.(3分)如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)6.(3分)用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±7.(3分)今年某区积极推进“互联网+享受教育”课堂生态重构,加强对学校教育信息化的建设的投入,计划从今年起三年共投入1440万元,已知2015年投入1000万元.设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.1000(1+x)2=1440B.1000(x2+1)=1440C.1000+1000x+1000x2=1440D.1000+1000(1+x)+1000(1+x)2=14408.(3分)已知点A(﹣3,y1),B(﹣1,y2),C(2,y3)在函数y=﹣x2﹣2x+b 的图象上,则y1、y2、y3的大小关系为()A.y1<y3<y2B.y3<y1<y2C.y3<y2<y1D.y2<y1<y39.(3分)如图,AB为⊙O的直径,点C、D在⊙O上,若∠AOD=30°,则∠BCD 的度数是()A.150°B.120°C.105° D.75°10.(3分)如图,在等腰Rt△ABC中,斜边AB=8,点P在以AC为直径的半圆上,M为PB的中点,当点P沿半圆从点A运动至点C时,点M运动的路径长是()A.2πB.π C.2πD.2二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知点P的坐标是(2,﹣3),那么点P关于原点的对称点P1的坐标是.12.(3分)一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握了36次手,设到会的人数为x人,则根据题意列方程为.13.(3分)若二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是.14.(3分)在△ABC中,∠A=120°,若BC=12,则其外接圆O的直径为.15.(3分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数.16.(3分)直线y=m是平行于x轴的直线,将抛物线y=﹣x2﹣4x在直线y=m 上侧的部分沿直线y=m翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=﹣x有3个交点,则满足条件的m的值为.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣2x﹣2=0.18.(8分)某新建火车站站前广场有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?19.(8分)如图,AB为⊙O的直径,弦CD⊥AB于E,∠CDB=15°,OE=2.(1)求⊙O的半径;(2)将△OBD绕O点旋转,使弦BD的一个端点与弦AC的一个端点重合,则弦BD与弦AC的夹角为.20.(8分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1.(1)求证:点P在直线l上.(2)若抛物线的对称轴为x=﹣3,直接写出该抛物线的顶点坐标,与x 轴交点坐标为.(3)在(2)条件下,抛物线上点(﹣2,b)在图象上的对称点的坐标是.21.(8分)如图,二次函数y=x2(0≤x≤2)的图象记为曲线C1,将C1绕坐标原点O逆时针旋转90°,得曲线C2(1)请画出C2;(2)写出旋转后A(2,5)的对应点A1的坐标;(3)直接写出C1旋转至C2过程中扫过的面积.22.(10分)如图,D为Rt△ABC斜边AB上一点,以CD为直径的圆分别交△ABC 三边于E、F、G三点,连接FE,FG.(1)求证:∠EFG=∠B;(2)若AC=2BC=4,D为AE的中点,求FG的长.23.(10分)为了美化环境,学校准备在如图所示的矩形ABCD空地上进行绿化,规划在中间的一块四边形MNQP上种花,其余的四块三角形上铺设草坪,要求AM=AN=CP=CQ,已知BC=24米,AB=40米,设AN=x米,种花的面积为y1平方米,草坪面积y2平方米.(1)分别求y1和y2与x之间的函数关系式(不要求写出自变量的取值范围);(2)当AN的长为多少米时,种花的面积为440平方米?(3)若种花每平方米需200元,铺设草坪每平方米需100元,现设计要求种花的面积不大于440平方米,设学校所需费用W(元),求W与x之间的函数关系式,并求出学校所需费用的最大值.24.(12分)如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点.(1)求抛物线的解析式;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x 轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.2017-2018学年湖北省武汉市洪山区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)一元二次方程x2+3x﹣a=0的一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【解答】解:设x1、x2是关于x的一元二次方程x2+3x﹣a=0的两个根,则x1+x2=﹣3,又﹣x2=﹣1,解得:x1=﹣2.即方程的另一个根是﹣2.故选:A.2.(3分)已知x1、x2是一元二次方程x2﹣3x+2=0的两个实数根,则x1+x2等于()A.﹣3 B.﹣2 C.2 D.3【解答】解:∵x1、x2是一元二次方程x2﹣3x+2=0的两个实数根,∴x1+x2=3,故选:D.3.(3分)如图,一座石拱桥是圆弧形其跨度AB=24米,半径为13米,则拱高CD为()A.3米B.5米 C.7米 D.8米【解答】解:设O为圆心,连接OA、OD,由题意可知:OD⊥AB,OA=13由垂径定理可知:AD=AB=12,∴由勾股定理可知:OD=5,∴CD=OC﹣CD=8,故选:D.4.(3分)将抛物线y=2(x+1)2﹣2的图象先向左平移1个单位长度,再向上平移3个单位长度,则顶点坐标为()A.(﹣2,1)B.(2,1) C.(0,1) D.(﹣2,﹣5)【解答】解:y=2(x+1)2﹣2的图象先向左平移1个单位长度,再向上平移3个单位长度,得y=2(x+2)2+1,顶点坐标为(﹣2,1),故选:A.5.(3分)如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选:C.6.(3分)用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±【解答】解:∵x2+6x+4=0,∴x2+6x=﹣4,∴x2+6x+9=5,即(x+3)2=5.故选:C.7.(3分)今年某区积极推进“互联网+享受教育”课堂生态重构,加强对学校教育信息化的建设的投入,计划从今年起三年共投入1440万元,已知2015年投入1000万元.设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.1000(1+x)2=1440B.1000(x2+1)=1440C.1000+1000x+1000x2=1440D.1000+1000(1+x)+1000(1+x)2=1440【解答】解:设投入经费的年平均增长率为x,则2016年投入1000(1+x)万元,2017年投入1000(1+x)2万元,根据题意得1000+1000(x+1)+1000(1+x)2=1440.故选:D.8.(3分)已知点A(﹣3,y1),B(﹣1,y2),C(2,y3)在函数y=﹣x2﹣2x+b 的图象上,则y1、y2、y3的大小关系为()A.y1<y3<y2B.y3<y1<y2C.y3<y2<y1D.y2<y1<y3【解答】解:∵y=﹣x2﹣2x+b,∴函数y=﹣x2﹣2x+b的对称轴为直线x=﹣1,开口向下,当x<﹣1时,y随x 的增大而增大,当x>﹣1时,y随x的增大而减小,∵﹣1﹣(﹣3)=2,﹣1﹣(﹣1)=0,2﹣(﹣1)=3,∴y3<y1<y2,故选:B.9.(3分)如图,AB为⊙O的直径,点C、D在⊙O上,若∠AOD=30°,则∠BCD 的度数是()A.150°B.120°C.105° D.75°【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°,故选:C.10.(3分)如图,在等腰Rt△ABC中,斜边AB=8,点P在以AC为直径的半圆上,M为PB的中点,当点P沿半圆从点A运动至点C时,点M运动的路径长是()A.2πB.π C.2πD.2【解答】解:如图,连接PA、PC,取AB、BC的中点E、F,连接EF、EM、FM.∵AC是直径,∴∠APC=90°,∵BE=EA,BM=MP,∴EM∥PA,同理FM∥PC,∴∠BME=∠BPA,∠BMF=∠BPC,∴∠BME+∠BMF=∠BPA+∠BPC=90°,∴∠EMF=90°,∴点M的轨迹是,(EF为直径的半圆,图中红线部分)∵BC=AC,∠ACB=90°,AB=8,∴AC=4,EF=AC=2,∴的长=π•=π.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知点P的坐标是(2,﹣3),那么点P关于原点的对称点P1的坐标是(﹣2,3).【解答】解:∵点P的坐标是(2,﹣3),∴点P关于原点的对称点P1的坐标是(﹣2,3).故答案为:(﹣2,3),12.(3分)一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握了36次手,设到会的人数为x人,则根据题意列方程为x(x﹣1)=36.【解答】解:设到会的人数为x人,则每个人握手(x﹣1)次,由题意得,x(x﹣1)=36,故答案是:x(x﹣1)=36.13.(3分)若二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是k≤3且k≠2.【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故答案为:k≤3且k≠2.14.(3分)在△ABC中,∠A=120°,若BC=12,则其外接圆O的直径为8.【解答】解:作直径BD,连接CD,∵四边形BACD是圆内接四边形,∴∠D=180°﹣∠A=60°,∴BD==8,故答案为:8.15.(3分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数150°.【解答】解:连接PQ,由题意可知△ABP≌△CBQ则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,∵△ABC是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,∴△BPQ为等边三角形,∴PQ=PB=BQ=4,又∵PQ=4,PC=5,QC=3,∴PQ2+QC2=PC2,∴∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠BQC=∠BQP+∠PQC=150°∴∠APB=∠BQC=150°16.