初高中数学衔接(精品课程)
初高中数学衔接讲义

初高中数学衔接讲义一、课程简介本讲义旨在帮助初高中学生顺利衔接高中数学知识,提高数学成绩。
本讲义涵盖了初中数学的基础知识,并在此基础上增加了高中数学的新内容,包括函数、数列、不等式等。
通过本讲义的学习,学生将掌握高中数学的基本概念和方法,培养数学思维和解决问题的能力。
二、课程目标掌握初中数学基础知识,包括代数、几何等。
了解高中数学的新内容,包括函数、数列、不等式等。
培养数学思维和解决问题的能力,为高中数学学习打下基础。
激发学生对数学的兴趣和热情,培养自主学习能力。
三、课程内容初中数学知识回顾初中数学知识是高中数学的基础,因此在本讲义的开始,我们将对初中数学知识进行回顾。
包括代数基础知识(如代数式、方程、不等式等)、几何基础知识(如三角形、四边形、圆等)以及统计基础知识(如平均数、中位数、众数等)。
高中数学知识介绍本讲义将介绍高中数学的新内容,包括函数、数列、不等式等。
通过具体实例和练习题,帮助学生了解这些概念和方法的基本应用。
此外,本讲义还将介绍一些数学思想和方法,如分类讨论、归纳推理等。
典型例题解析本讲义将选取一些典型例题进行解析,帮助学生理解初中和高中的数学知识的应用方法和解题思路。
通过这些例题的解析,学生将掌握解题技巧和提高解决问题的能力。
数学趣味知识拓展本讲义将穿插一些数学趣味知识,包括数学历史、数学文化等方面。
这些内容将帮助学生了解数学的趣味性和实用性,激发学生对数学的兴趣和热情。
练习题及答案本讲义将提供一定数量的练习题,包括初中和高中数学知识,帮助学生巩固所学知识和提高解题能力。
同时,本讲义还将提供参考答案,供学生自我评估和纠正错题使用。
四、课程安排本讲义将根据学生的实际情况和学习需求进行安排。
一般情况下,建议按照每周2-3课时的学习进度进行学习。
具体安排可根据学生的学习能力和时间情况进行调整。
五、总结通过本讲义的学习,学生将掌握初中和高中的数学知识,培养数学思维和解决问题的能力,为高中数学学习打下基础。
《初高中数学的衔接》课件(2024)

03
数的概念扩展
从有理数扩展到实数,包 括无理数和复数,理解数 的连续性和完备性。
2024/1/30
式的概念深化
掌握代数式、多项式、分 式等概念,理解式的运算 和化简方法。
数论基础
了解整除、同余等基本概 念,掌握质数、合数、最 大公约数、最小公倍数等 知识点。
8
方程与不等式解法提升
方程解法提升
从一元一次方程、一元二次方程到高 次方程和分式方程,掌握各种方程的 解法,理解方程解的存在性和唯一性 。
回顾初中平面几何的基本概念、 性质和定理,如点、线、面、角
、三角形、四边形等。
总结初中平面几何的常见题型和 解题方法,如相似三角形、全等
三角形、圆的性质等。
强调平面几何在实际生活中的应 用,如测量、建筑、设计等。
2024/1/30
12
立体几何初步认识及空间想象力培养
介绍立体几何的基本概念,如点、线 、面、体、平行、垂直等。
课后复习
及时复习学过的知识,巩固记 忆并加深对知识点的理解。
独立思考
遇到问题时,尝试独立思考并 解决问题,培养自己的数学思
维和解决问题的能力。
2024/1/30
25
备考技巧分享:如何有效复习和应对考试
系统复习
做题训练
在考试前进行系统的复习,梳理知识脉络 和重点难点,确保对知识点的全面掌握。
通过大量的做题训练,提高解题速度和准 确性,培养自己的应试能力。
、切线等。
14
04 概率统计部分衔 接要点
2024/1/30
15
概率论基本概念及计算方法
2024/1/30
事件的概率定义及性质
01
了解概率的直观意义,掌握概率的加法公式、乘法公式等基本
2024年度高中数学件初高中数学课堂衔接ppt课件

