代数学引论.第一卷,基础代数

合集下载

代数学引论第二版课程设计

代数学引论第二版课程设计

代数学引论第二版课程设计一、课程概述本课程为高等数学系列课程中的一门代数学基础课程,是对代数学基础理论和方法的概括与总结,旨在帮助学生全面掌握代数学基本概念,理解代数学基本原理,掌握代数学基本方法和技巧,在将来学习更高阶的数学课程时有更加扎实的数学基础。

二、课程目标通过本课程的学习,学生应该能够:1.掌握代数学的基本概念和基本理论;2.理解代数学基本方法和技巧;3.能够熟练运用代数学中的基本操作;4.能够解决代数学中的基本问题。

三、课程大纲第一章代数系统1.代数系统的定义和基本概念;2.代数系统的分类;3.群、环、域的定义和基本概念。

第二章群论1.群的定义和基本性质;2.等价关系与商群;3.群的同态与同构;4.子群、左陪集和右陪集;5.群的生成元和表示;6.群的分类。

第三章环论1.环的定义和基本性质;2.环的同态与同构;3.互反元、单位元和幺环;4.环的理想和商环;5.环的生成元和表示;6.环的分类。

第四章域论1.域的定义和基本概念;2.域的同态与同构;3.域的代数性与超越性;4.域的扩张:代数扩张与超越扩张;5.域扩张的应用。

四、参考书目1.《代数学引论(第二版)》,李文治,高等教育出版社;2.《现代代数学基础(第二版)》,杨学义,高等教育出版社;3.《线性代数及其应用(第四版)》,Gilbert Strang,机械工业出版社。

五、考核方式本课程的考核方式主要包括平时成绩、期中考试和期末考试三个环节。

其中,平时成绩占课程总评成绩的30%,期中考试占40%,期末考试占30%。

教师根据学生的表现情况,适时设置小组讨论和作业,以及课堂互动等环节,以增强学生的学习兴趣和主动性。

同时,教师将通过每门课程结束时的总结,及时进行反思和修改,以提高本课程的教学质量和效果。

六、结语代数学作为一门基础学科,为其他数学领域的发展奠定了坚实的数学基础,其对我们现代生活的影响至关重要。

本门课程旨在帮助学生体会代数学的精髓,全面掌握代数学的基础知识和理论,为将来的数学学习打下坚实的基础。

代数学引论

代数学引论
代数学引论
集合与整数
作者:
• 集合:它是具有一定属性的食物形成的一 个集体,根据这个属性可以区别一个食物 属于或不属于这个集合。 • 笛卡尔集: • A*B={(a,b)|a∈A,b∈B} • 描述集合方法:列举法,描述法 • 关系图,关系矩阵
• 关系
• 设S是一个非空集合,a,b,c,……表示它的元素。 设在S中任意两个元素之间存在(或不存在)某 种属性R。只要R满足下面的条件,即对于S中任 一对有次序的元素a,b来说,a,b有这种属性R,这 两者必定有一成立而且只有一成立,那么我们说 R是集合S上的一个二元关系,或简称关系。若 a,b有关系R,则记作aRb。
• S的幂集是S的所有子集作元素构成的集 合。 • 例:A={1,2,3} B={A,B}
• • • • •
二元关系的特性: 自反性:aRb,对所有的a∈S; 对称性:若aRb,则bRa; 传递性:若aRb且bRc,则aRc。 如果一个非空集合S的一个二元关系R满足 以上三条,则R是S的一个等价关系。
பைடு நூலகம்
• • • • •
反对称性: 任意的x,y; <x,y>∈R,且<y,x>∈R,得到x=y 等价于 <x,y>∈R,且x≠y,得到<y,x>不属于R
• • • • • •
划分:书第二页 等价类: 例: A={1,2,3} R: A*A={<1,1>,<2,2>,<3,3,>,<1,2>,<2,1>} 则:[1]R={1,2};[2]R={1,2},[3]R={3}
• 函数:
• 在某变化过程中设有两个变量x,y,按照某个对应法则, 对于每一个给定的x值,都有唯一确定的y值与之对应,那 么y就是x的函数。其中x叫自变量,y叫x的因变量。 • 另外,若对于每一个给定的y值,也都有唯一的x值与之对 应,那么x也是y的函数了。 • 一般地,给定非空数集A,B,按照某个对应法则f,使得A中 任一元素x,都有B中唯一确定的y与之对应,那么从集合 A到集合B的这个对应,叫做从集合A到集合B的一个函数。 记作:x→y=f(x),x∈A.集合A叫做函数的定义域,记为D, 集合{y∣y=f(x),x∈A}叫做值域,记为C。定义域,值域, 对应法则称为函数的三要素。一般书写为y=f(x),x∈D.若 省略定义域,则指使函数有意义的一切实数所组成的集合。

