大功率开关电源拓扑
开关电源拓扑计算公式

开关电源拓扑计算公式01Buck变换器的功率器件设计公式(1)Buck 变换器的电路图:(2)Buck 变换器的主要稳态规格:(3)功率器件的稳态应力:有源开关S:无源开关D:上述公式是稳态工作时,功率器件上的电压、(电流)应力。
选择功率器件时,其电压耐量可放一个合适的余量(保证最坏情况下的电压峰值不超过此值),电流耐量则得按器件的结温降额要求决定、它与外部散热条件和器件的通态电阻、通态压降、结(电容)、反向恢复、结到壳的热阻等密切相关,是功率器件热设计的内容。
02Boost 变换器的功率器件设计公式(1)Boost 变换器的电路图:(2)Boost 变换器的主要稳态规格:(3)功率器件的稳态应力:有源开关S:无源开关D:上述公式是稳态工作时,功率器件上的电压、电流应力。
选择功率器件时,其电压耐量可放一个合适的余量(保证最坏情况下的电压峰值不超过此值),电流耐量则得按器件的结温降额要求决定、它与外部散热条件和器件的通态电阻、通态压降、结电容、反向恢复、结到壳的热阻等密切相关,是功率器件热设计的内容。
03Buckboost 变换器设计公式(1)Buckboost 变换器的电路图:(2)Buckboost 变换器的主要稳态规格:(3)功率器件的稳态应力:有源开关S:无源开关D:上述公式是稳态工作时,功率器件上的电压、电流应力。
选择功率器件时,其电压耐量可放一个合适的余量(保证最坏情况下的电压峰值不超过此值),电流耐量则得按器件的结温降额要求决定、它与外部散热条件和器件的通态电阻、通态压降、结电容、反向恢复、结到壳的热阻等密切相关,是功率器件热设计的内容。
04三绕组去磁正激变换器的功率器件设计公式(1)三绕组去磁正激变换器的电路图:(2)三绕组去磁正激变换器的主要稳态规格:(3)功率器件的稳态应力:有源开关S:无源开关D1,D2:上述公式是稳态工作时,功率器件上的电压、电流应力。
选择功率器件时,其电压耐量可放一个合适的余量(保证最坏情况下的电压峰值不超过此值),电流耐量则得按器件的结温降额要求决定、它与外部散热条件和器件的通态电阻、通态压降、结电容、反向恢复、结到壳的热阻等密切相关,是功率器件热设计的内容。
开关电源的基本拓扑结构

总结词
半桥型拓扑结构通过两个开关管和电容器的组合,实现输出电压的调节。
详细描述
在半桥型拓扑结构中,两个开关管交替导通和关断,通过调节占空比来调节输出电压。 这种拓扑结构适用于需要较高电压、大电流输出的应用场景,如逆变器和电机驱动等。
全桥型(Full-Bridge)
总结词
全桥型拓扑结构通过四个开关管的组合 ,实现输出电压的调节。
降压-升压型开关电源工作原理
总结词
根据输入电压和输出电压的大小关系,自动切换降压 或升压模式。
详细描述
在降压-升压型开关电源中,根据输入电压和输出电压 的大小关系,自动切换降压或升压模式。当输入电压 高于输出电压时,自动进入降压模式;当输入电压低 于输出电压时,自动进入升压模式。
反相开关型开关电源工作原理
VS
详细描述
在全桥型拓扑结构中,四个开关管两两交 替导通和关断,通过调节占空比来调节输 出电压。这种拓扑结构适用于需要极高电 压、大电流输出的应用场景,如高压直流 输电等。
03 开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调节输 出电压的大小。
详细描述
在降压型开关电源中,输入电压首先经过开 关管,通过控制开关管的开通和关断时间来 调节输出电压的大小。当开关管开通时,输 入电压加在负载上,当开关管关断时,输入 电压与负载断开,输出电压因此得到调节。
升压型开关电源工作原理
要点一
总结词
通过控制开关管开通和关断的时间,实现输出电压高于输 入电压的功能。
要点二
详细描述
在升压型开关电源中,当开关管开通时,输入电压同时加 在负载和储能元件上,当开关管关断时,储能元件释放能 量,使输出电压高于输入电压。通过控制开关管的开通和 关断时间,实现输出电压的调节。
25种开关电源拓扑电路结构与连接原理与及特点选择与设计方法