教师点评与指导
2024/3/24
点评内容
针对学生的讨论、讲解和展示进行点评,总结亮点和待改进之处 。
指导方法
根据学生的表现和需求,给予个性化的学习建议和方法指导。
拓展延伸
引导学生将课堂所学知识应用到实际生活中,培养解决问题的能力 。
26
THቤተ መጻሕፍቲ ባይዱNKS
感谢观看
2024/3/24
27
2024/3/24
14
04
初高中数学衔接点分析
2024/3/24
15
代数衔接点
数的概念扩展
从有理数扩展到实数,引入无理 数和复数,理解数的连续性和完
备性。
代数式的运算
掌握整式、分式的四则运算,理 解因式分解、配方等代数变形方
法。
方程与不等式
从一元一次方程、一元二次方程 到高次方程、分式方程、无理方 程等,理解方程的解法与性质; 掌握不等式的性质与解法,如一
1 2
空间几何体
认识柱、锥、台、球及其简单组合体的结构特征 ,能够描述这些几何体的形状和大小。
点、直线、平面的位置关系
理解空间中点、直线、平面的位置关系,掌握直 线与平面平行、垂直的判定定理和性质定理。
空间向量及其运算
3
理解空间向量的概念,掌握空间向量的线性运算 和数量积运算,能够运用向量方法解决立体几何 问题。
包括圆的性质、圆的周长与面 积、扇形等。
空间图形
包括长方体、正方体、圆柱、 圆锥等空间图形的性质与计算
。
2024/3/24
8
概率与统计初步
概率初步
包括事件的概率、互斥事件与 对立事件、条件概率等。
2024/3/24
统计初步
初高中数学衔接课高一PPT课件

第17页/共19页
预祝经纶学子们愉快 地生活在这片数学天地 中。
经纶助我长成才,我 为经纶添光彩。
第18页/共19页
感谢您的观看!
第19页/共19页
4.选修课程:
由4个系列组成:
系列1:2个模块组成 (文科必选 课程)
选修1—1:常用逻辑用语、圆锥曲线与方 程、导数及其应用。 选修1—2:统计案例、推理与证明、数系 的扩充与复数的引入、框图。
第4页/共19页
4.选修课程:
系列2:3个模块组成 (理科必选课程) 选修2—1:常用逻辑用语、圆锥曲线 与方程、空间向量与立体几何。 选修2—2:导数及其应用、推理与证 明、数系的扩充与复数的引入。 选修2—3:计数原理、概率、统计案
每个学生都必须学习的数学内容,包括5个模块: 数学1:集合、函数概念与基本初等函数(I)
(指数函数、对数函数、幂函数)。 数学2:立体几何初步、平面解析几何初步。 数学3:算法初步、统计、概率。 数学4:基本初等函数(II)(三角函数)、平面
向量、三角恒等变换。 数学5:解三角形、数列、不等式。
第3页/共19页
• 系列4:10个专题组成(有选择的作为理科高考内容) • 选修4—1:几何证明选讲。 • 选修4—2:矩阵与变换。 • 选修4—3:数列与差分。 • 选修4—4:坐标系与参数方程。 • 选修4—5:不等式选讲。 • 选修4—6:初等数论初步。 • 选修4—7:优选法与试验设计初步。 • 选修4—8:统筹法与图论初步。 • 选修4—9:风险与决策。 • 选修4—10:开关电路与布尔代数。
3 选修系列2中三个模块,每个模块2个学分,共6个学 分。
4 选修系列3中六个专题,每个专题1个学分,每两个 专题组成一个模块。
数学初高中衔接教案精华

数学初高中衔接教案精华
教学目标:通过本节课的学习,使学生能够顺利过渡到高中数学的学习,并掌握一些高中
数学的基础知识。
教学内容:初中数学与高中数学的连接,包括函数、方程、不等式等基础知识。
教学重点:函数的概念和性质、方程的解法、不等式的解法。
教学难点:初步接触高中数学的抽象性和深度,需要学生进行逻辑推理和思维的跳跃。
教学过程:
1.导入:通过一个生活中的实际问题引入函数的概念,引发学生的兴趣和思考。
2.讲解:介绍函数的定义和性质,帮助学生建立起对函数概念的正确理解。
3.练习:让学生通过练习掌握函数的应用,提高他们解决问题的能力。
4.导入:引入方程的概念,让学生通过实例掌握解方程的方法。
5.讲解:介绍不等式的性质和解法,帮助学生建立起对不等式概念的正确理解。
6.练习:让学生通过练习掌握不等式的应用,提高他们解决问题的能力。
7.总结:对本节课的内容进行总结,强调初中数学与高中数学之间的衔接,帮助学生更好
地过渡到高中数学的学习。
教学反思:本节课主要是帮助学生顺利过渡到高中数学的学习,因此在教学过程中要注重
培养学生的解决问题的能力和逻辑思维能力,让他们逐渐适应高中数学的学习节奏和内容。
同时要关注学生的学习情况,根据实际情况调整教学策略,确保每个学生都能够理解和掌
握本节课的内容。
初中、高中数学衔接课课件