(3分)直线y=m是平行于x轴的直线,将抛物线y=﹣x2﹣4x在直线y=m 上侧的部分沿直线y=m翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=﹣x有3个交点,则满足条件的m的值为6.【解答】解:根据题意∵y=﹣x2﹣4x=﹣(x+4)2+8,∴顶点为(﹣4,8),∴在直线y=m上侧的部分沿直线y=m翻折,翻折后的部分的顶点为(﹣4,﹣8+2m),∵直线y=﹣x与抛物线y=﹣x2﹣4x相交∴交点坐标为(﹣6,6),(0,0)∴m=6时,新的函数图象刚好与直线y=﹣x有3个交点当m<6时,新的函数图象刚好与直线y=﹣x有1个交点或2个交点当m>6时,新的函数图象刚好与直线y=﹣x有3个交点为(0,0),(﹣6,6),(﹣4,﹣8+2m)∴﹣(﹣4)=﹣8+2mm=6综上所述,m=6三、解答题(共8题,共72分)17.(8分)解方程:x2﹣2x﹣2=0.【解答】解:移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣1=±.解得x1=1+,x2=1﹣.18.(8分)某新建火车站站前广场有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【解答】解:设人行通道的宽度为x米,这每块矩形绿地的长为米、宽为(8﹣2x)米(0<x<4),根据题意得:2××(8﹣2x)=56,整理得:3x2﹣32x+52=0,解得:x1=2,x2=(不合题意,舍去).答:人行通道的宽为2米.19.(8分)如图,AB为⊙O的直径,弦CD⊥AB于E,∠CDB=15°,OE=2.(1)求⊙O的半径;(2)将△OBD绕O点旋转,使弦BD的一个端点与弦AC的一个端点重合,则弦BD与弦AC的夹角为60°或90°.【解答】解:(1)∵AB为⊙O的直径,弦CD⊥AB于E,∴弧BC=弧BD,∴∠BDC=∠BOD,而∠CDB=15°,∴∠BOD=2×15°=30°,在Rt△ODE中,∠DOE=30°,OE=2,∴OE=DE,OD=2DE,∴DE==2,∴OD=4,即⊙O的半径为4;(2)有4种情况:如图:①如图1所示:∵OA=OB,∠AOB=30°,∴∠OAB=∠OBA=75°,∵CD⊥AB,AB是直径,∴弧BC=弧BD,∴∠CAB=∠BOD=15°,∴∠CAB=∠BAO+∠CAB=15°+75°=90°;②如图2所示,∠CAD=75°﹣15°=60°;③如图3所示:∠ACB=90°;④如图4所示:∠ACB=60°;故答案为:60°或90°.20.(8分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1.(1)求证:点P在直线l上.(2)若抛物线的对称轴为x=﹣3,直接写出该抛物线的顶点坐标(﹣3,﹣4),与x轴交点坐标为(﹣5,0),(﹣1,0).(3)在(2)条件下,抛物线上点(﹣2,b)在图象上的对称点的坐标是(﹣4,﹣3).【解答】解:(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)由(1)可知抛物线的对称轴为x=m,∵x=﹣3,∴m=﹣3,∴该抛物线的顶点坐标是(﹣3,﹣4),设y=0,则0=x2+6x+5,解得:x=﹣5或﹣1,∴抛物线与x轴交点坐标为(﹣5,0),(﹣1,0),故答案为:(﹣3,﹣4),(2)把点(﹣2,b)代入y=x2+6x+5得:b=﹣3,∵抛物线对称轴为x=﹣3,∴(﹣2,﹣3)的对称点为(﹣4,﹣3),故答案为:(﹣4,﹣3).21.(8分)如图,二次函数y=x2(0≤x≤2)的图象记为曲线C1,将C1绕坐标原点O逆时针旋转90°,得曲线C2(1)请画出C2;(2)写出旋转后A(2,5)的对应点A1的坐标;(3)直接写出C1旋转至C2过程中扫过的面积.【解答】解:(1)如图,曲线C2即为所求;(2)由图可知,A1(﹣5,2).(3)∵OA==,∴C1旋转至C2过程中扫过的面积==π.22.(10分)如图,D为Rt△ABC斜边AB上一点,以CD为直径的圆分别交△ABC 三边于E、F、G三点,连接FE,FG.(1)求证:∠EFG=∠B;(2)若AC=2BC=4,D为AE的中点,求FG的长.【解答】(1)证明:连接EC,如图1所示.∵CD为直径,∴∠AEC=90°,∴∠BCE+∠B=90°.∵∠BCE+∠ECA=90°,∴∠B=∠ECA.又∵∠ECA=∠EFG,∴∠EFG=∠B;(2)解:在Rt△BCA中,AC=4,BC=2,∴AB==10.∵BC•AC=AB•CE,∴CE=4.∵tan∠A===,∴AE=2CE=8.在Rt△DCG中,CE=4,ED=AE=4,∴CD==4.连接FD、DG,如图2所示.∵CD是直径,∴∠CFD=∠CGD=90°,又∵∠FCG=90°,∴四边形FCGD为矩形,∴FG=CD=4.23.(10分)为了美化环境,学校准备在如图所示的矩形ABCD空地上进行绿化,规划在中间的一块四边形MNQP上种花,其余的四块三角形上铺设草坪,要求AM=AN=CP=CQ,已知BC=24米,AB=40米,设AN=x米,种花的面积为y1平方米,草坪面积y2平方米.(1)分别求y1和y2与x之间的函数关系式(不要求写出自变量的取值范围);(2)当AN的长为多少米时,种花的面积为440平方米?(3)若种花每平方米需200元,铺设草坪每平方米需100元,现设计要求种花的面积不大于440平方米,设学校所需费用W(元),求W与x之间的函数关系式,并求出学校所需费用的最大值.【解答】解:(1)根据题意,y2=2וx•x+2×(40﹣x)(24﹣x)=2x2﹣64x+960,y1=40×24﹣y2=﹣2x2+64x;(2)根据题意,知y1=440,即﹣2x2+64x=440,解得:x1=10,x2=22,故当AN的长为10米或22米时种花的面积为440平方米;(3)设总费用为W元,则W=200(﹣2x2+64x)+100(2x2﹣64x+960)=﹣200(x﹣16)2+147200,由(2)知当0<x≤10或22≤x≤24时,y1≤440,在W=﹣200(x﹣16)2+147200中,当x<16时,W随x的增大而增大,当x>16时,W随x的增大而减小,∴当x=10时,W取得最大值,最大值W=140000,当x=22时,W取得最大值,最大值W=140000,∴学校所需费用的最大值为140000元.24.(12分)如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点.(1)求抛物线的解析式;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x 轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.【解答】解:(1)由抛物线y=ax2+2ax+c,可得C(0,c),对称轴为x=﹣=﹣1,∵OC=OA,∴A(﹣c,0),B(﹣2+c,0),∵AB=4,∴﹣2+c﹣(﹣c)=4,∴c=3,∴A(﹣3,0),代入抛物线y=ax2+2ax+3,得0=9a﹣6a+3,解得a=﹣1,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)如图1,∵M(m,0),PM⊥x轴,∴P(m,﹣m2﹣2m+3),又∵对称轴为x=﹣1,PQ∥AB,∴Q(﹣2﹣m,﹣m2﹣2m+3),又∵QN⊥x轴,∴矩形PQNM的周长=2(PM+PQ)=2[(﹣m2﹣2m+3)+(﹣2﹣m﹣m)]=2(﹣m2﹣4m+1)=﹣2(m+2)2+10,∴当m=﹣2时,矩形PQNM的周长有最大值10,此时,M(﹣2,0),由A(﹣3,0),C(0,3),可得直线AC为y=x+3,AM=1,∴当x=﹣2时,y=1,即E(﹣2,1),ME=1,∴△AEM的面积=×AM×ME=×1×1=;(3)如图2,连接CB并延长,交直线HG与Q,∵HG⊥CF,BC=BF,∴∠BFC+∠BFQ=∠BCF+∠Q=90°,∠BFC=∠BCF,∴∠BFQ=∠Q,∴BC=BF=BQ,又∵C(0,3),B(1,0),∴Q(2,﹣3),又∵H(0,﹣1),∴QH的解析式为y=﹣x﹣1,解方程组,可得或,∴点G的坐标为(,)或(,).。
2018年湖北省武汉市中考数学试卷含答案(Word版)

2018年湖北省武汉市中考数学试卷含答案(Word版)20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数)(1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且PA =PB (1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CEPE 的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线x y 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52 AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P 为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标。
{3套试卷汇总}2017-2018武汉市九年级统考数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图案是轴对称图形的是( )A .B .C .D .【答案】C【解析】解:A .此图形不是轴对称图形,不合题意;B .此图形不是轴对称图形,不合题意;C .此图形是轴对称图形,符合题意;D .此图形不是轴对称图形,不合题意.故选C .2.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.3.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )A .1处B .2处C .3处D .4处【答案】D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.4.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.1【答案】C【解析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.5.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.6.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3 ,1)B.(3 ,2)C.(2 ,3)D.(1 ,3)【答案】D【解析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.7.