25种开关电源拓扑电路结构与连接原理与及特点选择与设计方法开关电源是一种将交流电转换为直流电的电源装置,其常见的拓扑电路结构包括单端(Buck)、反相(Boost)和反相-反相(Buck-Boost)等。
下面将详细介绍这些拓扑电路的连接、原理与特点,并给出选择与设计方法。
1.单端拓扑电路结构与连接:单端拓扑电路主要由功率开关器件、电感元件和输出滤波电容组成。
它的连接方式为输入电压接到开关电源的输入端,输出电压则输出到输出端。
单端拓扑电路常用于输出电压比输入电压更低的应用场景。
2.反相拓扑电路结构与连接:反相拓扑电路也是由功率开关器件、电感元件和输出滤波电容组成。
不同之处在于它的连接方式,输入电压通过开关电源的输入端接到电感上,输出电压则从电感上接出。
反相拓扑电路适用于输出电压比输入电压更高的应用场景。
3.反相-反相拓扑电路结构与连接:反相-反相拓扑电路结构是将单端拓扑与反相拓扑结合起来的一种结构,它可以实现输入电压和输出电压的翻转。
输入电压通过开关电源的输入端接到电感上,输出电压同样从电感上输出。
这种拓扑电路可以根据输入输出电压的差异实现升压或降压功能。
这些拓扑电路的原理与特点如下:1.单端拓扑电路原理与特点:单端拓扑电路使用开关器件以一定的频率开关电源输入,通过电感和输出滤波电容将开关输出的方波转换为稳定的直流电。
这种电路的特点是简单、成本较低,但效率较低,适用于输出电压较低的场景。
2.反相拓扑电路原理与特点:反相拓扑电路通过控制开关器件的导通和截止来改变电感中的电流,从而改变输出电压。
与单端拓扑电路相比,它的效率较高,但成本较高。
反相拓扑电路适用于输出电压较高的场景。
3.反相-反相拓扑电路原理与特点:反相-反相拓扑电路通过将输入电压先升压或降压至一个中间电压,再通过反向变换输出所需的电压。
这种电路可以实现较大范围的升压和降压功能,但需要多个开关器件和电感,因此成本和复杂度较高。
在选择与设计开关电源的方法上,应注意以下几点:1.根据实际需求确定输出电压和电流的要求,然后选择适合的拓扑电路结构。
大功率DCDC变换器主电路拓扑有很多种

Uc3846详解大功率DC/DC变换器主电路拓扑有很多种,诸如双管正激式、推挽式、半桥式和全桥式等。
控制芯片的种类也非常多,主要分为电流控制型与电压控制型两大类。
电压控制型只对输出电压采样,作为反馈信号进行闭环控制,采用PWM技术调节输出电压,从控制理论的角度看,这是一种单环控制系统。
电流控制型是在电压控制型的基础上,增加一个电流负反馈环节,使其成为双环控制系统,从而提高了电源的性能。
根据对各种拓扑和控制方式的技术成熟程度,工程化实现难度,电气性能以及成本等指标的比较,本文选用半桥式DC/DC变换器作为主电路,电流型PWM控制芯片UC3846作为该系统的控制单元。
1 电压控制型脉宽调制器和电流控制型脉宽调制器[1]图1为电压控制型变换器的原理框图。
电源输出电压的采样反馈值Vf与参考电压Vr进行比较放大,得到误差信号Ve,它与锯齿波信号比较后,PWM比较器输出PWM控制信号,经驱动电路驱动开关管通断,产生高频方波电压,由高频变压器传输至副方,经整流滤波得到所需要的电压。
改变电压给定Vr,即可改变输出电压Vo。
图2为电流控制型变换器的原理框图。
恒频时钟脉冲置位R-S锁存器,输出高电平,开关管导通,变压器原边的电流线性增大,当电流在采样电阻Rs上的压降Vs达到Ve时,PWM比较器翻转,输出高电平,锁存器复位,驱动信号变低,开关管关断,直到下一个时钟脉冲使R-S锁存器置位。
电路就是这样逐个地检测和调节电流脉冲的。
当电源输入电压和/或负载发生变化时,两种控制类型的动态响应速度是不同的。
如果电压升高,则开关管的电流增长速度变快。
对电流控制型而言,只要电流脉冲一达到设定的幅值,脉宽比较器就动作,开关管关断,保证了输出电压的稳定。
对电压控制型而言,检测电路对电流的变化没有直接的反映,一直等到输出电压发生变化后才去调节脉宽,由于滤波电路的滞后效应,这种变化需要多个周期后才能表现出来,显然动态响应速度要慢得多,且输出电压的稳定性也受到一定的影响。
最详细的5种开关电源拓扑结构

