移相双全桥DC-DC变换器软开关技术研究

合集下载

双向DC-DC变换器软开关技术研究

双向DC-DC变换器软开关技术研究
船 电技 术I 控制技术
Vl1 o 21. o3 - N . 01 5 5
双 向 DC D . C变换器 软 开关技 术研 究
高晓峰 汪伟 石媛
f 国船 舶 重 工 集 团 公 司 七 一 二 研 究 所 ,武 汉 4 0 6 ) 中 3 0 4 摘 要 :本文 分析 了移相 全桥 Z VS 变 换 技 术 的 工 作 原 理 ,给 出 了 谐 振 电 感 的 选 取 条 件 , 采 用 双 向 DC DC ・

I 6 B 6 口 D= 8 o D+c 8 B= 五 1c __ JJ l - _ T
●— ——— ●~
j 】 1






——● ———- ——— —— ●——— —●—— ——— ——— ——— ———— ——— ●—— —r 一
Ke r s b・i cin lDC DC c n etrp a es i o t lzr -otg ywo d : i r t a, / o vre, h s —h t nr , eov l e - e o " d " - f c o" - a
l 引言
双 向DC— DC变 换 器 被 广 泛 应 用 在 直 流 不 停 电 电源 系统 、航 天 电源 系 统 、 电动 汽 车 及 电池 充 电器 等 场 合 , 以实 现 直 流 功 率 的双 向传 输 。为 J 了减 小变 换 器 的体 积 和 重 量 需提 高开 关 频 率 ,而 传 统 变换 器 开 关 频 率 的提 高会 增 加 开 关 损 耗 ,降 低 系 统 效 率L 。近 年 来 出现 了 解 决这 个 问题 的不 2 J 同 方 案 。研 究 较 多 的 有谐 振 、准 谐 振 或 多 谐振 技 术 方 案 , 这 些 方 案变 换 器 的 电压 电流 应 力较 高 , 但

软开关双向DCDC变换器的研究

软开关双向DCDC变换器的研究

软开关双向DCDC变换器的研究一、本文概述随着电力电子技术的快速发展,DC/DC变换器在各种电源管理系统中扮演着越来越重要的角色。

特别是在电动车、可再生能源系统、数据中心以及航空航天等领域,DC/DC变换器的性能优化和效率提升成为了研究的热点。

传统的DC/DC变换器在开关切换过程中存在较大的开关损耗和电磁干扰,影响了其整体效率和稳定性。

因此,研究和开发新型的DC/DC变换器技术,特别是具有软开关特性的双向DC/DC变换器,对于提高电源系统的效率和可靠性具有重要的理论价值和实际应用意义。

本文旨在深入研究软开关双向DC/DC变换器的基本原理、拓扑结构、控制策略及其在实际应用中的性能表现。

文章首先介绍了DC/DC变换器的基本概念和分类,分析了传统DC/DC变换器存在的问题和挑战。

然后,重点阐述了软开关技术的原理及其在双向DC/DC变换器中的应用,包括软开关的实现方式、拓扑结构的选择以及相应的控制策略。

本文还将对软开关双向DC/DC变换器的性能评估方法进行探讨,包括效率、稳定性、动态响应等指标的分析和比较。

本文将通过仿真和实验验证,对所研究的软开关双向DC/DC变换器的性能进行验证和评估。

通过对比分析不同拓扑结构和控制策略下的实验结果,为软开关双向DC/DC变换器的优化设计和实际应用提供有益的参考和指导。

本文的研究成果将为电力电子技术的发展和电源系统的性能提升提供新的思路和解决方案。

二、软开关双向DCDC变换器的基本原理软开关双向DC-DC变换器是一种新型的电力转换装置,它结合了软开关技术和双向DC-DC变换器的优点,旨在提高转换效率、减小开关损耗和降低电磁干扰。

