超高层建筑结构与弹塑性动力时程分析法
时程分析计算精辟解读(值得收藏)

时程分析计算精辟解读(值得收藏)时程分析法是20世纪60年代逐步发展起来的抗震分析方法.用以进行超高层建筑的抗震分析和工程抗震研究等.至80年代,已成为多数国家抗震设计规范或规程的分析方法之一.“时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法.“时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的.规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算.所以有较多设计人员对应用时程分析法进行抗震设计感到生疏.近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了.1输入地震动准则输入地震动准则即为结构时程分析选择输入地震加速度记录时程(简称地震波)的基本要求,包括:地震环境(场地类别和地震分组)、数量、持续时间、检验方法等.地震波的合理选择是时程分析结果能否既反映结构最大可能遭遇的地震作用,又满足工程抗震设计基于安全和功能要求的基础.在这里不提“真实”地反映地震作用,也不提计算结果的“精确”性,正是基于对结构可能遭遇地震的极大不确定性和计算中结构建模的近似性.在工程实际应用中经常出现对同一个建筑结构进行时程分析时,由于输入地震波的不同,造成计算结果的数倍乃至数十倍之差,使工程师无所适从.《建筑抗震设计规范》(GB50011—2010)(简称2010规范)5.1.2-3条要求“采用时程分析法时,应按建筑场地类别和设计地震分组选用实际强震记录和人工模拟的加速度时程曲线,其中实际强震记录的数量不应少于总数的2/3,多组时程曲线的平均地震影响系数曲线(即反应谱)应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符”.1.1“选波”要求1.1.1地震环境要求2010规范在构建设计反应谱时,按不同场地类别和震级、震中距从全球强震加速度记录数据库中挑选了数百条地面加速度记录,求出每条记录的反应谱.同时收集这些记录台站的地质剖面和地震震级、震中距等参数,按照2010规范的场地类别划分标准,场地分成Ⅰ~Ⅳ类和远、中、近震分组,共计12组,再经平滑处理得到2010规范5.1.5条的地震影响系数曲线,即设计反应谱.时程分析法输入地震波的选择应遵循上述构建设计反应谱的原则,考虑建设场地与记录台站场地的地震环境.1.1.2数量要求对于高度不是太高、体型比较规则的高层建筑,取2+1,即选用不少于2条天然地震波和1条拟合目标谱的人工地震波,计算结果宜取包络值.对于超高、大跨、体型复杂的建筑结构,取5+2,即不少于7组地震波,其中,天然地震波数量不少于总数的2/3,计算结果取平均值.1.1.3持续时间要求为了充分地激励建筑结构,一般要求输入的地震动有效持续时间为结构基本周期的5倍左右.对于结构动力时程分析,只有加速度记录的强震部分的时长,即有效持续时间才有意义.最常用的有效持续时间定义是:取记录最大峰值的10%~15%作为起始峰值和结束峰值,在此之间的时间段为有效持续时间.图1表示编号为US185地震加速度记录的波形,用于7度小震下结构时程分析,最大加速度峰值是35gal,取首、尾两个峰值为3.5gal之间的时间长度为有效持续时间,大约为30s,可用于基本周期小于6s的结构.ps:持续时间不是指整个时程的记录时间图1加速度记录有效持续时间的定义1.1.4统计特征要求规范规定,时程分析所采用的地震波的平均反应谱与振型分解反应谱法所采用的反应谱应“在统计意义上相符”.如前所述,天然地震波具有千变万化的特征,不同结构的动力特性也千差万别.对同一个结构,输入不同的地震波进行时程分析会得到完全不同的结果.所以,遵循“在统计意义上相符”的原则选择天然地震波时,只要求所选的天然地震加速度记录的反应谱值在对应于结构主要周期点(而不是每个周期点)上与规范反应谱相差不大于20%.这个要求只是一种参考,便于数据库管理员在数据库中挑选合适的记录.一般情况下,照此要求选择的地震波可以满足时程分析要求.但是,不宜将此作为检验地震波的标准,检验标准仍然是规范规定的结构底部剪力.