步进电机控制方法
步进电机控制方法及编程实例

步进电机控制方法及编程实例
步进电机在现代自动化控制系统中广泛应用,其精准的位置控制和相对简单的驱动方式使其成为许多工业和家用设备中的理想选择。
本文将介绍步进电机的控制方法及编程实例,帮助读者更好地理解和应用这一技术。
步进电机的基本原理
步进电机是一种将电能转换为机械能的电机,其运行原理基于磁场相互作用。
步进电机内部包含多个电磁线圈,根据电流方向和大小的不同来控制转子的运动。
通过逐个激活线圈,可以实现步进电机的准确位置控制,使其能够按照指定的步长旋转。
步进电机的控制方法
1.单相激励控制:最简单的步进电机控制方式之一。
通过依次激活每一相的线圈,
使电机按照固定步长旋转。
这种方法控制简单,但稳定性较差。
2.双相正交控制:采用两相电流的正交控制方式,提高了步进电机的稳定性和精
度。
可以实现正向和反向旋转,常用于对位置要求较高的应用场景。
3.微步进控制:将步进电机每个步进细分为多个微步进,以提高控制精度和减小振
动。
虽然增加了控制复杂度,但可以获得更平滑的运动和更高的分辨率。
步进电机的编程实例
下面以Python语言为例,演示如何通过控制步进电机的相序来实现简单的旋转控制。
通过以上代码,可以实现对步进电机的简单控制,按照设定的相序进行旋转,实现基本的位置控制功能。
结语
步进电机是一种常用的精准位置控制设备,掌握其控制方法和编程技巧对于工程师和爱好者来说都是有益的。
希望本文介绍的步进电机控制方法及编程实例能够帮助读者更好地理解和应用这一技术。
s7-200步进电机控制s-200步进电机控制s7-200步进电机控制s7-200步进电机控制

PTOx_RUN子程序(运行轮廓)
• PTOx_RUN子程序(运行轮廓)命 令PLC执行存储于配置/轮廓表的 特定轮廓中的运动操作。开启EN位 会启用此子程序。在懲瓿蓲位发出 子程序执行已经完成的信号前,请 确定EN位保持开启。
• 现在比较常用的步进电机包括反应式步进电机(VR)、 永磁式步进电机(PM)、混合式步进电机(HB)和单相 式步进电机等。
• 电机固有步距角:
• 它表示控制系统每发一个步进脉冲信号,电机所 转动的角度。电机出厂时给出了一个步距角的值 。
• 如86BYG250A型电机给出的值为0.9°/1.8°(表 示半步工作时为0.9°、整步工作时为1.8°), 这个步距角可以称之为‘电机固有步距角’,它 不一定是电机实际工作时的真正步距角,真正的 步距角和驱动器有关。
• Error(错误)参数包含本子程序的结果。 如果PTO向导的HSC计数器功能已启用, C_Pos参数包含用脉冲数目表示的模块; 否则此数值始终为零。
编程
运行。 • 脉宽时间 = 0 占空比为0%:输出关闭。 • 周期 < 2个时间单位 周期的默认值为两个时间单
位。
• PTO操作
• PTO为指定的脉冲数和指定的周期提供方 波(50%占空比)输出。PTO可提供单脉冲 串或多脉冲串(使用脉冲轮廓)。您指定 脉冲数和周期(以微秒或毫秒递增)。
• 周期范围从10微秒至65,535微秒或从2毫秒 至65,535毫秒。
产生一个高速脉冲串或一个脉冲调制波形。 • Q0.0 • Q0.1
• 当Q0.0/Q0.1作为高速输出点使用时,其普 通输出点禁用,反之。
步进电机常用升降速控制方法说明

步进电机常用升降速控制方法说明步进电机常用的升降频控制方法有两种:直线升降频和指数曲线升降频。
指数曲线法具有较强的跟踪能力,但当速度变化较大时平衡性差。
直线法平稳性好,适用于速度变化较大的快速定位方式。
以恒定的加速度升降,规律简练,用软件实现比较简单。
步进电机驱动执行机构从一个位置向另一个位置移动时,要经历升速、恒速和减速过程。
当信浓步进电机的运行频率低于其本身起动频率时,可以用运行频率直接起动并以此频率运行,需要停止时,可从运行频率直接降到零速。
当步进电机运行频率fbfa(有载起动时的起动频率)时,若直接用fb频率起动会造成步进电机失步甚至堵转。
同样在fb频率下突然停止时,由于惯性作用,步进电机会发生过冲,影响定位精度。
如果非常缓慢的升降速,信浓步进电机虽然不会产生失步和过冲现象,但影响了执行机构的工作效率。
所以对信浓步进电机加减速要保证在不失步和过冲前提下,用最快的速度(或最短的时间)移动到指定位置。
1。
步进电机的开环控制和闭环控制