其基本原理主要涉及到软开关技术的运用以及双向DC-DC变换器的工作模式。

软开关技术通过在开关管电压或电流波形上引入零电压或零电流区间,实现了开关管的零电压开通(ZVT)或零电流关断(ZCS),从而极大地减小了开关损耗。

在软开关双向DC-DC变换器中,通过采用谐振电路、辅助开关或变压器等元件,实现了开关管的软开通和软关断,从而提高了变换器的效率。

移相全桥软开关DCDC变换器的研究

移相全桥软开关DCDC变换器的研究
f传统移相全桥ZVS DC/DC变换器具有两个主要的缺点:~是副边占空比丢 失较大,二是变换器在轻载时无法实现滞后桥臂开关管的ZVS。ZVS的实现是
以牺牲变压器副边一定量的占空比为代价的,它无法消除只能尽量减小。在低压 大电流输入的情况下,副边占空比的丢失尤为严重,导致变换器的效率低下,使 得实现ZVS变得没有意义。论文通过在传统移相全桥DC/DC变换器的变压器原 边串入可饱和电感,大大减小了副边占空比的丢失,同时在滞后桥臂并联辅助谐 振网络,使得滞后桥臂开关管在轻载时也能实现ZVS,并迸一步减小了副边占 空比的丢失。可饱和电感和辅助谐振网络的引入解决了低压大电流输入情况下宽 负载范围内实现ZVS和副边占空比丢失严重的矛盾,在实现ZVS的同时将副边 占空比丢失减小到几乎为零,使得移相全桥ZVS技术能够很好地应用于这类
adopts Phase—Shifted Full—Bridge zero—voltage—switched(PS FB ZVS)technology
instead of traditional hard switching technology to decrease the switching wastage.It gets good results.
performance ofthe converter.
±里!!兰堕皇三!壅堕堡:!兰垡堕苎
鳖塑全堡墼墅茎里璺竺£奎垫墨!!!!里
Based on the analyzing of the theory,the parameters of main circuit,control
circuit and closed—loop part are designed through simulation.Some performances of

ZVS移相全桥双向DC/DC变换器

ZVS移相全桥双向DC/DC变换器
山西 电子 技术 21 0 0年第 1期
文 章 编 号 :64 7 (0 0 0 - 0  ̄2 17 45 8 2 1 ) 1 0 5 0
应 用 实践
Z S移 相 全 桥 双 向 D / C变换 器 V CD
张 波 ,曹丰文 ,索 迹 ,高金 生
( 苏州市职 业大 学 电子信 息工程 系, 苏 苏州 250 ) 江 114
用软开关技术 , 同样软开关技术还可 以显著减少开关过 程中
激起 的振 荡 , 可大幅地 提高开关 频率 , 更好地 实现 开关 电源
小 型 化 、 效 率 的 优 点 。 因 此 致 力 于 开 发 新 型 软 开 关 双 向 高 D — C变 换 器 的 研 究 很 有 必 要 , 时 软 开 关 双 向 D —C 变 CD 同 CD 换 器 是研 究 的 热 点 内 容 。
换 器 中使 用 最 多 的 一种 软 开 关 控 制 方 式 , 是 谐 振 变 换 技术 它
和P WM技术 的结 合 , 具有 容易 实现 Z S开 关 、 V 响应 速度 快 等优 点 , 自提 出以来获得 了广 泛的研究 。图 1中 D 1~/ 9 4分 别是 s ~s 1 . 4的内部寄生 二极 管 , 1~c C 4分别 是 . s S 1~. 4的 寄生 电容或其 寄生 电容 与外 接小电容的等效 , 中 C :C , 其 1 3
S l
图 1 桥 式 直 流 变 换 器
C 2

_J _l
Cn — —_ ▲ J Cb l

D2
C 2=C , b 4 C 是隔直 电容 , 是为防止变压器铁心 因不对称 导致
直 流偏 磁饱 和 ,r 变 压器 原边 漏 电感 与外 串 电感之 和。 L是