为什么既要求有天然地震波,又要求有人工地震波作为输入?原因是,所谓人工地震波,是应用数学方法,将足够多的具有不同周期的正弦波叠加组合形成一个平稳或非平稳的随机时间历程,对叠加组合过程不断进行迭代修正,使它的反应谱逐步逼近规范的设计反应谱.当拟合精度达到在各个周期点上的反应谱值与规范反应谱值相差小于10%,即认为“在统计意义上相符”了.这样合成的人工地震波具有足够多的周期分量,可以均匀地“激发”结构的各个振型响应.但是,由于人工地震波是“拟合”设计反应谱的加速度时间过程,不具备天然地震波的完全非平稳随机过程特性,特别是缺少强烈变化的短周期成分.因此它只能在设计反应谱的“框架”内激励结构,无法“激发”结构的高阶振型响应,所以时程分析要求以天然地震波为主,同时辅以人工地震波作为地震动输入.ps:人工波对低阶振型激发较好,而对于高阶振型的激发不够(如肖总所说),因此对于高阶振型部分,必须仰仗天然波来激发.本人理解,作者建议采用EPA,就是为了保证天然波对于高阶振型的激发.弹性时程分析与振型分解反应谱分析的关系,实质上是事物的特殊性与一般性的关系,多条地震波时程分析结果的平均值近似于反应谱法计算结果,输入的地震波数量越多,这种近似性越好.ps:现在很多软件能够根据规范相关要求,自动选波,比如YJK弹性时程分析时就可以做相关的自动选波.自动筛选最优地震波组合这块就给设计师在筛选地震波这块提供了相当大的便利.选择框中列出了程序根据特征周期归类后的波库中天然波和人工波,用户可从中选择参与筛选的备选地震波到中间列表框.如全选,筛选出的地震波组合可能多一些,但计算时间稍长.可根据规范在对话框下部设定地震波组合的人工波数,天然波数.按照规范要求,实际强震记录的数量不应少于总数的2/3.若选用不少于二组实际记录和一组人工模拟的加速度时程曲线作为输入,计算的平均地震效应值不小于大样本容量平均值的保证率的85%以上.YJK计算程序即根据设置好的限定条件计算每条地震波的基底剪力与结构周期点上所对应的反应谱值.最终满足要求的所有组合结果将在该按钮下方的列表框中按最优至次优的顺序显示.列表中的组合可以通过选择地震波组合按钮选择,选中的地震波组合包含的地震波将在下方列表框中显示.如下图所示图1自动筛选最优地震波组合对话框根据《建筑抗震设计规范》GB50011-2010中的规定,程序遵循的地震波组合筛选原则如下:1:单条地震波满足限制条件每条地震波输入的计算结果不会小于65%,不大于135%.2:多条地震波组合满足限制条件(1)“在统计意义上相符”,即多组时程波的平均地震影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在对应于结构主要振型的周期点上相差不大于20%,即:>80%并<120%(2)多条地震波计算结果在结构主方向的平均底部剪力一般不小于振型分解反应谱计算结果的80%,不大于120%.(3)按照平均底部剪力与振型分解反应谱法计算的底部剪力偏差最小的原则对已经满足上述限制的组合再进行排序,默认选出偏差最小的组合作为最有组合.在搜索过程中,当程序提示未搜索到符合要求的地震组合时,用户可根据抗震规范规定适当增加相邻特征周期的可选地震波或者放宽主次方向地震峰值加速度值以满足以上的限制条件.点击“查看计算结果文本”,程序将打开结果文件,内容包括了地震波在筛选地震波组合时计算的地震波基底剪力,周期点谱值及地震波组合计算的统计结果.用户可根据该计算统计结果适当改变地震波组合方案.图2筛选方案排序示例对于未筛选出满足要求的地震波组合工程,用户可尝试从以下几方面检查参数设置或者进行适度调整.(1)主次波峰值加速度对应地震烈度是否与前处理中地震烈度设置一致.(2)前处理中周期折减系数是否过小.(3)根据规范相关阐述,在选取不到恰当地震波组合情况下,可选取相邻特征周期地震波或增大减小地震波峰值加速度以满足剪力即谱值要求.1.2天然地震波加速度值的调整如前所述,结构时程分析法补充计算被用于校核振型分解反应谱法的计算结果.