代数学引论柯斯特利金

代数学引论柯斯特利金

代数学引论柯斯特利金
代数学引论柯斯特利金
《代数学引论柯斯特利金》(Introduction to Algebra, I. M. Gelfand and Alexander Shen)是一本初学者入门的代数学教材,作者是苏联著名数学家Gelfand和Shen。

本书的特点是简明扼要、易于理解、注重实际应用,适合没有高深数学背景的读者学习。

本书主要分为三个部分:代数基础、线性代数和多项式代数。

第一部分介绍了代数的基本概念和性质,如群、环、域等。

第二部分主要讲解了线性代数的基本理论,包括向量空间、线性变换、特征值等。

第三部分主要介绍了多项式代数的基本概念和性质,包括多项式环、多项式剩余定理等。

《代数学引论柯斯特利金》的教学风格简明扼要、易于理解,注重实际应用。

它是一本适合初学者入门的代数学教材,能够让读者快速掌握代数学的基本概念和性质。

代数学引论(聂灵沼_丁石孙版)第一章习题答案(可编辑修改word版)

代数学引论(聂灵沼_丁石孙版)第一章习题答案(可编辑修改word版)
(Ⅱ)因集合 G 对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然 Bn=A2=E 为幺元.
(Ⅳ)对 Bi(i=1,2,…,n),有
BiBn-i=E;
对 ABi(i=1,2,…,n),有
(ABi)(Bn-iA)=E,
因此 G 内任何一元都可逆.
G={a1,a2,…,an}={aka1, aka2,…, akan}<3>
G={a1,a2,…,an}={a1ak, a2ak,…, anak}<4>
由<1>和<3>知对任意atG,存在amG,使得
akam=at.
由<2>和<4>知对任意atG,存在asG,使得
asak=at.
由下一题的结论可知 G 在该乘法下成一群.
对任意 a,bG,
ba=bae=ba(ab)2=ba(ab)(ab)
因此 G 为交换群. [方法 2]
对任意 a,bG,
=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab
a2b2=e=(ab)2,
由上一题的结论可知 G 为交换群.
3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:
<2>证明a1at= ata1;
因为
a1(ata1)at=(a1at) (a1at)=(a1)2a1(a1at)at=(a1a1)at=a1(a1at)= (a1)2,
故此
a1(ata1)at= a1(a1at)at.
由条件(1),(2)可得到
<3>证明at就是G的幺元;对任意akG,
a1at= ata1.
我们注意到
a-1bka== bkr,