移相+PWM控制双Boost半桥双向DC-DC变换器软开关过程的分析

移相+PWM控制双Boost半桥双向DC-DC变换器软开关过程的分析

移相+PWM控制双Boost半桥双向DC-DC变换器软开关过程的分析肖旭;张方华;郑愫【摘要】移相+PWM控制结合了移相控制和PWM控制的优点,可以减小变换器的电流应力和通态损耗,减小环流能量,提高变换器传输功率的能力,扩宽开关管零电压关断(ZVS)的范围.本文以移相+PWM控制双Boost半桥双向DC-DC变换器为研究对象,给出了变换器在各种工作模式下开关过程的等效电路模型,以及漏电感电流和结电容电压的表达式.分析了各开关管ZVS开通的条件,以及影响各开关管实现ZVS的非理想因素.最后给出了在特定功率软开关条件下的参数设计方法,通过仿真和实验证明了理论分析与参数设计方法的正确性.【期刊名称】《电工技术学报》【年(卷),期】2015(030)016【总页数】10页(P17-25,55)【关键词】相移+PWM;双向DC-DC;双Boost半桥;ZVS【作者】肖旭;张方华;郑愫【作者单位】南京航空航天大学江苏省新能源发电与电能变换重点实验室南京210016;南京航空航天大学江苏省新能源发电与电能变换重点实验室南京 210016;南京航空航天大学江苏省新能源发电与电能变换重点实验室南京 210016【正文语种】中文【中图分类】TM4610 引言双向DC-DC变换器具有可以实现能量的双向传输、功率密度高等优点,在UPS、航空航天电源系统和电动汽车等场合具有很大的应用潜力[1-11]。

移相控制双向 DC-DC变换器具有易于实现软开关、变换效率高、功率密度高和动态响应快等优点,得到了广泛关注[1,6]。

由于移相控制主要是利用变压器的漏感传递能量,当输入、输出电压不匹配时变换器的电流应力和通态损耗会大大增加,同时增大了环流能量,还会影响软开关的实现,不利于变换器效率的提升[1,6-11]。

因此文献[7]提出一种移相+PWM控制方式的双向DC-DC变换器,引入PWM控制,相当于在电路中加入一个电子变压器,使得变压器一次、二次电压匹配,从而减小了变换器的电流应力,减小了通态损耗和环流能量,提高了变换器传输能量的能力,拓宽了零电压开关的范围。

移相全桥ZVZC软开关DC_DC稳压电源分析与设计_吕春锋

移相全桥ZVZC软开关DC_DC稳压电源分析与设计_吕春锋
断电容 Cb 放电,由于阻断电容 Cb 较大,其自身电压在放电过
(e)
4
(f)
5
图 3 换流过程模态
VDR2 流过负载电流。 要实现滞后桥臂零电流,原边电流需在滞后桥臂开通前
减小到零。由开关模态 2 可知,原边电流线性减小:
V (t ) − V (t ) ?V
(1)
i (t) − I ?V (t ? t ) / L
?V (t ) ? V (t ) ? 2 C V / C ?
V ? I ?t / C ? 2 C V / C ? ?V
(5)
一般 Cr垲Cb,式(5)可以简化为:
程中近似不变,而变压器原边电流近似线性减小。
V − I ?t / 2 C
(6)
如图 3(d)所示,开关模态 3 换流过程如下:[t2-t3]期间,阻
通常所说的硬开关,在开通和关断时会产生较大的开关 损耗,开关频率越高,损耗越大。软开关电源是在开关器件通 断条件下,加在其电压上电压为零,即零电压开关(ZVS),或者 通过开关器件的电流为零,即零电流开关(ZCS)。软开关技术 显著解决了元件开关时刻产生的损耗,可以更大幅度地提高 开关频率,这种软开关的方式为缩小电源体积和提高电源效 率创造了条件。移相全桥零电压零电流软开关(ZVZCS)DC-DC 变换器是在移相全桥 ZVS 的基础上发展而来的,其工作模式 基本上克服了 ZVS 和 ZCS 软开关模式的固有缺陷,使全桥变 换器的超前桥臂实现 ZVS,而滞后桥臂实现 ZCS,在中、大功 率开关电源中具有广泛的应用。其超前桥臂的零电压实现是 通过并联电容电压不能突变完成的,滞后桥臂的零电流是通 过串联隔直电容和漏感谐振,从而使电流能量转移到了电容 中,滞后桥臂串接的二极管阻止了关断后的反向电流,减弱了 环路损耗[1]。