反应谱法以反应谱作为输入地震动,时程分析以加速度时程(地震波)作为输入,需要对它的加速度值进行调整.2010规范以中国地震动参数区划图定义的地面峰值加速度GPA为设防地震(中震)基本地震峰值加速度,如表3.2.2所示;表5.1.2-2分别给出多遇地震(小震)和罕遇地震(大震)加速度峰值,与之相对应的规范设计反应谱是基于大量的天然地震加速度记录,并经平滑处理和统计平均后构建的,是地震动的预期均值.对每一条天然地震波加速度时程进行调整的步骤是:根据规范给定的加速度峰值GPA,按比例调整后求得其加速度反应谱,经平滑处理得到归一化的反应谱.运用式(1)求得有效峰值加速度EPA,以其为基准对地震波加速度时程进行再调整,得到结构时程分析所需要的加速度时程.需要指出的是,有效峰值加速度EPA不等于地面峰值加速度GPA,当地震波的短周期成分显著时,GPA大于EPA.如前所述,人工地震波是采用拟合规范反应谱的数值合成方法得到的加速度时程,按GPA比例调整后即可作为时程分析的输入地震动.美国地震危险区划图定义,有效峰值加速度EPA、加速度反应谱最大值Sa(对应于中国规范的地震影响系数)和放大系数β存在如下关系:式中:Sa(0.2)为周期0.2s处的谱加速度值;β为动力放大系数,取2.50(中国规范取2.25).下面以位于7度区III类场地(Tg=0.70s)的设计地震分组为第三组的某一高层建筑为例,大震作用下结构弹塑性时程分析选用7组输入地震波,其归一化的加速度反应谱及其平均、平滑处理后的结果如图2所示.图2地震加速度反应谱表1和图3是每条地震波调整前后的地震动参数与规范的对比(大震作用GPA 取2.20m/s2).可以看到,尽管各条地震波的三个参数差别较大,但经平滑平均后接近于规范反应谱,且EPA<GPA.由此也可证明,2010规范对地震波数量的要求是必要而且合理的.ps:上表的平均值为平均谱所得的值.如amax,并不是每个波amax的平均,而是由平均谱求得的,因为每个谱的极值点不会都在同一个周期,故平均谱的amax比每个波amax的平均值小.图3地震动参数对比1.3检验要求《建筑抗震设计规范》(GB50011—2001)(简称2001规范)和2010规范提出:弹性时程分析时,每条时程曲线计算所得底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得底部剪力的平均值不应小于振型分解反应谱计算结果的80%.具体操作时,当采用一组(单向或两向水平)地震波输入进行时程分析,结构主方向基底总剪力为同方向反应谱CQC计算结果的65%~130%,多组地震波输入的平均值为80%~120%.不要求结构主、次两个方向的基底剪力同时满足这个要求.需要说明的是,对结构可以按第一、二主振型认定主、次方向,而一组地震记录的两个水平方向无法区分主、次方向.ps:X向为主时仅要求X向满足,Y向为主是仅要求Y向满足.1.4选波实例下面以两组天然地震波和一组人工合成地震波为例说明选波过程及效果.(1)图4为所选择的一组3分量天然地震波时程及反应谱,其中编号US2570和US2571为两向水平分量,US2569为竖向分量,需要按小震作用所对应的最大加速度峰值进行调整,除有特殊要求外,通常取两向水平峰值与竖向峰值之比为1.00:0.85:0.65.从波形和反应谱可以看到,竖向分量的短周期成分十分显著,水平分量在短周期部分的波动也很显著,各向分量的反应谱曲线相差明显.图4第一组天然地震波和反应谱(2)图5为另一组3分量天然地震波时程及反应谱,其中编号US184和US185为两向水平分量,US186为竖向分量.同样可以看到,竖向和水平分量在短周期部分的波动很明显,但是两个水平分量的反应谱曲线比较一致.两组地震波反应谱的明显差异反映了天然地震波特征的不确定性,用于结构时程分析时,很难做到两向水平输入的地震波均能满足规范要求,一般只要求结构主方向的底部总剪力满足规范要求即可.图5第二组天然地震波和反应谱(3)图6为三条人工地震波及反应谱.图6三条人工地震波及反应谱2时程分析输出结果解读结构时程分析一般要求进行小震作用下弹性和大震作用下弹塑性计算.对计算结果的解读可以判断结构的动力响应和损伤情况.2.1小震作用下的计算结果(1)楼层水平地震剪力分布:对于高层建筑,通常可由此判断结构是否存在高阶振型响应并发现薄弱楼层.图7为某幢高层建筑结构小震弹性时程分析得到的楼层剪力分布,可见结构存在高阶振型响应,应对结构上部相关楼层地震剪力加以调整放大.