代数学引论(聂灵沼_丁石孙版)第一章习题解答

代数学引论(聂灵沼_丁石孙版)第一章习题解答

第一章代数基本概念1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b∈G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b∈G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[方法2]对任意a,b∈G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若i≠j(I,j=1,2,…,n),有a k a i≠a k a j------------<1>a i a k≠a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t∈G, 存在a m∈G,使得a k a m=a t.由<2>和<4>知对任意a t∈G, 存在a s∈G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t∈G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k∈G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G内元素.下面证明任意a∈G,存在b∈G,使得ab=ba=e.<1> 对任意a∈G,存在b∈G,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,b∈G,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元a∈G,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意b∈G, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意d∈G, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,b∈G,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2≠x2y2.[思路] 在一个群G中,x,y∈G, xy=yx ⇔(xy)2=x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=(123213), y=(123132)那么(xy)2=(123312)≠(123123)= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:[132]表示置换(123132), 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示[123], [132],[213], [231], [312], [321]那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,b∈G,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=b r i.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=b r1, 结论成立;假设当k=n时结论成立, 即a-n ba n=b r n成立, 下面证明当k=n+1时结论也成立.我们注意到= b kr,a-1b k a=(a−1ba)(a−1ba)…(a−1ba)⏟k个因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1b r n a=b r n r=b r n+1,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射x↦x−1是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射x↦x−1是一同构映射.由逆元的唯一性及(x−1)−1=x可知映射x↦x−1为一一对应,又因为(xy)-1=y-1x-1,并且群G为一个交换群,可得y-1x-1=x−1y−1.因此有(x y)-1=x−1y−1.综上可知群G为一个交换群时映射x↦x−1是一同构映射.(Ⅱ)接着证明当映射x↦x−1是一同构映射,则群G为一个交换群.若映射x↦x−1是一同构映射,则对任意x,y∈G有(x y)-1=x−1y−1,另一方面,由逆元的性质可知(y x)-1=x−1y−1.因此对任意x,y∈G有xy=yx,即映射x↦x−1是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1∈S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意a∈G,有a~a,故此aa-1=e∈S;对任意a,b∈S,由(ab)b-1=a∈S,可知ab~b,又be-1=b∈S,故b~e,由传递性可知ab~e,即(ab)e-1=ab∈S.再者因ae-1=a∈S, 故a~e,由对称性可知e~a,即ea-1=a-1∈S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意a∈G, 有aa-1=e∈S,故此a~a(自反性);若a~b,则ab-1∈S,因为S为G的子群,故(ab-1)-1=ba-1 ∈S,因此b~a(对称性);若a~b,b~c,那么ab-1∈S,bc-1∈S,故ab-1 bc-1=ac-1∈S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明x↦nx为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:可记a=(1 2)(3 4), b=(1 3)(2 4), c=(1 4)(2 3),那么置换的乘积表格如下:B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构.[讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意a∉H, 有H∩aH=∅,并且aH⊂G,H⊂G,又注意到aH和H中都有n个元素, 故此H∪aH=G.同理可证对任意a∉H, 有H∩Ha=∅, H∪Ha=G,因此对任意a∉H,有aH=Ha.对任意a∈H, 显然aH⊂H, Ha⊂H又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意a∈G,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取a∈H, h∈H, 显然有aha-1∈H.