双重移相控制的双向全桥DCDC变换器及其功率回流特性分析

双重移相控制的双向全桥DCDC变换器及其功率回流特性分析

双重移相控制的双向全桥DCDC变换器及其功率回流特性分析一、本文概述本文旨在对双重移相控制的双向全桥DCDC变换器进行深入研究,并探讨其功率回流特性。

随着电力电子技术的快速发展,DCDC变换器作为能源转换与管理的核心组件,广泛应用于电动汽车、可再生能源系统、数据中心等众多领域。

其中,双向全桥DCDC变换器因其高效率、高功率密度和灵活的能量双向流动特性而受到广泛关注。

双重移相控制策略作为一种先进的调制方法,能够有效优化双向全桥DCDC变换器的性能。

它通过独立控制两个桥臂的移相角,实现输出电压和电流的精确调节,同时提高变换器的整体效率。

然而,双重移相控制策略也带来了复杂的功率回流问题,即在变换器工作过程中,部分功率会在不同桥臂之间回流,导致能量损失和效率下降。

因此,本文将对双重移相控制的双向全桥DCDC变换器的功率回流特性进行深入分析。

我们将建立变换器的数学模型,明确功率回流产生的机理和影响因素。

然后,通过仿真和实验验证,研究功率回流对变换器性能的影响程度,并提出相应的优化措施。

我们将总结双重移相控制策略在双向全桥DCDC变换器中的应用前景,为相关领域的研究和实践提供参考。

二、双重移相控制的双向全桥DCDC变换器基本原理双重移相控制的双向全桥DCDC变换器是一种高效、灵活的电能转换装置,能够实现双向的电能传输和功率回流。

其基本原理在于通过两个独立的移相控制策略,分别控制全桥变换器的两个桥臂,从而实现输入与输出之间的电压和电流的灵活调节。

变换器由两个全桥电路组成,每个全桥电路包括四个开关管,通过控制开关管的通断状态,可以实现电能的输入和输出。

双重移相控制策略则通过独立控制两个全桥电路的移相角,实现电能的高效转换。

在功率回流过程中,双重移相控制策略可以有效地调整回流电流的大小和方向,从而实现功率的高效回流。

具体而言,当变换器工作在逆变状态时,通过调整移相角,可以控制回流电流的大小和方向,使其与输入电流相匹配,从而实现功率的高效回流。

第十章 软开关技术2——移相控制ZVS_PWM_DC-DC全桥变换器.

第十章 软开关技术2——移相控制ZVS_PWM_DC-DC全桥变换器.
量很容易满足式8.18。
❖ 3.滞后桥臂实现ZVS
滞后桥臂要实现ZVS比较困难。在滞后桥臂开关过程中,变压器副边是短
路的,此时用来实现ZVS的能量只是谐振电感中的能量,如果不能满足
下式,就无法实现ZVS。
1 2
Lr I22
ClagVin2
1 2
CTRVin2
(8.19)
10.3. 4 实现ZVS的策略及副边占空比的丢失
所谓副边占空比丢失,就是副边占空比DS 小于原边的占空比 DP 。
产生副边占空比丢失的原因是:存在原边电流从正向(或负向)变化到负
向(或正向)负载电流的时间,这部分时间与二分之一开关周期的比值
就是副边的占空比丢失 Dloss,即
Dloss
t25 TS / 2

t25
Lr
[I2
ILf Vin
(t5) /
要实现开关管的零电压开通,必须满足下式:
E
1 2
CiVin2
1 2
CiVin2
1 2
CRTVin2
CiVin2
1 2
CRTVin2
(i=lead, lag)
(8.18)
❖ 2.超前桥臂实现ZVS
超前桥臂容易实现ZVS。在超前桥臂开关过程中,输出滤波电感Lf 是与谐
振电感 Lr串联的,此时用来实现ZVS的能量是Lf 和 Lr中的能量。这个能
K]
那么有:Dloss
2Lr
[I2 ILf (t5 ) / Vin TS
K]
可知:① Lr越大,Dloss 越大;②负载越大,Dloss越大;③ Vin越低,Dloss 越大。 Dloss的产生使DS 减小,为了得到所要求的输出电压,就必须减小原副边的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