图7楼层地震剪力分布(2)弹性层间位移角分布:如图8所示,上部结构部分楼层的层间位移角大于规范限值.从图7和图8可以看到,输入3组地震波进行时程分析,结构高阶振型响应明显,上部楼层剪力和位移均放大了,应对反应谱法结果进行调整,采用包络设计.图8弹性层间位移角分布2.2大震作用下的计算结果(1)层间位移角分布:按照规范要求进行大震作用下结构的时程分析,主要是弹塑性变形计算,力的计算并不重要.计算结果通常给出弹性和弹塑性层间位移角分布的对比,如图9所示.X向最大层间位移角为1/178,Y向为1/138,均满足规范限值1/100.一般情况下,最大弹性位移角大于弹塑性位移角.图9弹塑性层间位移角分布(弹塑性/弹性)(2)结构顶点位移时程曲线:从结构顶点位移时程曲线除了可以看出位移是否满足规范限值外,更重要的是可以判断结构整体刚度退化程度,并推测结构的塑性损伤程度.如图10所示,弹塑性位移时程曲线表明,结构的周期逐步变长,说明有部分构件累积损伤,导致结构整体刚度退化.图10结构顶点位移时程曲线对比(弹性/弹塑性)(3)构件损伤:通常要求给出主要抗侧力构件,如剪力墙、框架柱、支撑、环带桁架、伸臂桁架等,以及耗能构件,如连梁、框架梁等的损伤,以应力比、应变、损伤因子等表示.图11表示某高层建筑核心筒剪力墙受压、受拉和框架柱的损伤.图11核心筒剪力墙和框架柱损伤(4)能量分布:有的软件可以提供在地震作用下结构的能量分布情况.如图12所示,从上至下的区域分别表示结构动能、弹性应变能、与质量M相关的粘滞阻尼耗能、与刚度K相关的粘滞阻尼耗能、塑性耗能.其中,塑性耗能属于不可恢复的能量耗散,所占比例越大,表明结构整体破坏越严重.图12结构能量分布。
框架核心筒结构动力弹塑性时程分析

3 7
框 架 核 心 简 结 构 动 力 弹 塑 性 时 程 分 析
王 慧英
( 东建设职 业技术学院土木工程 系, 广 州 广 5 4 0) 1 4 0
【 摘
要 】 利用 P R O M一 D软件实现 了超高层建筑 结构 的动力 弹塑 性时 程分析 , E FR 3 将结 构 的抗震 性能 引
性 分析 方 法 显 得 力 不 从 心 , 们 逐 渐 开 始 重 视 动 力 弹 塑 性 人
三折线模 型 , 回过程根据应 变修正 耗能指 标 , 虑滞 回过 滞 考
程 中 的循 环退 化 。
分析方 法的理论 研究和工 程应 用 。弹塑性 时程 分析 是将地 震波直接输 入 , 过 逐步 积 分 法求 解结 构 每一 步 地震 响应 通 的方法 , 它被认 为是 目前 结 构 弹塑 性 分析 的 最可 靠 和最 精 确的方法 , 不仅 能对结构 进行 定性 分析 , 且 同时又可 给 它 而
e rhq a e at u k . Ke r s: y mi lsi — l si h e a t—e s c p ro ma e;PERFORM- y wo d d na c ea tc p a t c;t n is imi e r nc f 3D
对 于 目前 工程 中遇到 的许 多超 限结 构 分析 , 力 弹 塑 静
ia stes utr ’ rp re be t eo s n igu r h nsvr atq a e n e esvr d t t c e Spo et sojci f“ t dn p gti eeee r u k ”u d r h e ee e h r u i v a i h t
某超高层建筑静力弹塑性推覆分析

某超高层建筑静力弹塑性推覆分析发布时间:2022-05-09T06:47:26.924Z 来源:《工程建设标准化》2022年37卷1月2期作者:朱伟锋[导读] 此项目位于广东省中山市,地下1层,地上共32层,总高度144.6m朱伟锋工程概况:此项目位于广东省中山市,地下1层,地上共32层,总高度144.6m,结构类型为部分框支剪力墙结构,其中第2层楼面为转换层楼面。
场地抗震设防烈度为7度,设计分组为第1组,设计基本地震加速度为0.10g,场地类别为Ⅲ类。
抗震等级:三层及三层以下为一级,三层以上为二级。
建筑物标准层结构布置如下图所示:分析模型与计算假定:分析软件采用中国建筑科学研究院的多高层建筑结构弹塑性静力、动力分析软件PUSH 。