步进电机的开环控制和闭环控制一、步进电机的开环掌握1、步进电机开环伺服系统的一般构成图1 步进电机开环伺服系统步进电动机的电枢通断电次数和各相通电挨次打算了输出角位移和运动方向,掌握脉冲安排频率可实现步进电动机的速度掌握。
因此,步进电机掌握系统一般采纳开环掌握方式。
图为开环步进电动机掌握系统框图,系统主要由掌握器、功率放大器、步进电动机等组成。
2、步进电机的掌握器1、步进电机的硬件掌握步进电动机在—个脉冲的作用下,转过一个相应的步距角,因而只要掌握肯定的脉冲数,即可精确掌握步进电动机转过的相应的角度。
但步进电动机的各绕组必需按肯定的挨次通电才能正确工作,这种使电动机绕组的通断电挨次按输入脉冲的掌握而循环变化的过程称为环形脉冲安排。
实现环形安排的方法有两种。
一种是计算机软件安排,采纳查表或计算的方法使计算机的三个输出引脚依次输出满意速度和方向要求的环形安排脉冲信号。
这种方法能充分利用计算机软件资源,以削减硬件成本,尤其是多相电动机的脉冲安排更显示出它的优点。
但由于软件运行会占用计算机的运行时间,因而会使插补运算的总时间增加,从而影响步进电动机的运行速度。
另一种是硬件环形安排,采纳数字电路搭建或专用的环形安排器件将连续的脉冲信号经电路处理后输出环形脉冲。
采纳数字电路搭建的环形安排器通常由分立元件(如触发器、规律门等)构成,特点是体积大、成本高、牢靠性差。
2、步进电机的微机掌握:目前,伺服系统的数字掌握大都是采纳硬件与软件相结合的掌握方式,其中软件掌握方式一般是利用微机实现的。
这是由于基于微机实现的数字伺服掌握器与模拟伺服掌握器相比,具有下列优点:(1)能明显地降低掌握器硬件成本。
速度更快、功能更新的新一代微处理机不断涌现,硬件费用会变得很廉价。
体积小、重量轻、耗能少是它们的共同优点。
(2)可显著改善掌握的牢靠性。
集成电路和大规模集成电路的平均无故障时(MTBF)大大长于分立元件电子电路。
(3)数字电路温度漂移小,也不存在参数的影响,稳定性好。
第3章 步进电动机的控制-1

这种反应式步进电动机的步距角较大,不适合一般用途的要求。
4.小步距角步进电动机
图3-1所示为三相反应式步进电动机。设m为相数,z为 转子的齿数则齿距:
tb 360 z
因为每通电一次(即运行一拍),转子就走一步,各 相绕组轮流通电一次,转子就转过一个齿距。故步距角:
b
齿距 拍数 齿距 Km 360 Km z
通电方式: 从一相通电改换成另一相通电,即通电方式改变一次叫 “一拍”。步进电动机有单相轮流通电、双相轮流通电和单 双相轮流通电的方式。
3.多段反应式步进电机结构及工作原理
前面介绍的单段反应式步进电机是按 径向分相的,此外,还有一种反应式 步进电机是按轴向分相,这种步进电 机又称为多段反应式步进电机。 多段反应式步进电机是沿轴向分成磁 性相对独立的几段,每一段都有一组 励磁绕组,形成一相,因此,三相电 动机有三段,其结构如图3-2所示。 图3-2 三段三相反应式步进电动 机结构原理图
一、步进电动机的种类
1.按运动方式来分:分为旋转运动、直线运动、平面运动(印刷绕组式)和 滚切运动式步进电机。 2.按工作原理来分:分为反应式(磁阻式)、电磁式、永磁式、永磁感应式 (混合式)步进电机。 3.按其工作方式来分:分为功率式和伺服式。前者输出转矩较大,能直接带 动较大的负载;后者输出转矩较小,只能带动较小的负载,对于大负载需通 过液压放大元件来传动。 4.按结构来分:分为单段式(径向式)、多段式(轴向式)、印刷绕组式。 5.按相数来分:分为三相、四相、五相、六相等。 6.按使用频率来分:分为高频步进电机和低频步进电机。 不同类型步进电机其工作原理、驱动装臵也不完全一样,但其工作过程 基本是相同的。
(3-2)
若通电方式和系统的传动比已初步确定,则步距角应满足:
第3章步进电动机的控制