转化与化归思想在初 中数学中的应用
在初中数学中,转化与化归思想经常 用于解决一些看似复杂或陌生的问题 。例如,通过将多边形问题转化为三 角形问题、将分式方程转化为整式方 程等,可以帮助学生更好地理解和解 决问题。
转化与化归思想在高 中数学中的应用
在高中数学中,转化与化归思想的应 用更加深入和广泛。例如,在解析几 何中将曲线方程转化为标准形式、在 数列中将递推关系转化为通项公式等 都需要运用到转化与化归思想。掌握 转化与化归思想对于提高学生数学解 题能力和培养创新思维具有重要意义 。
数形结合思想在高中数学中的应用
在高中数学中,数形结合思想的应用更加深入和广泛。例如,在解析几何、立体几何、三角函数等领域
中,许多问题都需要通过数形结合来找到解决方案。掌握数形结合思想对于提高学生数学解题能力和培
养空间想象能力具有重要意义。
25
转化与化归思想在解题中体现
转化与化归思想概述
转化与化归是一种将复杂问题转化为 简单问题、将陌生问题转化为熟悉问 题的思想方法。通过转化与化归,可 以帮助学生更好地理解和解决问题, 提高解题效率。
解析式的影响。
2024/1/26
13
利用导数研究函数单调性和极值问题
2024/1/26
导数的概念与计算
01
理解导数的定义和几何意义,掌握基本初等函数的导数公式和
导数的四则运算法则。
函数的单调性
02
利用导数判断函数的单调性,理解函数单调性与导数符号的关
系。
函数的极值
03
掌握函数极值的定义和判定方法,理解函数极值与导数零点的
6
02
数与代数基础衔接
2024/1/26
7
整数、有理数及无理数概念拓展
初高中数学衔接讲座课件

概率与统计衔接点
概率初步知识
初中数学中的概率初步知识在高中阶段将更加深入,涉及 到条件概率、事件的独立性等,需要学生掌握概率的基本 思想和方法。
统计初步知识 初中数学中的统计初步知识在高中阶段将更加详细,涉及 到数据的收集与整理、概率分布等,需要学生提高数据处 理和分析能力。
随机变量及其分布
高中数学引入随机变量及其分布,为描述随机现象提供数 学模型,需要学生掌握离散型随机变量及其分布列、连续 型随机变量及其概率密度等知识。
古典概型和几何概型的计算 和应用
02
01
03
统计图表的认识和制作,如 条形图、折线图、扇形图等
数据的收集和整理,包括数 据的来源、数据的分类和整
理方法等
04
05
平均数、中位数、众数等统 计量的计算和应用
03
高中数学新增知识点介绍
函数与导数
一次函数、二次函数、指数函数、 对数函数等基本函数的图像与性 质。
初高中数学衔接讲座 课件
目录
• 引言 • 初中数学知识点回顾 • 高中数学新增知识点介绍 • 初高中数学衔接点分析 • 学习方法与技巧分享 • 案例分析:成功跨越初高中衔接阶
段
01
引言
目的和背景
帮助学生了解初高中数学知识的差异和联系 01
提高学生的数学素养和综合能力,为高中数学学 02 习打下基础
针对高中数学的特点,指 导学生掌握正确的学习方 法和思维习惯。
个性化辅导
心理疏导
针对不同学生的实际情况, 制定个性化的辅导计划, 帮助学生解决学习困难。
关注学生的心理状态,及 时进行心理疏导,帮助学 生保持积极的学习态度。
案例三:家长如何助力孩子跨越衔接阶段
(2024年)初高中数学衔接讲座4