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5 B.6 C.7 D.8【答案】B【解析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=172在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)27)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键8.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚【答案】A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用9.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm【答案】B【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.10.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为A.1801801(150%)x x-=+B.1801801(150%)x x-=+C.1801801(150%)x x-=-D.1801801(150%)x x-=-【答案】A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x ﹣180150%x+()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.二、填空题(本题包括8个小题)11.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.【答案】15【解析】如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=12OP=1,然后在在Rt△OHC中,利用勾股定理计算得到1515【详解】解:如图,作OH⊥CD于H,连结OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=1OP=1,2在Rt△OHC中,∵OC=4,OH=1,∴CH=22-=,OC OH15∴CD=2CH=215.故答案为215.【点睛】本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可12.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=_____.31【解析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt △ABC 中,∠B=45°,∴2AB=2,BF=AF=22AB=1, ∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt △ADF 中,根据勾股定理得,22AD AF -3∴33-1, 3-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.13.已知a+1a =2,求a 2+21a =_____. 【答案】1【解析】试题分析:∵21()a a +=2212a a ++=4,∴221a a +=4-1=1.故答案为1. 考点:完全平方公式.14.分解因式:x 2y ﹣4xy+4y =_____.【答案】y(x-2)2【解析】先提取公因式y ,再根据完全平方公式分解即可得.【详解】原式=2(44)y x x -+=2(2)y x -, 故答案为2(2)y x -.15.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.【答案】85【解析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.16.因式分解:32a ab -=_______________.【答案】a(a+b)(a-b).【解析】分析:本题考查的是提公因式法和利用平方差公式分解因式.解析:原式= a(a+b)(a-b).故答案为a(a+b)(a-b).17.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 【答案】41400【解析】观察已知数列得到一般性规律,写出第20个数即可. 【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.18.若x=2-1, 则x 2+2x+1=__________.【答案】2【解析】先利用完全平方公式对所求式子进行变形,然后代入x 的值进行计算即可.【详解】∵x=2-1,∴x 2+2x+1=(x+1)2=(2-1+1)2=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.三、解答题(本题包括8个小题)19.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A .由父母一方照看;B .由爷爷奶奶照看;C .由叔姨等近亲照看;D .直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图. 该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【答案】(1)10,144;(2)详见解析;(3)96【解析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=3,AD=1,求DB的长.【答案】BD= 2.【解析】试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.试题解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD ,∴AD AC AC AB=,∵AC=3,AD=1,∴33AB=,∴AB=3,∴BD= AB﹣AD=3﹣1=2 .点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.21.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.【答案】(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.【解析】(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF 是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,在△ADE和△CBF中,{AD BC A C AE CF=∠=∠=,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四边形BEDF是平行四边形,连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,DF=AE,∴四边形AEFD是平行四边形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四边形BFDE是平行四边形,∴四边形BFDE是菱形.【点睛】1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定22.如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【答案】(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(21)、(2,1)、(6,-3)或(6,-3).【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.【详解】解:(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=32,BC=2,AC=25,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD =PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=12,∴P(1+2,1)或(1-2,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD =PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±6,∴P(1+6,-3),或(1-6,-3),综上可知:点P的坐标为(1+2,1)、(1-2,1)、(1+6,-3)或(1-6,-3).【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.23.先化简代数式22321(1)24a aa a-+-÷+-,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.【答案】21aa--,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.试题解析:原式=232aa+-+·2(2)(2)(1)a aa+--=21aa--当a=0时,原式=21aa--=2.考点:分式的化简求值.24.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.【答案】(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD 是⊙O 的切线.(2)连结BC ,∵AB 是⊙O 的直径,∴∠ACB=90°,又∵C 为弧AB 的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C ,∠CAB=∠APC ,∴△CAE ∽△CPA ,∴,∴CP•CE=CA 2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.25.4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?【答案】(1)14;(2)12;(3)x=1. 【解析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x 的值.【详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P (不合格品)=14; (2)共有12种情况,抽到的都是合格品的情况有6种,P (抽到的都是合格品)=612=12; (3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴34x x ++ =0.95, 解得:x=1.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.26.先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=. 