对给定的x∉H, 有H∩xH=∅, H∪xH=G.这是因为若假设y∈H∩xH, 则存在h∈H,使得y=xh,即x=yh-1∈H产生矛盾,因此H∩xH=∅;另一方面, xH⊂G,H⊂G, 又注意到xH和H中都有n个元素, 故此H∪xH=G.那么任取a∉H,由上面的分析可知a∈xH, 从而可令a=xh1这里h1∈H.假设存在h∈H, 使得aha-1∉H,则必有aha-1∈xH,从而可令aha-1=xh2这里h2∈H.那么xh1ha-1=xh2,即a= h2h1h∈H,产生矛盾.因此,任取a∉H, h∈H, 有aha-1∈H.综上可知对任取a∈G, h∈H, 有aha-1∈H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素a≠e适合a2=e.证明:设b∈G,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取a∈G,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=(0110), B=(e2πin00e−2πi n)证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构. 证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i∙B j=B i+j,注意到B n=(10)故此01B i∙B j=B r∈G这里i+j=kn+r,k∈Z,0<r≤n.(2) A B i∙B j=B r∈G这里i+j=kn+r,k∈Z,0<r≤n.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t∈G,这里i=sn+t,k∈Z,0<t≤n.那么B i∙(AB j)=( B i∙A)B j=(AB n-t) ∙B j∈G(4)(AB i)∙(AB j)=A(B i AB j)=A((AB n-t) ∙B j)=A2(B n-t ∙B j)= B n-t ∙B j) ∈G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群. 证明:对任意a,b∈Ga i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=(0−110)的阶为4,元素b=(01−1−1)的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=(1101),对任何正整数n,(ab)n=(1n01)≠(1001)可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,b∈S,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即ab∈S.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1∈S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={a1,a12,… ,a1n1}为G的一个子群;G中取a2∉G1,并设其阶数为n2,则循环群G2={a2,a22,… ,a2n2}为G的一个子群;G中取a3∉G1∪G2,并设其阶数为n3,则循环群G3={a3,a32,… ,a3n3}为G的一个子群;… … …我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<a2>,G2=<a4>,…,G n=<a2n>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= k1−1h1−1∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a∈KH,那么有HK ⊂KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a∈HK,那么有KH ⊂HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明|HK|=|H|∙|K| |H∩K|.证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=∅.----------------(2)由(1),(2)我们得到|HK|=r|K|=|H|∙|K| |H∩K|.[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈aH;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠∅,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果M∩N={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G 的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为M∩N={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmN↦m,那么该映射显然是一一对应,另外f(m i N⋅m j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1.M∩N={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈M∩N,产生矛盾.2. 设f: MN/N→MmN↦m,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=ax⇒a=x-1ax⇒ax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=S⇒S=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)⊂N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群G={e,a,b,c},那么a2=b2=c2=e,ab=ba=c,ac=ca=b,bc=cb=a. 群表如下:综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)∙(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“⊕”与乘法“⊙”为a⊕b=ab, a⊙b=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:a⊕b=a+b-1,a⊙b=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构.