移相双全桥DC-DC变换器软开关技术研究
移相双全桥DC-DC变换器软开关技术研究
摘要:
随着能源需求的不断增长和环境保护意识的增强,直流-直流(DC-DC)变换器作为能量转换的重要环节,受到了广泛的关注。

移相双全桥DC-DC变换器作为一种高效、高稳定性的变换器结构,具有广泛的应用前景。

本文通过对移相双全桥DC-DC 变换器的原理、工作模式和特点进行研究,重点分析了软开关技术在该变换器中的应用及其优势,并对软开关技术的改进和发展方向进行了探讨。

一、引言
随着电力电子技术的发展,DC-DC变换器在各种电力系统中得到了广泛应用。

DC-DC变换器是一种将直流电能转换为不同电压或电流的电力转换设备,常用于电力系统中的能量转换、电压分配和电流匹配等方面。

而移相双全桥DC-DC变换器作为一种高效、高稳定性的变换器结构,被广泛应用于各种领域,比如电力变换、电动汽车、LED驱动等。

二、移相双全桥DC-DC变换器的原理和工作模式
移相双全桥DC-DC变换器由两个全桥变换器组成,通过移相器来控制两个全桥变换器的相位差,从而实现能量的转换。

该变换器的工作模式分为三个阶段:开关状态转换、电流通路切换和输出电压调整。

通过控制开关状态的转换、电流通路的切换和输出电压的调整,移相双全桥DC-DC变换器实现了高效的能量转换和稳定的输出电压。

三、移相双全桥DC-DC变换器的特点
移相双全桥DC-DC变换器具有以下特点:
1. 高效性:移相双全桥DC-DC变换器采用了软开关技术,减
小了开关损耗,提高了变换器的效率。

2. 稳定性:通过确保开关状态的合理转换和电流通路的切换,移相双全桥DC-DC变换器能够稳定输出电压,并满足不同负载条件下的需求。

3. 灵活性:移相双全桥DC-DC变换器的输出电压可根据需要
进行调整,适应不同功率系统的要求。

4. 可靠性:移相双全桥DC-DC变换器具有较高的可靠性,能
够长时间稳定运行。

四、软开关技术在移相双全桥DC-DC变换器中的应用及优势
软开关技术是一种能够减小开关损耗的技术,通过改变开关管的开关方式,使得开关时的电流或电压接近零,从而减小了能量转换时的功率损耗。

在移相双全桥DC-DC变换器中,软开关技术可以减小开关损耗,提高转换效率。

此外,软开关技术还能降低开关噪声和EMI(电磁干扰),提高系统的抗干扰能力。

五、软开关技术的改进和发展方向
针对目前软开关技术在移相双全桥DC-DC变换器中存在的一些问题,例如转换效率低、开关噪声大等,需要进一步改进和提高。

未来的研究方向可以包括以下几个方面:
1. 研究新型的软开关拓扑结构,提高电流或电压接近零的能力,进一步减小开关损耗。

2. 发展新的软开关控制策略,提高开关速度,减少开关噪声
和EMI。

3. 应用新材料和技术,改善开关管的性能,降低开关损耗。

六、结论
移相双全桥DC-DC变换器作为一种高效、高稳定性的变换器结
构,具有广泛的应用前景。

软开关技术在移相双全桥DC-DC变换器中的应用,能够减小开关损耗,提高转换效率,同时提高系统的稳定性和可靠性。

未来,需要继续对软开关技术进行改进和发展,以满足不断增长的能源需求和环境保护要求
软开关技术在移相双全桥DC-DC变换器中的应用具有显著的优势。

它能够减小开关损耗,提高转换效率,并降低开关噪声和EMI。

通过改进软开关拓扑结构、控制策略和开关管的性能,我们可以进一步提高软开关技术的性能,以满足不断增长的能源需求和环境保护要求。

软开关技术在未来的发展中将发挥重要作用,为能源转换和电力传输领域带来更高效、稳定和可靠的解决方案。

相关文档
最新文档