【答案】1 【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.试题解析:原式=21(2)2111x x x x x x x x x -+⋅-+-+=+ ∵x 2−x−1=0,∴x 2=x+1,则原式=1.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x的正比例函数,y=(m+1)23mx 若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-1 2【答案】B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k <0时,y随x的增大而减小.2.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【答案】D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.3.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③【答案】A【解析】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.5.实数21-的相反数是()A.21-B.21+C.21--D.12-【答案】D【解析】根据相反数的定义求解即可.【详解】21-的相反数是-21+,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【答案】D【解析】解不等式得到x≥12m+3,再列出关于m的不等式求解.【详解】23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集7.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A .1个B .2个C .3个D .4个 【答案】C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C .【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.8.抛物线223y x +=(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 【答案】A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A .【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .9.若数a ,b 在数轴上的位置如图示,则( )A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0 【答案】D【解析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.10.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-【答案】D【解析】分析:详解:如图,∵AB ⊥CD,CE ⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.二、填空题(本题包括8个小题)11.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.【答案】1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解.详解:设这栋建筑物的高度为xm,由题意得,2=19x,解得x=1,即这栋建筑物的高度为1m.故答案为1.点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.12.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为【答案】【解析】试题解析:∵AH=2,HB=1,∴AB=AH+BH=3,∴考点:平行线分线段成比例.13.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.【答案】16 5【解析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y甲=4t (0≤t≤5);y乙=()()2112916(24)t tt t<⎧-≤≤⎨-≤⎩;由方程组4916y ty t⎧⎨-⎩==,解得t=165.故答案为165.【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.14.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.【答案】π【解析】试题分析:∵,∴S阴影=1ABBS扇形=250360ABπ⋅=54π.故答案为54π.考点:旋转的性质;扇形面积的计算.15.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______.【答案】2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.16.因式分解:223x 6xy 3y -+- =【答案】﹣3(x ﹣y )1【解析】解:﹣3x 1+6xy ﹣3y 1=﹣3(x 1+y 1﹣1xy )=﹣3(x ﹣y )1.故答案为:﹣3(x ﹣y )1.点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,则∠BCD 的度数是_________.【答案】136°.【解析】由圆周角定理得,∠A=12∠BOD=44°, 由圆内接四边形的性质得,∠BCD=180°-∠A=136°【点睛】本题考查了1.圆周角定理;2. 圆内接四边形的性质.18.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.【答案】22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=22,故答案为:22.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本题包括8个小题)19.如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.【答案】见解析.【解析】(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C 的路程y (km )与出发时间x (h )之间的函数关系图象.直接写出连接A 、B 两市公路的路程以及货车由B 市到达A 市所需时间.求机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式.求机场大巴与货车相遇地到机场C 的路程.【答案】(1)连接A 、B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h ;(2)y=﹣80x+60(0≤x≤34);(3)机场大巴与货车相遇地到机场C 的路程为1007km . 【解析】(1)根据AB AC BC =+可求出连接A 、B 两市公路的路程,再根据货车13h 行驶20km 可求出货车行驶60km 所需时间;(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式;(3)利用待定系数法求出线段ED 对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C 的路程.【详解】解:(1)60+20=80(km),14802033÷⨯=(h) ∴连接A. B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h . (2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、3(,0)4代入y=kx+b , 得:6030,4b k b =⎧⎪⎨+=⎪⎩ 解得:8060k b =-⎧⎨=⎩, ∴机场大巴到机场C 的路程y(km)与出发时间x(h)之间的函数关系式为38060(0).4y x x =-+≤≤(3)设线段ED 对应的函数表达式为y=mx+n(m≠0) 将点14(,0)(,60)33、代入y=mx+n ,得:10 3460, 3m nm n⎧+=⎪⎪⎨⎪+=⎪⎩解得:6020mn=⎧⎨=-⎩,∴线段ED 对应的函数表达式为146020().33y x x=-≤≤解方程组80606020,y xy x=-+⎧⎨=-⎩得471007xy⎧=⎪⎪⎨⎪=⎪⎩,∴机场大巴与货车相遇地到机场C的路程为1007km.【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.21.如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为底边的等腰CAB∆,其面积为5,点C在小正方形的顶点上;在图中面出以线段AB为一边的ABDE,其面积为16,点D和点E均在小正方形的顶点上;连接CE,并直接写出线段CE的长.【答案】(1)见解析;(2)见解析;(3)见解析,5CE=【解析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE5。
2017-2018学年武汉市江岸区九年级上学期期中考试数学试卷及答案

18、已知二次函数 y x2 kx 4 ,若二次函数的图象与 x 轴的一个公共点坐标为(-1,0),求二次函数的图 象与 x 轴的两一个公共点的坐标.
19、用一条长40厘米的绳子能围成一个面积为101平方厘米的矩形吗?如果能,说明围法;如果不能,说明 理由.
y1
x2
2x
3
得
x2
3x
0
y2 x 3
解得 x1 0 , x2 3 ∴交点坐标为 (0, 3) , (3,0) . (2) 2 x 1.
21、(1)连 OB 、 OA ∵ CD AB ∴ AOD DOB , DOB ABO 90 设 DBP DBE ∴ AOD DOB ABP 2ABD 2 ∴ ABP ABO 90 OBP ∴ PB 为 O 的切线. (2)连 OA 、 AC ∵ BD AP ∴ PEB PFB ∴ ABF APC ACP ∴ AP AC 又∵ AE CP ∴ EC EP
15、 3 m2 3 mn
4
2
16、 AB≥2 3
三、解答题 17、 x2 4x 3 0 (x 1)(x 3) 0 x 1 0或 x 3 0 x1 1 , x2 1.
18、将 (1,0) 代入解得 k 5 ∴ y x2 5x 4 令 y 0 ,则 (x 4)(x 1) 0 解得 x1 1 , x2 4 ∴另一个公共点坐标为 (4,0) .
20、如图,函数 y1 x2 2x 3与 y2 = x 3 . (1)求出 y1与 y2的交点坐标; (2)将绕(-1,-2)顺时针旋转得到 y3,在图中画出 y3的图象,并直接写出 y1 y3 y2 的解集.