3
归纳推理与演绎推理的结合
了解归纳推理和演绎推理的区别与联系,能够在 证明过程中灵活运用这两种推理方法。
2024/3/26
21
反证法等证明方法介绍
01
02
03
反证法的基本思想
了解反证法的基本思想, 即通过假设命题不成立来 推导出矛盾,从而证明原 命题成立。
2024/3/26
反证法的应用
掌握反证法在数学证明中 的应用,能够运用反证法 证明一些难以直接证明的 命题。
7
数与式概念扩展
自然数、整数、有理数、实数 的概念回顾与扩展,理解数轴 和数的性质。
2024/3/26
代数式的分类与概念,如整式 、分式、根式等,掌握各类代 数式的性质和运算规则。
绝对值的概念与性质,理解绝 对值在数轴上的意义,掌握绝 对值的运算规则。
8
方程与不等式解法提升
一元一次方程、一元二次方程的解法回顾与提升,理解方程的解与解集的概念。
18
05
逻辑思维与证明方法培养
Chapter
2024/3/26
19
逻辑推理能力训练
2024/3/26
命题与推理
01
了解命题的基本概念,掌握推理的基本方法,如直接推理、间
接推理等。
逻辑联结词与复合命题
02
理解逻辑联结词(如且、或、非)的含义,掌握复合命题的构
成及真假判断。
充分条件、必要条件与充要条件
初中数学问题通常较为直接,高中数 学问题则需要更多的分析和思考。
2024/3/26
5
学习方法与习惯调整
• 初中数学可以通过大量练习来提高成绩,高中数学则需要更多的思考和 总结。
• 初中数学可以依赖老师和课本,高中数学则需要更多的自主学习和探究 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(精品课程)目录第1课: 绝对值第2课: 乘法公式第3课: 二次根式(1)第4课: 二次根式(2)第5课: 分式第6课: 分解因式(1)第7课: 分解因式(2)第8课: 根的判别式第9课: 根与系数的关系(韦达定理)(1)第10课: 根与系数的关系(韦达定理)(2)第11课: 二次函数y=ax2+bx+c的图像和性质第12课: 二次函数的三种表示方式第13课: 一元二次不等式解法(1)第14课: 一元二次不等式解法(2)阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学一、绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,a a a a >⎧⎪==⎨|D (坐标为4)的右侧.x <0,或x >4.10 |x -1|图1.1-1练习1.填空题:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________ 2.选择题:下列叙述正确的是 ( )34二、乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+;(2)不论a ,b 为何实数,22248a b a b +--+的值( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数三、二次根式(1)0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b 212x ++,22x y ++而例3试比较下列各组数的大小:(1(2.===,解:(1四、二次根式(2)⋅-.例4化简:20042005+⋅解:20042005+⋅⋅-=20042004练习1.填空题:(1=__ ___;(2(x=-x的取值范围是_ _ ___;2.繁分式像abc d+,2m n pmn p+++这样,分子或分母中又含有分式的分式叫做繁分式.例1.若54(2)2x A Bx x x x+=+++,求常数,A B的值.解:∵(2)()2542(2)(2)(2)A B A x Bx A B x A xx x x x x x x x++++++===++++,∴5,A B+=⎧⎨910++⨯的正整数1(1)n n+++139++⨯11)(9-++(1)n n+++1)(n n-++-∴1112334(1)n n+++⨯⨯+<12.例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,=11(1)1819(2(2+=________;(22=,则a 的取值范围是________; (3+=________.2.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.3123.解方程22112()3()10x x x x+-+-=.1 1(3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示).-1 1x y图1.2-5练习:把下列各式分解因式:(1)=-+652x x __________________________________________________。
(2)=+-652x x __________________________________________________。
(3)=++652x x __________________________________________________。
(4)=--652x x __________________________________________________。
(5)()=++-a x a x 12__________________________________(6)2273x x -+= 。
(7)2672x x -+= 。
(8)2273x x ++= 。
七、分解因式(二)2.提取公因式法与分组分解法 例2 分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-. 解: (1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,1231 (2)424139x x -+=________________(3)22222b c ab ac bc ++++=________________ (4)2235294x xy y x y +-++-=________________2.在实数范围内因式分解:(1)253x x -+ =________________(2)23x --=________________2234(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a;(3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1=x 2=1; ③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.练习: 1.解下列方程:(1)221360x x -+= (2)24410x x -+= (3)23570x x ++=221222(4)444b b ac ac cx x a a a--====. 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x2+px+q=0,若x1,x2是其两根,由韦达定理可知x1+x2=-p,x1·x2=q,即p=-(x1+x2),q=x1·x2,所以,方程x2+px+q=0可化为x2-(x1+x2)x+x1·x2=0,由于x1,x2是一元二次方程x2+px+q=0的两根,所以,x1,x2也是一元二次方程x2-(x1+x2)x+x1·x2=0.因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是化简,得m-16m-17=0,解得m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m=17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可。
(2)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根。
练习:1.m 为何值时,()()21230x m x m -++-=的两根均为正?十、根与系数的关系(韦达定理)(2)例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则x+y=4,①∴| x1-x2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-5)×[(-5)2-3×(3-)]=-215. -4a(2)若关于x 的方程mx + (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 。