开关电源分类
开关电源主回路可以分为隔离式与非隔离式两大类型。 非隔离——输入端与输出端电气相通,没有隔离。 1、串联式结构是指在主回路中,相对于输入端而言,开 关器件与输出端负载成串联连接的关系。例如buck拓扑型 开关电源就是属于串联式的开关电源 2、并联式结构是指在主回路中,相对于输入端而言,开 关器件与输出端负载成并联连接的关系。例如boost拓扑 型开关电源就是属于串联式的开关电源 3、极性反转结构是指输出电压与输入电压的极性相反。 电路的基本结构特征是:在主回路中,相对于输入端而言, 电感器L与负载成并联。Buck-boost拓扑就是反极性开关 电源
工作过程分析
工作过程: 1、当K导通时→IL 线性增加,D截止此 时C向负载供电 2、当K断开时→Ul 和Ui串联,以高于 Uo的电压向C充电同 时向负载供电,此时 D导通,IL逐渐减小 若IL减小到0,则D 截止,只有C向负载 供电
CCM和DCM模式下的各点电压
由上可知BOOST电路也会出现电感电流断续的情况,即 也有CCM 和DCM两种模式,各点电压分别如左右所示 在DCM模式下若IL值逐渐减小到Io,则C和L同时向负载放 电, 若IL值继续减小直至0,则D关断,只有C向负载放电,直 到下次周期开始
DCM模式下的电压增益比
τ <0.5D1(1-D1)(1-D1)时,IL不连续,同样利用IL的 上升部分同下降部分相等可以得到电压增益M= (D1+D2)/D2 此时D1+D2<1,又有IL在Ts内的平均值是 Is,Is=Vs(D1+D2)D1Ts/2L=MIo. 从以上两式可以得到
1 1 2D12 / D1 M 0.5 2 2
大功率双向DCDC变换器拓扑结构及其分析理论研究

大功率双向DCDC变换器拓扑结构及其分析理论研究一、本文概述随着能源危机和环境污染问题的日益严重,高效、可靠的能源转换和储存技术成为了当前研究的热点。
其中,大功率双向DC/DC变换器作为连接不同电压等级直流电源的关键设备,在电动汽车、分布式能源系统、微电网等领域具有广泛的应用前景。
本文旨在对大功率双向DC/DC变换器的拓扑结构及其分析理论进行深入研究,为提升变换器性能、优化系统设计提供理论支撑。
本文首先介绍了双向DC/DC变换器的基本工作原理和应用背景,阐述了研究大功率双向DC/DC变换器的重要性和现实意义。
随后,对现有的大功率双向DC/DC变换器拓扑结构进行了梳理和分类,详细分析了各类拓扑结构的优缺点及适用场景。
在此基础上,本文提出了一种新型的大功率双向DC/DC变换器拓扑结构,并对其工作原理和性能特点进行了详细阐述。
为了验证所提拓扑结构的有效性,本文建立了相应的数学模型和仿真模型,对变换器的稳态和动态性能进行了深入分析。
通过实验验证了所提拓扑结构的可行性和优越性。
本文还对大功率双向DC/DC变换器的控制策略进行了研究,提出了一种基于模糊逻辑控制的优化方法,有效提高了变换器的响应速度和稳定性。
本文对大功率双向DC/DC变换器的研究现状和发展趋势进行了展望,提出了未来研究的方向和重点。
本文的研究成果对于推动大功率双向DC/DC变换器的技术进步和应用发展具有重要的理论价值和实际意义。
二、大功率双向DCDC变换器拓扑结构大功率双向DCDC变换器在现代电力电子系统中扮演着至关重要的角色,其拓扑结构的设计和优化对于提高能源转换效率、增强系统稳定性以及实现更广泛的能源管理策略具有决定性的影响。
本节将详细探讨几种常见的大功率双向DCDC变换器拓扑结构,并分析其工作原理和适用场景。
双向全桥拓扑结构是一种常见的大功率双向DCDC变换器拓扑,其通过四个开关管的控制实现能量的双向流动。
该拓扑结构具有高转换效率、低电压应力以及较宽的输入输出电压范围等优点,适用于宽电压范围变化的应用场景。
开关电源各种拓扑结构集锦详解 后附笔记