升速 恒速 减速 低速
起点
终点
(时间) t
图3-24
点、位控制中的加减速控制
15
变速控制的方法有:
改变控制方式的变速控制:最简单的变速控制可利用改变步进电 机的控制方式实现。例如:对于三相步进电机系统,启动或停止时 用三相六拍,大约0.1s以后,改用三相三拍,快到达终点时再采用 三相六拍,以达到减速控制的目的。 均匀地改变脉冲时间间隔的变速控制:步进电机的加速(或减速) 控制,可以用均匀地改变脉冲时间间隔来实现。 采用定时器的变速控制:单片机控制系统中,用单片机内部的定 时器来提供延时时间。方法是将定时器初始化后,每隔一定的时间, 由定时器向CPU申请一次中断,CPU响应中断后,便发出一次控制脉 冲。此时只要均匀地改变定时器时间常数,即可达到均匀加速(或 减速)的目的。这种方法可以提高控制系统的效率。
脉冲 方向控制
步进控制器
功率放大器
步进电机
负载
图3-19 步进电机控制系统的组成
2
随着电子技术的发展,除功率驱动电路之外,其它硬件电路均可由软 件实现。采用计算机控制系统,由软件代替步进控制器,不仅简化了 线路,降低了成本而且可靠性也大为提高,同时,根据系统的需要可 灵活改变步进电机的控制方案,使用起来很方便。典型的微型机控制 步进电机系统原理图如图3-20所示。 使用微型机对步进电机进行控制有串行和并行两种方式。 步 进 电 机
6
二、步进电动机的闭环控制
在开环步进电动机系统中,电动机的输出转矩在很大程度上取决于驱 动电源和控制方式。对于不同的步进电动机或同一种步进电动机而不 同负载,励磁电流和失调角发生改变,输出转矩都会随之发生改变, 很难找到通用的控速规律,因此,也很难提高步进电机的技术指标。 闭环系统是直接或间接地检测转子的位置和速度,然后通过反馈和适 当处理自动给出驱动脉冲串。因此采用闭环控制可以获得更精确的位 置控制和更高、更平稳的转速,从而提高步进电动机的性能指标。 步进电动机的输出转矩是励磁电流和失调角的函数。为了获得较高的 输出转矩,必须考虑到电流的变化和失调角的大小,这对于开环控制 来说是很难实现的。
如何控制步进电机速度(即如何计算脉冲频率)

如何控制步进电机速度(即如何计算脉冲频率)步进电机是一种常用的控制器件,它通过接收脉冲信号来进行精确的位置控制。
控制步进电机的速度就是控制脉冲的频率,也就是发送给电机的脉冲数目和时间的关系。
下面将介绍几种常见的方法来控制步进电机的速度。
1.简单定频控制方法:这种方法通过固定每秒脉冲数(也称为频率)来控制步进电机的速度。
通常,在开发步进电机控制系统时,我们会选择一个合适的频率,然后通过改变脉冲的间隔时间来调整步进电机的速度。
脉冲频率可以通过以下公式计算:频率=目标速度(转/秒)×每转需要的脉冲数。
2.脉冲宽度调制(PWM)控制方法:使用PWM调制技术可以在不改变脉冲频率的情况下改变脉冲的时间宽度,从而控制步进电机的速度。
通过改变每个脉冲的高电平时间和低电平时间的比例,可以实现步进电机的速度控制。
较长的高电平时间会导致步进电机转动较快,而较短的高电平时间会导致步进电机转动较慢。
3.脉冲加速与减速控制方法:步进电机的加速和减速是通过改变脉冲信号的频率和间隔时间来实现的。
在加速时,脉冲的频率逐渐增加,间隔时间逐渐减小,从而使步进电机从静止状态加速到目标速度。
在减速时,脉冲的频率逐渐减小,间隔时间逐渐增加,从而使步进电机从目标速度减速到静止状态。
在实际应用中,可以通过编程控制脉冲信号的频率来控制步进电机的速度。
根据不同的需求,可以选择适合的控制方法来实现步进电机的精准控制。
除了控制脉冲频率,步进电机的速度还受到其他因素的影响,如驱动器的最大输出速度、电机的最大速度等。
因此,在进行步进电机速度控制时,还需要考虑这些因素,并做好相应的调整以确保步进电机的正常运行。
步进电机控制方法