证明:(i)证明L在运算⊕下构成交换群:由⊕的定义,得到(a⊕b)⊕c=(a+b-1) ⊕c=a+b-1+c-1=a+b+c-2a⊕(b⊕c)= a⊕(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(a⊕b)⊕c= a⊕(b⊕c).----------------(1)同时由⊕的定义还可以得到a⊕1= 1⊕a=a,------------------------(2)a⊕(2-a)=(2-a) ⊕a=1,---------------(3)a⊕b=b⊕a,----------------------------(4)由(1),(2),(3)(4)可知L在运算⊕下构成交换群.(ii)证明L中运算⊙满足结合律和交换律:容易证明这里略过.(iii)证明乘法⊙对加法⊕满足分配律:因为a ⊙(b ⊕c)= a ⊙(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(a ⊙b)⊕(a ⊙c)=(a+b-1) ⊕(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a ⊙(b ⊕c)= (a ⊙b)⊕(a ⊙c).由于⊕和⊙满足交换律,故此(b ⊕c) ⊙a= (b ⊙a)⊕(c ⊙a).因此新定义的乘法⊙对新定义的加法⊕满足分配律(iv) 设0为环(L ,+,∙)的零元,则0⊙a=a ⊙0=a由(i),(ii),(iii),(iv)可得到(L ,⊕,⊙)为交换幺环.(v) 最后证明(L ,+,∙)与(L ,⊕,⊙)同构:设f: L→Lx ↦1-x ,容易证明f 为(L ,+,∙)到(L ,⊕,⊙)的同构映射.30. 给出环L 与它的一个子环的例子,它们具有下列性质:(i) L 具有单位元素,但S 无单位元素;(ii) L 没有单位元素,但S 有单位元素;(iii) L, S 都有单位元素,但互不相同;(iv) L 不交换,但S 交换.解:(i) L=Z ,S=2Z ;(ii) L={(a b 00)|a,b ∈R},S={(a 000)|a ∈R}; (iii) L={(a00b )|a,b ∈R},S={(a 000)|a ∈R}; (iv) L={(a 0b 0)|a,b ∈R},S={(a 000)|a ∈R}; 31. 环L 中元素e L 称为一个左单位元,如果对所有的a ∈L ,e L a= a ;元素e R 称为右单位元,如果对所有的a ∈L ,ae R =a.证明:(i)如果L 既有左单位元又有右单位元,则L 具有单位元素; (ii)如果L 有左单位元,L 无零因子,则L 具有单位元素; (iii)如果L 有左单位元,但没有右单位元,则L 至少有两个左单位元素.证明:(i) 设e L 为一个左单位元,e R 为右单位元,则e L e R =e R =e L .记e=e R =e L ,则对所有的a ∈L ,ea=ae=a , 因此e 为单位元素;(ii) 设e L 为一个左单位元,则对所有的a(≠0)∈L ,a(e L a)=a 2;另一方面,a(e L a)=(ae L )a.所以a 2=(ae L )a.因为L 无零因子,所以满足消去律[注],故此a= ae L .另外,若a=0,则a= ae L =e L a. 因此左单位元e L 正好是单位元.(iii) 设e L 为一个左单位元,因为L 中无右单位元,故存在x ∈L ,使得xe L ≠x,即xe L -x≠0,则e L + xe L -x≠e L ,但是对所有的a ∈L ,(e L + xe L -x)a=a,因此e L + xe L -x 为另一个左单位元,所以L 至少有两个左单位元素.[注意] L 无零因子,则满足消去律(参考教材46页).32. 设F 为一域.证明F 无非平凡双边理想.证明:设I 为F 的任意一个理想,且I≠{0},则对任意a(≠0)∈I ,则a -1∈F,于是a -1a=1∈I.从而F 中任意元素f ,有f ∙1=f ∈I ,故I=F ,即F 只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L 是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L 是一体(域).33. 如果L 是交换环,a ∈L ,(i) 证明La={ra|r ∈L}是双边理想;(ii) 举例说明,如果L 非交换,则La 不一定是双边理想.证明:(i) 容易验证La 为L 的一个加法群. 任取ra ∈La ,l ∈L ,则l(ra)=(lr)a ∈La ,(ra)l=r(al)=r(la)=(rl)a ∈La故La 为L 的一个双边理想.(ii) 设L=M 2(R),那么L 显然不是交换环,取h=(1010),下面考察Lh 是否为L 的理想: 取k=(1200),容易验证h ∈Lh ,hk ∉ Lh ,因此Lh 不是L 的一个理想.34. 设I 是交换环L 的一个理想,令rad I ={r ∈L|r n ∈I 对某一正整数n},证明rad I 也是一个理想.radI 叫做理想I 的根.35. 设L 为交换幺环,并且阶数大于1,如果L 没有非平凡的理想,则L 是一个域.证明:只要证明非零元素均可逆即可.任取a ∈L ,那么La 和aL 是L 的理想,且La ≠{0},aL ≠{0},因L 无平凡的理想,故此La=aL=L ,因此ax=1和ya=1都有解,因而a 为可逆元.36. Q 是有理数域,M n (Q)为n 阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K 为M n (Q)的非零理想,下面证明K=M n (Q).为了证明这一点,只要证明n 阶单位矩阵E ∈K.记E ij 为除了第i 行第j 列元素为1,其余元素全为0的矩阵.那么E ij E st ={E it ,j =s 0, j ≠s而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,即x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b. (iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1.(iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数θ,0≤θ≤1,使得f(θ)=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0} 包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g ∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.。