PUSH程序是一个完全三维的有限元空间弹塑性静力分析程序,非线性梁(柱)构件单元采用标准的有限元方法(微观方法)构造,单元切线刚度直接基于混凝土材料微元和钢筋材料微元的本构关系,这种模型通常被称为纤维束模型。
非线性墙单元面内刚度采用平面应力膜,可考虑开洞,面外刚度相对次要,用简化的弹塑性板元考虑。
对于本构模型,混凝土受压考虑SAENZ曲线,忽略混凝土受拉能力;钢筋采用理想弹塑性曲线。
PUSH分析参数设置如下图所示:强度准则:采用构件承载力极限值进行计算,材料强度取平均值。
根据《混凝土结构设计规范》(GB50010-2010(2015版))附录C第C.1.1条,取钢筋,混凝土强度变异系数分别为0.06,0.10,则混凝土强度fm/fk=1.20,钢筋强度fm/fk=1.10。
参考广东省标准《建筑工程混凝土结构抗震性能设计规程》(DBJ/T 15-151-2019)附录D第D.3.1条的Kent-Scott-Park模型及常规Mander 模型,对于约束混凝土强度延性提高系数,取1.20。
参考美国应用技术委员会编制的《混凝土建筑抗震评估和修复》(ATC-40),构件塑性铰的位移限值如图1。
弹塑性时程分析

弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。
基本原理多自由度体系在地面运动作用下的振动方程为:式中、、分别为体系的水平位移、速度、加速度向量;为地面运动水平加速度,、、分别为体系的刚度矩阵、阻尼矩阵和质量矩阵。
将强震记录下来的某水平分量加速度-时间曲线划分为很小的时段,然后依次对各个时段通过振动方程进行直接积分,从而求出体系在各时刻的位移、速度和加速度,进而计算结构的内力。
式中结构整体的刚度矩阵、阻尼矩阵和质量矩阵通过每个构件所赋予的单元和材料类型组装形成。
动力弹塑性分析中对于材料需要考虑包括:在往复循环加载下,混凝土及钢材的滞回性能、混凝土从出现开裂直至完全压碎退出工作全过程中的刚度退化、混凝土拉压循环中强度恢复等大量非线性问题。
基本步骤弹塑性动力分析包括以下几个步骤:(1) 建立结构的几何模型并划分网格;(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。
计算模型在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。
在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。
以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。
其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。
它的主要优点有:(1) 应用范围广泛,可以使用在梁单元、壳单元和实体单元等各种单元类型中,并与钢筋单元共同工作;(2) 可以准确模拟混凝土结构在单调加载、循环加载和动力荷载下的响应,并且可以考虑应变速率的影响;(3) 引入了损伤指标的概念,可以对混凝土的弹性刚度矩阵进行折减,可以模拟混凝土的刚度随着损伤增加而降低的特点;(4) 将非关联硬化引入到了混凝土弹塑性本构模型中,可以更好的模拟混凝土的受压弹塑性行为,可以人为指定混凝土的拉伸强化曲线,从而更好的模拟开裂截面之间混凝土和钢筋共同作用的情况;(5) 可以人为的控制裂缝闭合前后的行为,更好的模拟反复荷载作用下混凝土的反应。
58超高层建筑在剪力墙结构上的弹塑性时程探讨

58超高层建筑在剪力墙结构上的弹塑性时程探讨Discuss the Elastic-plastic Time-histories of Shear Wall Structure in High-rise building■郭梅霞 1 鲁永生 2 ■Guo Meixia1 Lu Yongsheng2[摘要] 经济的繁荣带动了超高层建筑产业的迅速发展,尤其在沿海地区比较发达的城市,人们更是给予超高层建筑过于密切的关注。
随之而来所面临的是如何使建筑在罕遇的地震作用下,也能不发生倒塌现象。
解决这一问题的有效途径就是采取对结构进行弹塑性验算的方法,以此保证目标的实现。