东湖高新区2017—2018学年度上学期期中考试九年级数学试题(含答案解析)

2017-2018学年湖北省武汉市洪山区东湖开发区九年级(上)期中数学试卷参考答案与试题解析一、选择题(10小题,每小题3分,共30分)1.(3.00分)一元二次方程x2=x的根为()A.0 B.1 C.0或1 D.0或﹣1【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,∴x=0或x=1,故选:C.2.(3.00分)在平面直角坐标系中,点(3,﹣2)关于原点对称的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(3,2)【解答】解:点(3,﹣2)关于原点对称的点的坐标是(﹣3,2),故选:A.3.(3.00分)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1+x2的值是()A.2 B.﹣2 C.3 D.﹣3【解答】解:∵一元二次方程x2﹣2x﹣3=0的一次项系数是a=1,二次项系数b=2,∴由韦达定理,得x1+x2=2.故选:A.4.(3.00分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C,若∠A′CB′=30°,则∠BCA′的度数是()A.80°B.60°C.50°D.30°【解答】解:∵△ABC绕着点C顺时针旋转50°后得到△A′B′C,∴∠BCB′=50°,∵∠A′CB′=30°,∴∠BCA′=∠BCB′+∠A′CB′=50°+30°=80°.故选:A.5.(3.00分)李师傅去年开了一家商店,将每个月的盈亏情况都作了记录.今年1月份开始盈利,2月份盈利2000元,4月份盈利恰好2880元,若每月盈利的平均增长率都相同,这个平均增长率是()A.20% B.22% C.25% D.44%【解答】解:设这个平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x1=20%,x2=﹣2.2(舍去).答:这个平均增长率为20%.故选:A.6.(3.00分)抛物线y=﹣x2+2x+6在直线y=﹣2上截得的线段长度为()A.2 B.3 C.4 D.6【解答】解:由题意得:,解得:x=﹣2或x=4,故在直线y=﹣2上截得的线段的长为4﹣(﹣2)=4+2=6,故选:D.7.(3.00分)下列抛物线中,与x轴无公共点的是()A.y=x2﹣2 B.y=x2+4x+4 C.y=﹣x2+3x+2 D.y=x2﹣x+2【解答】解:A、△=0+8=8>0,该抛物线与x轴有2个交点,故本选项错误;B、△=16﹣4×1×4=0,该抛物线与x轴有1个交点,故本选项错误;C、△=9+8=17>0,该抛物线与x轴有2个交点,故本选项错误;D、△=1﹣8=﹣7<0,该抛物线与x轴没有交点,故本选项正确;故选:D.8.(3.00分)将二次函数y=(x﹣1)2﹣3的图象沿x轴翻折,所得图象的函数表达式为()A.y=﹣(x﹣1)2+3 B.y=(x+1)2﹣3 C.y=﹣(x+1)2﹣3 D.y=(x﹣1)2+3【解答】解:二次函数y=(x﹣1)2﹣3的图象沿x轴翻折,所得图象的函数表达式为﹣y=(x﹣1)2﹣3,即y=﹣(x﹣1)2+3.故选:A.9.(3.00分)如图,平面直角坐标系中,A(﹣3,0),B(0,4),对△AOB按图示方式连续作旋转变换,这样算到的第2016个三角形时,A点的对应点的坐标为()A.(8064,4)B.(8064,0)C.(8064,3)D.(8061,0)【解答】解:∵2016=3×671+3,∴第2016个三角形与第3个三角形的摆放形式一样,∴第2016个三角形中,A点的对应点的纵坐标为4,横坐标为671×12+12=8064,即A点的对应点的坐标为(8064,4).故选:A.10.(3.00分)如图,等边△ABC的边长为1,D、E两点分别在边AB、AC上,CE=DE,则线段CE的最小值为()A.2﹣B.2﹣3 C.D.【解答】解:如图所示:当ED⊥AB此时DE=EC最短,设EC=DE=x,则AE=1﹣x,∵△ABC是等边三角形,∴∠A=60°,则sin60°===,解得:x=2﹣3.故选:B.二、填空题(6小题,每小题3分,共18分)11.(3.00分)关于x的方程(2m﹣1)x2+mx+2=0是一元二次方程,则m的取值范围是m≠.【解答】解:∵关于x的方程(2m﹣1)x2+mx+2=0是一元二次方程,∴2m﹣1≠0,∴m的取值范围是:m≠.故答案为:m≠.。
(完整)2017武汉中考数学试卷及答案(精校版),推荐文档

第 1 页 / 共 10 页36 3 2017 年武汉市初中毕业生考试数学试卷一、选择题(共 10 小题,每小题 3 分,共 30 分) 1. 计算 的结果为( ) A .6 B .-6 C .18 D .-182.若代数式 1a - 4在实数范围内有意义,则实数 a 的取值范围为( )A .a =4B .a >4C .a <4D .a ≠4 3.下列计算的结果是 x 5 的为( ) A .x 10÷x 2 B .x 6-x C .x 2·x 3 D .(x 2)3 4.在一次中学生田径运动会上,参加男子跳高的 15 名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别为( ) A .1.65、1.70 B .1.65、1.75 C .1.70、1.75 D .1.70、1.70 5.计算(x +1)(x +2)的结果为( ) A .x 2+2 B .x 2+3x +2 C .x 2+3x +3 D .x 2+2x +2 6.点 A (-3,2)关于 y 轴对称的点的坐标为( ) A .(3,-2) B .(3,2) C .(-3,-2) D .(2,-3) 7. 某物体的主视图如图所示,则该物体可能为( )A. B. C. D. 8. 按照一定规律排列的 n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为 768,则 n 为( ) A .9 B .10 C .11 D .12 9. 已知一个三角形的三边长分别为 5、7、8,则其内切圆的半径为( )A. 3 2B. 3 2C. D . 2 10. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( ) A .4 B .5 C .6 D .7二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 11.计算 2×3+(-4)的结果为x 2 112. 计算 x + 1 - x + 1的结果为13. 如图,在 ABCD 中,∠D =100°,∠DAB 的平分线 AE 交 DC 于点 E ,连接 BE .若 AE =AB ,则∠EBC 的度数为 14. 一个不透明的袋中共有 5 个小球,分别为 2 个红球和 3 个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 15. 如图,在△ABC 中,AB =AC = 2 BD =2CE ,则 DE 的长为,∠BAC =120°,点 D 、E 都在边 BC 上,∠DAE =60°.若 3 3第 2 页 / 共 10 页16. 已知关于 x 的二次函数 y =ax 2+(a 2-1)x -a 的图象与 x 轴的一个交点的坐标为(m ,0).若 2<m <3,则 a 的取值范围是三、解答题(共 8 题,共 72 分)17.(本题 8 分)解方程:4x -3=2(x -1)18.(本题 8 分)如图,点 C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出 CD 与 AB 之间的关系,并证明你的结论19.(本题 8 分)某公司共有 A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图部门 员工人数 每人所创的年利润/万元A 5 10B b 8C c 5 (1) ① 在扇形图中,C 部门所对应的圆心角的度数为② 在统计表中,b = ,c = (2) 求这个公司平均每人所创年利润20.(本题 8 分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共 20 件.其中甲种奖品每件40 元,乙种奖品每件30 元(1)如果购买甲、乙两种奖品共花费了650 元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2 倍,总花费不超过680 元,求该公司有哪几种不同的购买方案?21.