《精通开关电源设计》笔记三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdILV ==T I L ∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。
那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。
开关电源各种拓扑结构集锦详解

开关电源各种拓扑集锦1、先给出六种基本DC/DC变换器拓扑依次为buck,boost,buck-boost,cuk,zeta,sepic变换器以上六种拓扑被认为是DC/DC变换器的六种基本拓扑,不过也有专家认为最基本的拓扑是buck和boost,其他均由此演变而来。
buck变换器为降压变换器,也是最常用的变换器,工程上常用的拓扑基本上是buck族的,如正激,半桥,全桥,推挽等等。
boost变换器为buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的boost 变换器也有推挽,双电感,全桥等电路。
buck-boost是反激变换器的原型,属于升降压变换器。
后面三种电路不是很常用,都是升降压变换器。
从效率的角度来说,这些变换器的输入和输出等同时候,效率最高。
也就是buck最佳占空比为1,boost 为0,buck-boost为0.5。
2、正激变换器:A、绕组复位正激变换器B、LCD复位正激变换器C、RCD复位正激变换器D、有源钳位正激变换器E、双管正激F、无损吸收双正激:G、有源钳位双正激H、原边钳位双正激、I、软开关双正激评论:正激变换器是常用变换器之一,特别在中小功率场合。
正激变换器属于单端变换器,所用开关管少,可靠性高,虽然变压器利用率低,但是在较高频率下其变压器磁通摆幅可以与双端变换器相当。
但是开关管电压应力较大。
双管正激开关管电压应力为输入电压,虽然用了两个管子,但是耐压低,导通电阻也小,损耗也小,同时散热面积相对大了,所以可靠性更好,在中大功率比较常用。
但是双管正激实现软开关较难,就目前的一些拓扑来说,都需要辅助开关管来实现。
如果能不加入辅助管而实现软开关,一定超有前途。
正激变换器也常用来交错并联,来扩大功率,能减小输出滤波器体积。
3、推挽变换器A、推挽变换器B、无损吸收推挽变换器C、推挽正激推挽变换器:推挽变换器是双端变换器。
其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大功率开关电源拓扑
大功率开关电源通常采用多种拓扑结构,以满足不同的应用需求。
其中比较常见的包括单端降压拓扑、双向变换拓扑和桥式全桥
拓扑。
首先,单端降压拓扑是一种常见的大功率开关电源拓扑结构。
它通过开关管控制输入电压的通断,然后通过输出电感和电容进行
滤波,从而实现对输出电压的调节和稳定。
这种拓扑结构适用于需
要从高电压转换到低电压的场合,例如电源适配器和电动汽车充电
器等。
其次,双向变换拓扑是另一种常见的大功率开关电源拓扑结构。
它可以实现双向能量转换,既可以将直流电转换为交流电,也可以
将交流电转换为直流电。
这种拓扑结构适用于需要实现能量的双向
传输的场合,例如电动汽车充电桩和光伏逆变器等。
最后,桥式全桥拓扑是一种适用于大功率开关电源的拓扑结构。
它通过四个开关管和一个输出变压器构成一个全桥结构,可以实现
对输入电压的高效变换和输出电压的稳定调节。
这种拓扑结构适用
于需要高功率密度和高效率的场合,例如工业变频电源和电力电子
设备等。
总的来说,大功率开关电源拓扑结构多样,选择合适的拓扑结
构需要根据具体的应用需求和性能要求进行综合考虑,以实现高效、稳定和可靠的能量转换和调节。