[关键词] 超高层建筑弹塑性变形验算[Abstract] The economic prosperity led to the rapid developmentof high-rise construction industry, especially in the moredeveloped coastal areas of the city, where people give too closeattention to high-rise building, so the next step is how tomake the building does not occurs the collapse phenomenonunder the rare earthquake. Therefore, an effective way to solvethis problem is to adopt a method of elastic-plastic checkingthe structure so as to make sure the realization of the goals[Keywords] Super high-rise buildings, elastic-plastic, deformationcheck随着中国人口的急剧增加和应对经济的发展需要,建筑行业突飞猛进地发展。
基于性能化设计的超高层钢筋混凝土结构弹塑性时程分析

方法) . 基于静力弹塑性分析方法 的局 限性 , 对于 大型结构则较多的采用弹塑性时程分析方法. 弹塑
性 时程 分析方 法 能够 计 及 地 震 反应 全 过程 各 时 刻
由图 1 可知 , 弹塑性分析计算是结构抗震性能 设计 的手段之一 , 对满足第 3— 5级性 能水准的结
摘
要: 结构抗 震性 能化 设计 已在 我 国“ 超 限 高层 建 筑 工程 ” 的抗 震 设 计 中得 到 广 泛应 用, 其
中弹 塑性 时程 分析 方 法是 实现抗 震性 能化 设计 的主要 途径 . 结 合 工程 实例 , 利用P E R F O R M一 3 D
软 件 建立 了某超 高层钢 筋 混凝 土结构 的 弹塑性模 型. 基于 A T C一 4 0 , F E MA一3 5 6规 范 , 结合 我 国 规 范定义的性 能 目标 , 对 关键 构件 和耗 能 构件 的抗震 性 能进 行 了评 估 , 得 到 整体 结 构 响应 、 构件
征…. 下图 1 归 纳 了抗震 性 能化设 计 的基本 流程. 1 . 2 基 于性 能化 设计 的弹 塑性 分析 方法
方法. 正确的采用抗震性能化设计有利于把握超高 层 结构 的抗震 性能 , 帮助 结构 工程 师有 针对 性地加 强结构的薄弱部位 , 达到抗震设计要求. 其中, 选择 合适的弹塑性分析方法是 实现抗震性能化设计的 关键 . 常用的弹塑性分析方法包含: 静力弹塑性分析
纤 维 模 拟 柱 单 元基 于平 截钢筋 的应力 一 应变 关系. 纤维截面需手动划分 , 并可输入约束混凝土纤
维.
F E M A梁模型基 于弦转角模型 , 需手动输人塑 性铰的弯矩 一 转 角曲线. 由于缺少试验资料 , 故通
高层建筑结构弹塑性分析方法的研究与实际应用探讨

图 1 层 梗 型
段 ,就 是 当变 形关 系 已经 不适 用 于虎 克 定律 的 时候 产 生 的 反应称 为 弹 塑性 反应 。弹性 地震 反应 和 弹塑 性地
[ M 】 { ( t ) } + 【 c ] { ( t ) ) + [ K ] { x ( t ) ) = [ MⅡ I ] x ( t ) ( t )
都 处在 弹性 工 作 的状态 ,所 以必 须要 对 建筑 物材 料 的 运 动加速 度 时程 曲线 是 时问 t 的 函数 。值得 注意 的是 , 弹 塑 性性 质 进 行 考 虑才 能够 准 确 的进 行 弹塑 性 分 析 。 以上动 力方 程 组不 能用 解 析法 来 求 ,因 为它 是一 个 随 根据 我 国修 订 之后 的抗 震设计 规 范 的规 定 “ 对 不规 则 机 过程 , 不 能 用某 个确 定 的 函数表 示 , 只 能采 用数 值 积 的、 具有 明显 薄 弱 部位 的 、 较 高 的高 层 建筑 结构 , 宜 进 分 方法进 行求 解 。 以上方 程 是 当如 图 1的形 式 , 即竖 向 串联 多 自由 性动 力 反应 的影 响 因素 比较 多 。要想 进行 准 确 的弹 性 度 系在地 震地 面运动 下 的动力 方程 。 分析 是 一项 比较 复杂 的工 作 。虽 然 当今 国 内外 已经 有 行 罕遇地 震 的弹塑性 变形 分析 ” 。因为对 建筑 结构弹 塑