(本题8 分)如图,△ABC 内接于⊙O,AB=AC,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC 3(2)若BC=6,sin∠BAC=,求AC 和CD 的长522.(本题10 分)如图,直线y=2x+4 与反比例函数yk的图象相交于A(-3,a)和 B 两点x第3 页 / 共 10 页(1)求k 的值(2)直线y=m(m>0)与直线AB 相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值6(3)直接写出不等式>x 的解集x - 5第4 页 / 共 10 页23.(本题10 分)已知四边形ABCD 的一组对边AD、BC 的延长线交于点E(1)如图1,若∠ABC=∠ADC=90°,求证:3 ED·EA=EC·EB(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的5面积(3)(3)3CD=5,CF=ED=n 如图3,另一组对边AB、DC 的延长线相交于点F.若cos∠ABC=cos∠ADC=,5,直接写出AD 的长(用含n 的式子表示)第5 页 / 共 10 页第 6 页 / 共 10 页2 24.(本题 12 分)已知点 A (-1,1)、B (4,6)在抛物线 y =ax 2+bx 上 (1) 求抛物线的解析式(2) 如图 1,点 F 的坐标为(0,m )(m >2),直线 AF 交抛物线于另一点 G ,过点 G 作 x 轴的垂线,垂足为 H . 设抛物线与 x 轴的正半轴交于点 E ,连接 FH 、AE ,求证:FH ∥AE (3) 如图 2,直线 AB 分别交 x 轴、y 轴于 C 、D 两点.点 P 从点 C 出发,沿射线 CD 方向匀速运动,速度为每秒 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度为每秒 1 个单位长度.点 M 是直线 PQ 与抛物线的一个交点,当运动到 t 秒时,QM =2PM ,直接写出 t 的值第 7 页 / 共 10 页3 3 3 3 3 HA2017 年武汉中考数学参考答案与解析1 2 3 4 5 6 7 8 9 10 ADCCBBABCD提示:9.利用面积法做题,先作高求出一般三角形的面积,再求内切圆半径.过 B 作 BD ⊥AC 于 D ,设 AD =x , 52 - x 2 = 72 - (8 - x )2 ,解得 x = 5 , BD = 53 ,2r = 2S 2 8 ⨯ 5 3= 2 = a + b + c 5 + 7 + 810. 共 7 种情况,如图所示二、填空题11.212. x -113. 30︒14. 2515. 3 - 316. -3 < a < -2 或1 < a < 13 2提示:15.方法一,向左边旋转,令 EC =x ,BD =2x ,( 3x )2+ (3 x )2 = (6 - 3x )22x = 3 ± 3(6 - 3x > 0,舍正), DE = 6 - 3x = 3 - 3方法二,向右边旋转∠HCE =60°,令 EC =x ,HC =2x ,所以∠CEH =90°, EH = 3x =DE ,所以 3x + x =6,x =3- ,DE =6-3x =3 -3A16. 方法一:由题意可知,x =m 时y =0am 2 + (a 2 - 1)m - a = 0 (am - 1)(m + a ) = 0m = 1, m = -a 1a 21 < a < 1①2 < m 1 <3 得 3 2 ② 2 < m 2 < 3 得-3 < a < -2H3 BCD A+ ( - )≤ ⎨ 方法二:由题意可知,x =2 对应的函数值与 x =3 对应的函数值异号(此时必有∆ ≥ 0 )当 x =2 时, y = 4a + 2(a 2 - 1) - a = 2a 2 + 3a - 2 当 x =3 时, y = 9a + 3(a 2 - 1) - a = 3a 2 + 8a - 3 (2a 2 + 3a - 2)(3a 2 + 8a - 3) < 0 (2a - 1)(a + 2)(3a - 1)(a + 3) < 03 2三、解答题17. x = 1218. CD =AB 且 CD ∥AB (提示:线段的关系包括数量关系和位置关系) 19. (1)①108°;②b =9,c =6(2) 5 ⨯10+9 ⨯ 8+6 ⨯ 5 =7.6 万元2020. 解:(1)设甲产品购买 x 件,乙产品购买 y 件,⎧ x + y = 20 由题意可得: ⎨40x + 30 y = 650 ⎧ x = 5 解得⎨ y = 15 ⎩ ⎩所以,甲产品购买 5 件,乙产品购买 15 件 (2)设甲奖品购买a 件,乙奖品购买(20 - a )件,⎧20 - a ≤ 2a 由题意可得 ⎨ ⎩40a 30 20 a 650 解得20 3 ≤ a ≤ 8 a 为正整数∴ a = 7或8 ,共有 2 种方案 方案一:甲奖品购买 7 件,乙奖品购买 13 件; 方案二:甲奖品购买 8 件,乙奖品购买 12 件.21. 解:(1)如图 1,连接 AO .在△ABO 和△ACO 中, ⎧ AB = AC ⎪AO = AO ⎩BO = CO△ABO ≌△ACO (SSS )∴∠BAO =∠CAO ∴AO 平分∠BAC(2)如图 2,延长 AO 交 BC 于点 H .AB =AC ,∠BAO =∠CAO ∴AH ⊥BC ∴BH =CH =12 BC =3∠BOH =2∠BAO =∠BAC ∴sin ∠BOH = sin ∠BAC = 35∴BH =3,BO =5,OH =4第 8 页 / 共 10 页O第 9 页 / 共 10 页92 + 32 3 3 3 在 Rt △ABH 中, AB = ∴AC =AB = 3 = = 3 延长 CD 交 O 于点 P ,连接 PB ,PC 为直径,∴∠PBC =90° ∴PB ∥OH∴PB =2OH =8 ∴△AOD ∽△BPD , DO = AO = 5PD PB 8∴DO = 5 PO = 25 , CD =CO +DO = 9013 13 13 22. 解:(1)将点 A (-3, a )代入 y = 2x + 4 中得a = -6 + 4∴ a = -2将点 A (-3, -2)代入 y = k中x得k = 6 ∴ k 的值为 6(2) 将 y = m 代入 y = 2x + 4 中得 x = m - 4 将 y = m 代入 y = k 中得 x = 6 2 ∴ M ( m - 4 , m )2 x mN ( 6 , m ) m①当点 M 在点 N 右侧时 m - 4 - 6 = 4 解得m = 6 + 4 , m = 6 - 4 (舍) 2 m1 1 ②当点 M 在点 N 左侧时 6 - m - 4 = 4 解得m =2 , m = -1 (舍) m 23 4 综上所述, m 的值为6 + 4 或 2 (3) x < -1 或5 < x < 623. 解 :(1) ∠E =∠E ,∠EDC =∠B =90°∴△EDC ∽△EBA ∴ ED = EC EB EA∴ EA ⋅ ED = EB ⋅ EC(2)过点 C 作 CH ⊥AE 于点 H在 Rt △CDH 中,cos ∠ADC = 3,CD =55∴CH =4S ∆CDE= 1 ED ⋅ CH = 6 2∴ED =3 过点 A 作 AG ⊥EB 交 EB 的延长线于点 G ∠ABC =120°,∴∠ABG =60°,AB =12 ∴在 Rt △ABG 中,BG =6,AG = 6 3 ∠AGE =∠CHE =90°,∠E =∠E ∴△EHC ∽△EGAAH 2 + BH 2 10 10BCE DAGB CED HAy N 1M 1BM 2 N 2O xA第 10 页 / 共 10 页4 6 3 BMP DA C OQG PMFAQO E GF P A MQ OE ⎨⎨ ⎨ 2 2 ∴ CH = EH∴ = 6 ∴ EG = 9 AG EG EG∴ EB = EG - BG = 9 3 - 6S 四边形ABCD = S △ABE - S (3) AD = 25 + 5n6+nECD = 75 - 18 324. 