(完整版)代数学引论(聂灵沼_丁石孙版)第一章习题答案

(完整版)代数学引论(聂灵沼_丁石孙版)第一章习题答案

第一章代数基本概念1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,bG,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,bG,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[方法2]对任意a,bG,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若ij(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G 内元素.下面证明任意aG,存在bG,使得ab=ba=e.<1> 对任意aG,存在bG,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,bG,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元aG,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意bG, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意dG, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,bG,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2x2y2.[思路] 在一个群G中,x,yG, xy=yx (xy)2x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=, y=那么(xy)2= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:表示置换, 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示,,,,那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,bG,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=, 结论成立;假设当k=n时结论成立, 即a-n ba n=成立, 下面证明当k=n+1时结论也成立.我们注意到a-1b k a== b kr,因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1a==,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意aG,有a~a,故此aa-1=eS;对任意a,bS,由(ab)b-1=aS,可知ab~b,又be-1=bS,故b~e,由传递性可知ab~e,即(ab)e-1=abS.再者因ae-1=aS, 故a~e,由对称性可知e~a,即ea-1=a-1S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意aG, 有aa-1=eS,故此a~a(自反性);若a~b,则ab-1S,因为S为G的子群,故(ab-1)-1=ba-1S,因此b~a(对称性);若a~b,b~c,那么ab-1S,bc-1S,故ab-1 bc-1=ac-1S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构. [讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意aH, 有HaH=,并且aHG,HG,又注意到aH和H中都有n个元素, 故此HaH=G.同理可证对任意aH, 有HHa=, HHa=G,因此对任意aH,有aH=Ha.对任意aH, 显然aHH, HaH又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意aG,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取aH, hH, 显然有aha-1H.对给定的xH, 有HxH=, HxH=G.这是因为若假设yHxH, 则存在hH,使得y=xh,即x=yh-1H产生矛盾,因此HxH=;另一方面, xHG,HG, 又注意到xH和H中都有n个元素, 故此HxH=G.那么任取aH,由上面的分析可知axH, 从而可令a=xh1这里h1H.假设存在hH, 使得aha-1H,则必有aha-1xH,从而可令aha-1=xh2这里h2H.那么xh1ha-1=xh2,即a= h2h1hH,产生矛盾.因此,任取aH, hH, 有aha-1H.综上可知对任取aG, hH, 有aha-1H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素ae适合a2=e.证明:设bG,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取aG,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=, B=证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构. 证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i B j=B i+j,注意到B n=故此B i B j=B r G这里i+j=kn+r,kZ,0<rn.(2)A B i B j=B r G这里i+j=kn+r,kZ,0<rn.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t G,这里i=sn+t,kZ,0<tn.那么B i(AB j)=( B i A)B j=(AB n-t)B j G(4)(AB i)(AB j)=A(B i AB j)=A((AB n-t)B j)=A2(B n-t B j)= B n-t B j)G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群.证明:对任意a,bGa i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=的阶为4,元素b=的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=,对任何正整数n,(ab)n=≠可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,bS,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即abS.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={,…}为G的一个子群;G中取a2G1,并设其阶数为n2,则循环群G2={,…}为G的一个子群;G中取a3G1∪G2,并设其阶数为n3,则循环群G3={,…}为G的一个子群;… … …我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<>,G2=<>,…,G n=<>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= ∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a∈KH,那么有HK KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a∈HK,那么有KH HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=.----------------(2)由(1),(2)我们得到[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈a H;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果MN={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为MN={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmNm,那么该映射显然是一一对应,另外f(m i Nm j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1MN={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈MN,产生矛盾.2. 设f: MN/N→MmNm,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=axa=x-1axax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=SS=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群222综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p 阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“”与乘法“”为ab=ab, ab=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:ab=a+b-1,ab=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构. 证明:(i)证明L在运算下构成交换群:由的定义,得到(ab)c=(a+b-1)c=a+b-1+c-1=a+b+c-2a(bc)= a(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(ab)c= a(bc).----------------(1)同时由的定义还可以得到a1= 1a=a,------------------------(2)a(2-a)=(2-a)a=1,---------------(3)ab=ba,----------------------------(4)由(1),(2),(3)(4)可知L在运算下构成交换群.(ii)证明L中运算满足结合律和交换律:容易证明这里略过.(iii)证明乘法对加法满足分配律:因为a(bc)= a(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(ab)(ac)=(a+b-1)(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a(bc)= (ab)(ac).由于和满足交换律,故此(bc)a= (ba)(ca).因此新定义的乘法对新定义的加法满足分配律(iv) 设0为环(L,+,)的零元,则0a=a0=a由(i),(ii),(iii),(iv)可得到(L,,)为交换幺环.(v) 最后证明(L,+,)与(L,,)同构:设f: L→Lx1-x,容易证明f为(L,+,)到(L,,)的同构映射.30.给出环L与它的一个子环的例子,它们具有下列性质:(i) L具有单位元素,但S无单位元素;(ii) L没有单位元素,但S有单位元素;(iii) L, S都有单位元素,但互不相同;(iv) L不交换,但S交换.解:(i) L=Z,S=2Z;(ii) L={|a,b∈R},S={|a∈R};(iii) L={|a,b∈R},S={|a∈R};(iv) L={|a,b∈R},S={|a∈R};31.环L中元素e L称为一个左单位元,如果对所有的a∈L,e L a= a;元素e R称为右单位元,如果对所有的a∈L,ae R=a.证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素.证明:(i) 设e L为一个左单位元,e R为右单位元,则e L e R=e R=e L.记e=e R=e L,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设e L为一个左单位元,则对所有的a(≠0)∈L,a(e L a)=a2;另一方面,a(e L a)=(ae L)a. 所以a2=(ae L)a.因为L无零因子,所以满足消去律[注],故此a= ae L.另外,若a=0,则a= ae L=e L a.因此左单位元e L正好是单位元.(iii) 设e L为一个左单位元,因为L中无右单位元,故存在x∈L,使得xe L≠x,即xe L-x≠0,则e L+ xe L-x≠e L,但是对所有的a∈L,(e L+ xe L-x)a=a,因此e L+ xe L-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=,下面考察Lh是否为L的理想:取k=,容易验证h∈Lh,hk Lh,因此Lh不是L的一个理想.34.设I是交换环L的一个理想,令rad I={r∈L|r n∈I对某一正整数n},证明rad I也是一个理想.radI叫做理想I的根.35.设L为交换幺环,并且阶数大于1,如果L没有非平凡的理想,则L是一个域.证明:只要证明非零元素均可逆即可.任取a∈L,那么La和aL是L的理想,且La≠{0},aL≠{0},因L无平凡的理想,故此La=aL=L,因此ax=1和ya=1都有解,因而a为可逆元.36.Q是有理数域,M n(Q)为n阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K为M n(Q)的非零理想,下面证明K=M n(Q).为了证明这一点,只要证明n阶单位矩阵E∈K.记E ij为除了第i行第j列元素为1,其余元素全为0的矩阵.那么E ij E st=而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,即x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b.(iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1.(iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数,,使得f()=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0} 包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.。