高层 建筑结构 中最薄弱的部位 , 对结构 的构建和破坏规律进行分析。本文主要 在总结高层建筑结构弹塑性分析 实践的基
础上 , 简要介绍 了高层建筑结构弹塑性分析 的方法 , 分析的步骤程序 以及 对它的实际应 用进行探讨 , 从 而体现 高层 建筑结 构 弹 塑性 分析 的重 要 性 和 可操 作 性 。 关键词 : 高层建筑结构 ; 弹塑性分析 ; 结构模型; 应用
精编弹塑性时程分析法资料

服点,后续反向加载时直线指向所经历过的最大位移点。 ④ 中途卸载时,卸载刚度取 k1。
《工程结构抗震与防灾》电子教案 东南大学 源自幼亮§4 弹塑性时程分析法
9
2. 双线型模型力学描述:
设 P(Ui ) 、U i 表示ti 时刻结构的恢复力与变形,则在ti1时刻刚度退化双线
P(Ui ) P(U7 )
刚度降低系数为
4
k4 k1
Py U yk1
故
P(U i1 )
P(U3)
P(U
7
)
Py Uy
(U i1
Py Uy
(U i1
U3) U7
)
(4.1.11)
《工程结构抗震与防灾》电子教案
东南大学
丁幼亮
§4 弹塑性时程分析法
U 0 ,U U6
初始条件为
U i U 6 , P(U i ) P(U 6 ) 0
刚度降低系数为
P(U 2 )
(U 2 U 6 )k1
故
P(U i1 )
P(U 2 ) U2 U6
(U i1
U6 )
(4.1.7)
需要指出,式(4.1.2)~式(4.1.7)中,U 2 、 P(U 2 ) 、U 3 、U5 、 P(U5)
(1) 在弹性阶段,K 是定值,不随变形而变化. (2) 在弹塑性阶段,K 值随结构变形状态不同而改变。 (3) 由于地震下结构变形为一个循环往复的过程,因此 K 值随着变形也是
个循环往复的过程。
因此,弹塑性时程分析法必须首先确定刚度与变形之间的关系,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超高层建筑结构与弹塑性动力时程分析法
一、前言
随着经济的不断发展,城市内部的建筑物高度不断被刷新,各种高层建筑以及超高层建筑被不断的建设,对于这类建筑结构不能进行简单的叠加计算,需要依靠具有科学性的计算方法进行分析。
现如今常用的分析法是弹塑性动力时程分析法,这种分析法具有较高的精确度和准确度,可以对建筑结构进行定性分析,同时可以更好地反应地震对建筑物的影响。
二、工程概况
某大型建筑地下2 层,地上33层,总建筑面积约为30 万m。
本工程±0.00 以下由裙房连为整体,±0.00 以上依据层数、高度、结构体系的不同共分为3 个单体,A 座,D 座与商业裙房构成大底盘单塔结构, B 座,C 座与商业裙房构成大底盘双塔结构。
本文论述仅针对B 座,C 座。
建筑结构设计使用年限:50 年;建筑结构安全等级:二级,对应结构重要性系数为1.0;抗震设防类别:根据规范GB50223—2008,本工程商业部分属人流密集的大型多层商场,抗震设防类别为重点设防类(乙)类建筑,写字楼部分抗震设防类别为标准设防类(丙)类建筑;抗震设防烈度为8 度,设计地震分组为第一组,设计基本地震加速度值为0.20g;建筑场地类别:Ⅲ类;场地特征周期:0.45。
三、弹塑性动力、静力分析力学模型
1.层模型
它是把结构按层静力等效成质量弹簧串,然后再进行弹塑性动力反应分析。
层模型只能通过时程分析找到薄弱层,不能找到具体的薄弱杆件。
层模型动力时程分析计算由两部分组成,前一部分是层静力特性计算,这部分实际上就是一个小型的计算程序,采用增量法和能量法相结合,逐层计算结构的层间全曲线,并拟合成恢复力骨架曲线,并用三个点来简化描述该骨架曲线,即三线型骨架曲线,以此作为层刚度变化的控制点;后一部分是动力时程响应计算,基于集中质量、串联弹簧模型描述的层模型,采用Wilson—θ法计算结構的动力响应。