解:(1)将点 A (-1,1)和点 B (4, 6)代入 y = ax 2 + bx 中⎧ 1 ⎧1 = a - b 得 ⎩6 = 16a + 4ba = 解得: ⎪b = - 1 ⎩ 2 ∴该抛物线的解析式为 y = 1 x 2 - 1x2 2(2) 过点 A 作 AN ⊥ x 轴于点 N设 AF 的解析式为 y = kx + m (k ≠ 0)∴ 1 = -k + m ∴ k = m - 1∴AF 的解析式为 y = (m - 1)x + m⎧ y = 1 x 2 - 1 x 联立⎪2 2⎩ y = (m - 1)x + m 解得 x 1 = -1 , x 2 = 2m ∴ x G = x H = 2m∴在 Rt △FOH 中OF = m , OH = 2m 在 Rt △ANE 中 AN = 1 , NE = 2 ∴ OF = AN = 1 OH NE 2 ∴ Rt △∽O △H Rt ANE ∴ ∠FHO = ∠AEN ∴ FH ∥AE13 + 89 或13 - 89 或15 + 113 或15 - 113(3) t 的值为 2 6 6yyyyxxxx3KB MD P ACO HQyGF AN OEHx“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年湖北省武汉市东西湖区九年级(上)期中数学试卷一、选择题(3分×10=30分)1.(3分)将一元二次方程5x2﹣1=4x化成一般形式后,二次项的系数和一次项系数分别是()A.5,﹣1 B.5,4 C.5,﹣4 D.5,12.(3分)方程x2=25的解为()A.x=5 B.x=﹣65 C.x=±5 D.x=±3.(3分)下列函数中,当x>0时,y随x增大而减小的是()A.y=x2 B.y=x﹣1C.y=D.y=﹣x24.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.(3分)关于x的方程+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.1 C.﹣1 D.±16.(3分)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位7.(3分)若x1、x2是一元二次方程x2﹣6x﹣5=0的两个根,则x1x2的值为()A.﹣6 B.6 C.﹣5 D.58.(3分)如图,△ABC绕点C按顺时针旋转15°到△DEC,若点A恰好在DE上,则∠BAE的度数为()A.15°B.55°C.65°D.75°9.(3分)今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投入3640万元,已知2016年已投入1000万元,设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.1000(1+x)2=3640 B.1000(x2+1)=3640C.1000+1000x+1000x2=3640 D.1000(1+x)+1000(1+x)2=264010.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个 B.3个 C.4个 D.5个二、填空题(3分×6=18分)11.(3分)已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是.12.(3分)一个圆柱的高等于底面半径,写出它的表面积S与底面半径r的函数关系式为.13.(3分)已知点A(2,1),则绕原点O逆时针旋转180°后对应点的坐标是.14.(3分)一个二次函数,当自变量x=0时,函数值y=﹣1;当x为﹣2与时,函数值y=0,求这个二次函数解析式.15.(3分)关于x的一元二次方程ax2+bx+c=3(a≠0)的一个根为x=2,且二次函数y=ax2+bx+c的图象的对称轴是直线x=2,则该图象的顶点坐标为.16.(3分)已知函数y=x2+2(a+2)x+a2的图象与x轴有两个交点,且都在x轴的负半轴上,则a的取值范围是.三、解答题(本大题共9小题,共72分)17.(6分)解方程:x2+3x﹣1=0(公式法)18.(6分)一个二次函数的图象经过(0,﹣2),(﹣1,﹣1),(1,1)三点,求这个二次函数的解析式.19.(6分)如果关于x的一元二次方程x2+4x+a=0的两个不相等的实数根x1,x2满足x1x2﹣2x x﹣2x2﹣5=0,求a的值.20.(7分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,﹣1),B(﹣5,﹣4),C(﹣2,﹣3)(1)作出△ABC向上平移6个单位,再向右平移7个单位的△A1B1C1;(2)作出△ABC关于y轴对称的△A2B2C2,并写出点C2的坐标;(3)将△ABC绕点O顺时针旋转90°后得到△A3B3C3,请你画出旋转后的△A3B3C3.21.(7分)请在同一坐标系中画出二次函数①y=②y=的图象.说出两条抛物线的位置关系,指出②的开口方向、对称轴和顶点.22.(8分)在一块长16m、宽12m的矩形荒地上,小明要建造一个花园,并使花园所占的面积为荒地面积的一半,其中花园四周小路的宽度都相等,求小路的宽.23.(10分)某公司拟用运营指数y来量化考核司机的工作业绩,运营指数(y)与运输次数(n)和平均速度(x)之间满足关系式为y=ax2+bnx+100,当n=1,x=30时,y=190;当n=2,x=40时,y=420.(1)用含x和n的式子表示y;(2)当运输次数定为3次,求获得最大运营指数时的平均速度;(3)若n=2,x=40,能否在n增加m%(m>0),同时x减少m%的情况下,而y的值保持不变?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)24.(10分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC 边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.25.(12分)在平面直角坐标系中,抛物线C1:y=ax2﹣1(1)若抛物线过点A(1,0),求抛物线C1的解析式;(2)将(1)中的抛物线C1平移,使其顶点在直线L1:y=x上,得到抛物线C2,若直线L1与抛物线C2交于点C、D,求线段CD的长;(3)将(1)中的抛物线C1绕点A旋转180°后得到抛物线C3,直线y=kx﹣2k+4与抛物线C3只有唯一交点,求符合条件的直线l的解析式.2017-2018学年湖北省武汉市东西湖区九年级(上)期中数学试卷参考答案与试题解析一、选择题(3分×10=30分)1.(3分)将一元二次方程5x2﹣1=4x化成一般形式后,二次项的系数和一次项系数分别是()A.5,﹣1 B.5,4 C.5,﹣4 D.5,1【解答】解:5x2﹣1=4x,5x2﹣4x﹣1=0,二次项的系数和一次项系数分别是5、﹣4,故选:C.2.(3分)方程x2=25的解为()A.x=5 B.x=﹣65 C.x=±5 D.x=±【解答】解:x2=25,x=±5;故选:C.3.(3分)下列函数中,当x>0时,y随x增大而减小的是()A.y=x2 B.y=x﹣1C.y=D.y=﹣x2【解答】解:A、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小;B、∵k>0,∴y随x的增大而减小;C、∵k>0,∴y随x的增大而增大;D、∵y=﹣x2,∴对称轴x=0,当图象在对称轴左侧,y随着x的增大而增大;而在对称轴右侧,y随着x的增大而减小.故选:D.4.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、既是轴对称图形,又是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既不是轴对称图形,又不是中心对称图形,故本选项不符合题意.故选:A.5.(3分)关于x的方程+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.1 C.﹣1 D.±1【解答】解:由关于x的方程+2mx﹣3=0是一元二次方程,得m2+1=2,且≠0,解得m=﹣1,故选:C.6.(3分)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.7.(3分)若x1、x2是一元二次方程x2﹣6x﹣5=0的两个根,则x1x2的值为()A.﹣6 B.6 C.﹣5 D.5【解答】解:∵x1、x2是一元二次方程x2﹣6x﹣5=0的两个根,∴x1•x2=﹣5;故选:C.8.(3分)如图,△ABC绕点C按顺时针旋转15°到△DEC,若点A恰好在DE上,则∠BAE的度数为()A.15°B.55°C.65°D.75°【解答】解:∵△ABC绕点C按顺时针旋转15°到△DEC,∴∠ACD=15°,∠BAC=∠D,∵∠EAC=∠D+∠ACD,即∠BAE+∠BAC=∠D+∠ACD,∴∠BAE=∠ACD=15°.故选:A.9.