俄罗斯教材《代数学引论》的启迪

俄罗斯教材《代数学引论》的启迪

俄罗斯教材《代数学引论》的启迪(初稿)庄瓦金(漳州师范学院,福建,363000)二十年前,北京大学三位教授根据1982年斯普林格出版社的英文版翻译了莫斯科大学A.И.柯斯特利金院士的《代数学引论》[1,2],使得国内同行们对俄罗斯高水平的代数教材有所认识。

但鉴于中国国情,至今还没看到该书对中国大学本科代数教学有实质的影响。

而今,在中国数学会、中国工业与应用数学学会、国家自然科学基金委员会的关注下,数学天元基金资助、高等教育出版社出版了庆祝莫斯科大学成立250周年而推出的一批优秀数学教材的中译本,其中有A.И.柯斯特利金的《代数学引论》(第二、三版)三卷本[3~5](以下简称《引论》)。

笔者看后,很受启发,现根据这几年来对高等代数研究的基础[17~23],对《引论》作些思索,为提升中国大学本科代数教学水平奉献余力。

一《引论》的特色稍读[3~5],笔者认为,A.И.柯斯特利金之著有以下四大特色。

1 继承性[1]的英文版译者指出:A.И.柯斯特利金“发展了莫斯科大学的代数课”,这从《引论》著者经历就可以看出。

A.И.柯斯特利金1959年获莫斯科大学数理科学博士学位,1972年任莫斯科大学高等代数教研室主任,1976年升为教授,同年当选为苏联科学院通讯院士,1977-1980任莫斯科大学数学系主任,1991年起为莫斯科大学学术委员会成员,他的《引论》理所当然地继承了А.Г.库洛什等老一辈代数学家的代数教材,这还从[3~5]的补充文献也得到进一步证实。

在注意《引论》继承自己前辈工作之时,我们注意到《引论》三卷本与N.Jacobson的《抽象代数学》三卷本[6]在分卷上的相似性,这也多少说明[3~5]继承了国际上代数教材的遗产,使得这三卷本能够更好地贯串一条主线。

因此,《引论》的继承性不仅是莫斯科大学的,而且也包涵了全世界各著名大学的。

值得一提的是,[3~5]的俄文版,第二卷2004年出版,第三卷2001年出版,估计第一卷也是2001年出版,也就是说:这三卷本是在著者去世之后出版的。

俄罗斯数学教材选译系列书目

俄罗斯数学教材选译系列书目

俄罗斯数学教材选译系列书目
俄罗斯数学教材选译系列包括以下书目:
1. 数学分析(第1卷第4版)
2. 函数论与泛函分析初步(第7版)
3. 微积分学教程(第2卷)
4. 代数学引论(第一卷): 基础代数(第2版)
5. 偏微分方程习题集(第2版)
6. 随机金融数学基础(第1卷)(事实·模型)
7. 微积分学教程(第一、二、三卷)(第8版)3本合售
8. 数学分析习题集(根据2010年俄文版翻译)
9. 数学分析(第卷)(第4版)
10. 概率论习题集
11. 代数学引论(第1、2、3卷)《基础代数》《基本结构》《线性代数》3本
如需获取更详细的信息,建议前往官方网站进行查询。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数学引论.第一卷,基础代数
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。

其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。

从那时开始,其发展便持续不断地有小幅度的进展。

但当时的代数学和几何学长久以来仍处于独立的状态。

代数学可以说是最为人们广泛接受的'“数学”。

可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。

而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。

几何学则是最早开始被人们研究的数学分支。

直至16世纪的文艺复兴时期,笛卡尔创办了解析几何,将当时全然分离的代数和几何学联系至了一起。

从那以后,我们终于可以用排序证明几何学的定理;同时也可以用图形去形象的则表示抽象化的代数方程。

而其后更发展出来更加笔墨的微积分。

相关文档
最新文档