2.平面模型
平面模型针对的是结构的一个局部——“榀”,对一榀框架进行时程分析,直接找出薄弱的杆件。
这种模型的精度主要取决于把结构离散成“榀”这一模型化过程。
若结构的刚度分布比较均匀、几何布置比较规则,正交或接近正交,结构各榀之间影响不大,把结构离散成相互独立的“榀”精度损失不多,可以采用平面模型进行弹塑性动力反应分析;反之,若结构的刚度分布不均匀、几何布置不规则,很难分成“榀”,或即使可以分成“榀”,但各榀之间相互影响较大,把这种结构离散成相互独立的“榀”时可能有较大的精度损失,对于这些结构不宜采用平面模型。
3.空间模型
空间模型针对的是结构的整体,对结构进行整体的弹塑性动力时程分析,直接找出薄弱的杆件。
这种模型的精度最高,对结构没有做大的简化。
但计算工作量很大,所需计算时间也长,随着结构自由度的增加,计算时间成倍增加。
计算机软硬件技术的飞速发展,为解决大体量的工程计算问题提供了基础保证,目前的计算机主频和内存资源对处理多、高层结构的弹塑性分析问题已经足够了,此外,为了进一步提高效率,我们在EPDA软件中采用了改进的PCG法,提高计算效率十倍左右,这样,使EPDA的空间模型方法具有了更好的实用性。
4.静力推覆模型——Push—over法
Push—over法即静力推覆法,其方法类似前面提到的“层模型”的骨架曲线计算方法,只是层数不是单层了。
Push—over法在外力增量上要比单层复杂,有多种方式,如倒三角形增加、均匀增加等,通过,Push—over法,可以求出每个杆件和节点由弹性到破坏的全过程。
由此可以分析出结构的薄弱层、薄弱部位等等。
Push—over法的梁、柱、支撑单元,以及材料模式如前所述,这里不再重复。
Push—over法中非线性方程组的求解算法为弧长增量法。
四、中震动力弹塑性时程分析主要计算结果
1.楼层最大层间位移角(仅列出最不利位置)
从表中可以看出,采用弹塑性动力时程分析得到,当X 向地震作用时的楼层最大层间位移角为1/966(25层),Y 向地震作用时的楼层最大层间位移角为1/822(31~33 层),小于规范规定的弹性层间位移角限值,说明结构在中震作用下,基本保持弹性。
2.塑性铰分布及薄弱部位分析
3.中震作用下构件性能分析
4.小结
通过对中震作用下结构计算结果进行分析,得到以下结论:⑴、框架梁已进入塑性阶段,其塑性铰出现的位置主要集中在与筒体连接端。
⑵、全楼层框架柱位移延性系数D/D1 均小于1,故框架柱均处于弹性阶段。
⑶、剪力墙洞口处部分连梁已经开始出现塑性铰,但数量不多。
剪力墙在底部1 至2 层洞口附近局部出现裂缝,在8~13 层抬柱子部分局部出现裂缝,在调整剪力墙配筋重新计算后,该2 处部位的剪力墙应变等级均能达到3 级。
筒体其他部位均处于弹性状态。
因此在中震作用下,筒体墙肢基本弹性。
五、计算结果分析
图3所示为地震结束后该框架的受压损伤因子分布云图,从图中可以看出框架的梁和柱的损伤情况均为两端大中间小,这是因为梁与柱均为受弯构件,弯矩一般为两端大中间小,在地震的循环往复荷载作用下,两端受到正负两个方向的循环弯矩作用,损伤很快。
另外也可以看出,柱的损伤都比梁的损伤大,部分柱子端部的损伤因子已经达到了1.088,也即已经完全损坏。
图4所示为地震结束后该框架的受拉损伤因子分布云图,从图中可见框架的粱都没发生损伤,而大部分柱子端部都已经发生受拉损伤,尤其是框架底层柱的低端,受拉损伤因子也已经达到了0.8以上。
六、结语
综上所述,采用弹塑性动力时程分析方法可以准确、真实的反映出建筑物结构遭受地震影响时的受力状况以及变形值,根据这些数据,我们可以更加准确的分析地针对建筑物的影响,进而进行更好地建筑结构设计。
参考文献
[1]李云贵,邵弘,田志昌,黄吉峰,陈岱林多层、高层建筑结构弹塑性动力、静力分析[J] 《建筑结构学报》ISTIC EI PKU -2012年5期-
[2]申永康,邵建华,陈建锋建筑结构爆破地震反应弹塑性精细时程分析[J] 《爆炸与冲击》ISTIC EI PKU -2008年1期-
[3]陈清军,袁伟泽,曹丽雅长周期地震波作用下高层建筑结构的弹塑性动力响应分析[J] 《力学季刊》ISTIC PKU -2011年3期-。