(3分)今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投入3640万元,已知2016年已投入1000万元,设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.1000(1+x)2=3640 B.1000(x2+1)=3640C.1000+1000x+1000x2=3640 D.1000(1+x)+1000(1+x)2=2640【解答】解:设投入经费的年平均增长率为x,则2017年投入1000(1+x)万元,2018年投入1000(1+x)2万元,根据题意得1000+1000(x+1)+1000(1+x)2=3640,即1000(1+x)+1000(1+x)2=2640.故选:D.10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴上,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c >am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.二、填空题(3分×6=18分)11.(3分)已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是2.【解答】解:把x=﹣1代入方程可得1﹣m+1=0,∴m=2.故答案为:2.12.(3分)一个圆柱的高等于底面半径,写出它的表面积S与底面半径r的函数关系式为S=4πr2.【解答】解:圆柱的表面积S与底面半径r的函数关系式为S=2πr2+2πr•r=4πr2.故答案为:S=4πr2.13.(3分)已知点A(2,1),则绕原点O逆时针旋转180°后对应点的坐标是(﹣2,﹣1).【解答】解:由点A(2,1),则绕原点O逆时针旋转180°后对应点的坐标,得对应点与A点关于原点对称,对应点的坐标是(﹣2,﹣1).故答案为:(﹣2,﹣1).14.(3分)一个二次函数,当自变量x=0时,函数值y=﹣1;当x为﹣2与时,函数值y=0,求这个二次函数解析式.【解答】解:根据题意设二次函数解析式为y=a(x+2)(x﹣),将(0,﹣1)代入得:﹣a=﹣1,即a=1,则二次函数解析式为y=(x+2)(x﹣)=x2+x﹣1.15.(3分)关于x的一元二次方程ax2+bx+c=3(a≠0)的一个根为x=2,且二次函数y=ax2+bx+c的图象的对称轴是直线x=2,则该图象的顶点坐标为(2,3).【解答】解:∵关于x的一元二次方程ax2+bx+c=3的一个根为x=2,∴4a+2b+c=3,∵二次函数y=ax2+bx+c的对称轴是直线x=2,∴顶点的横坐标为2,将x=2代入二次函数解析式得:y=4a+2b+c∴y=3,∴函数的顶点坐标为:(2,3).故答案为(2,3).16.(3分)已知函数y=x2+2(a+2)x+a2的图象与x轴有两个交点,且都在x轴的负半轴上,则a的取值范围是a>﹣1且a≠0.【解答】解:设抛物线与x轴交点的横坐标为x1,x2,依题意得x1+x2=﹣2(a+2)<0 ①x1•x2=a2>0 ②而△=b2﹣4ac>0,∴a+1>0 ③联立①②③解之得:a>﹣1且a≠0.故填空答案:a>﹣1且a≠0.三、解答题(本大题共9小题,共72分)17.(6分)解方程:x2+3x﹣1=0(公式法)【解答】解:∵a=1,b=3,c=﹣1△=b2﹣4ac=13>0∴x==x1=,x2=﹣.18.(6分)一个二次函数的图象经过(0,﹣2),(﹣1,﹣1),(1,1)三点,求这个二次函数的解析式.【解答】解:设抛物线解析式为y=ax2+bx+c,根据题意得,解得,所以抛物线解析式为y=2x2+x﹣2.19.(6分)如果关于x的一元二次方程x2+4x+a=0的两个不相等的实数根x1,x2满足x1x2﹣2x x﹣2x2﹣5=0,求a的值.【解答】解:由题意得x 1+x2=﹣4,x1x2=a∵x 1x2﹣2x1﹣2x2﹣5=0∴a+8﹣5=0,∴a=﹣3此时△=b2﹣4ac=28>0,原方程有两个不相等实数根∴a=﹣3.20.(7分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,﹣1),B(﹣5,﹣4),C(﹣2,﹣3)(1)作出△ABC向上平移6个单位,再向右平移7个单位的△A1B1C1;(2)作出△ABC关于y轴对称的△A2B2C2,并写出点C2的坐标;(3)将△ABC绕点O顺时针旋转90°后得到△A3B3C3,请你画出旋转后的△A3B3C3.【解答】解:(1)所作图形如图所示:(2)所作图形如图所示:C2的坐标是(2,﹣3);(3)所作图形如图所示.21.(7分)请在同一坐标系中画出二次函数①y=②y=的图象.说出两条抛物线的位置关系,指出②的开口方向、对称轴和顶点.【解答】解:如图所示,两条抛物线的位置关系为①向右平移2个单位得到②,②的开口向上,对称轴为直线x=2,顶点坐标为(2,0).22.(8分)在一块长16m、宽12m的矩形荒地上,小明要建造一个花园,并使花园所占的面积为荒地面积的一半,其中花园四周小路的宽度都相等,求小路的宽.【解答】解:设小路宽问xm,由于花园四周小路的宽度相等,则根据题意,可得(16﹣2x)(12﹣2x)=×16×12,即x2﹣14x+24=0,解之得x=2或x=12.由于矩形荒地的宽是12m,故舍去x=12.答:花园四周小路宽为2m.23.(10分)某公司拟用运营指数y来量化考核司机的工作业绩,运营指数(y)与运输次数(n)和平均速度(x)之间满足关系式为y=ax2+bnx+100,当n=1,x=30时,y=190;当n=2,x=40时,y=420.(1)用含x和n的式子表示y;(2)当运输次数定为3次,求获得最大运营指数时的平均速度;(3)若n=2,x=40,能否在n增加m%(m>0),同时x减少m%的情况下,而y的值保持不变?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)【解答】解:(1)由条件可得,解得.故;(2)当n=3时,,由可知,要使y最大,;(3)把n=2,x=40带入,可得y=420,再由题意,得,即2(m%)2﹣m%=0解得m%=,或m%=0(舍去)则m=50.24.(10分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC 边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.【解答】证明:(1)∵△ABC是等腰三角形,顶角∠BAC=α(α<60°),线段AD 绕点A顺时针旋转α到AE,∴AB=AC,∵∠EAD=∠BAC,∴∠BAE=∠CAD,在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴BE=CD;(2)∵AD⊥BC,∴BD=CD,∴BE=BD=CD,∠BAD=∠CAD,∴∠BAE=∠BAD,在△ABD和△ABE中,,∴△ABD≌△ABE(SAS),∴∠EBF=∠DBF,∵EF∥BC,∴∠DBF=∠EFB,∴∠EBF=∠EFB,∴EB=EF=BD,∴四边形EFDB是平行四边形,∵EF=EB,∴四边形BDFE为菱形.25.(12分)在平面直角坐标系中,抛物线C1:y=ax2﹣1(1)若抛物线过点A(1,0),求抛物线C1的解析式;(2)将(1)中的抛物线C1平移,使其顶点在直线L1:y=x上,得到抛物线C2,若直线L1与抛物线C2交于点C、D,求线段CD的长;(3)将(1)中的抛物线C1绕点A旋转180°后得到抛物线C3,直线y=kx﹣2k+4与抛物线C3只有唯一交点,求符合条件的直线l的解析式.【解答】解:(1)将点A(1,0)代入y=ax2﹣1,可得y=x2﹣1(2)可设抛物线C2的顶点为(m,n),依题意抛物线C2为y=(x﹣m)2+m与直线y=x联立解方程组得:x1=m,y1=m;x2=m+1,y2=m+1即C(m,m),D(m+1,m+1)过点C作CH∥x轴,过点D作DN∥y轴,CH交DN于点M,∴CM=1,DM=1,∴CD=(3)依题意可求出抛物线C3的解析式为y=﹣(x﹣2)2+1∵直线y=kx﹣2k+4=k(x﹣2)+4,∴直线l过定点M为(2,4)①直线l∥y轴,则x=2与抛物线C3总有唯一公共点(2,1)②若直线l不平行于y轴,由一次函数y=kx﹣2k+4(k≠0),与y=﹣(x﹣2)2+1联立方程组,消去y得x2﹣4x+3+kx﹣2k+4=0即x2﹣(4﹣k)x+7﹣2k=0,△=k2﹣12=0,得k1=,k2=﹣∴或综上所述,过定点M,共有三条直线l:x=2或或,它们分别与抛物线C3有唯一个公共点.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。