步进电机控制方法步进电机是一种常见的电动执行器,广泛应用于各个领域的控制系统中。
它具有结构简单、控制方便、定位精度高等优点,是现代自动化控制系统中必不可少的重要组成部分。
本文将从基本原理、控制方法、应用案例等方面对步进电机进行详细介绍。
1. 基本原理步进电机是一种通过输入控制信号使电机转动一个固定角度的电机。
其基本原理是借助于电磁原理,通过交替激励电机的不同线圈,使电机以一个固定的步距旋转。
步进电机通常由定子和转子两部分组成,定子上布置有若干个线圈,而转子则包含若干个极对磁体。
2. 控制方法步进电机的控制方法主要包括开环控制和闭环控制两种。
开环控制是指根据既定的输入信号频率和相位来驱动电机,控制电机旋转到所需位置。
这种方法简单直接,但存在定位误差和系统响应不稳定的问题。
闭环控制则是在开环控制的基础上,增加了位置反馈系统,通过不断校正电机的实际位置来实现更精确的控制。
闭环控制方法相对复杂,但可以提高系统的定位精度和响应速度。
3. 控制算法控制步进电机的常用算法有两种,一种是全步进算法,另一种是半步进算法。
全步进算法是指将电流逐个向电机的不同线圈通入,使其按照固定的步长旋转。
而半步进算法则是将电流逐渐增加或减小,使电机能够以更小的步长进行旋转。
半步进算法相对全步进算法而言,可以实现更高的旋转精度和更平滑的运动。
4. 应用案例步进电机广泛应用于各个领域的控制系统中。
例如,在机械领域中,步进电机被用于驱动数控机床、3D打印机等设备,实现精确的定位和运动控制。
在医疗设备领域,步进电机被应用于手术机器人、影像设备等,为医疗操作提供准确定位和精确运动。
此外,步进电机还广泛应用于家用电器、汽车控制、航空航天等领域。
总结:步进电机作为一种常见的电动执行器,具有结构简单、控制方便、定位精度高等优点,在自动化控制系统中扮演着重要的角色。
通过本文的介绍,我们了解到步进电机的基本原理、控制方法、算法以及应用案例等方面的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步进电机控制方法
步进电机是一种将电脉冲信号转换为角位移的执行器,广泛应用于打印机、数控机床、纺织机械、包装设备等自动控制系统中。
步进电机控制方法的选择对于系统的性能和稳定性具有重要影响,下面将介绍几种常见的步进电机控制方法。
1. 开环控制。
开环控制是最简单的步进电机控制方法之一,通过给步进电机施加一定的脉冲信号来控制其旋转角度。
这种方法简单直接,但无法对步进电机的运动状态进行实时监测和调整,容易出现失步现象,适用于对精度要求不高的场合。
2. 半闭环控制。
半闭环控制是在开环控制的基础上增加了位置传感器反馈的控制方法。
通过位置传感器实时监测步进电机的位置,将反馈信息与设定值进行比较,从而实现对步进电机位置的闭环控制。
这种方法相比于开环控制能够更好地提高系统的稳定性和精度,但仍然存在一定的失步风险。
3. 闭环控制。
闭环控制是最为精确的步进电机控制方法,通过在步进电机上增加编码器等位置传感器,实时反馈步进电机的位置信息,并对其进行精确控制。
闭环控制能够及时调整步进电机的运动状态,减小失步风险,提高系统的稳定性和精度,适用于对位置精度要求较高的场合。
4. 微步进控制。
微步进控制是一种通过改变步进电机相序激励方式,使步进电机在每个步距内分成多个微步距的控制方法。
微步进控制能够提高步进电机的分辨率,减小振动和噪音,提高系统的平稳性和精度,适用于对步进电机运动要求较高的场合。
总结。
在实际应用中,步进电机控制方法的选择应根据具体的控制要求和系统性能需
求来确定。
不同的控制方法各有特点,开环控制简单直接,但精度较低;半闭环控制提高了系统的稳定性和精度,但仍存在失步风险;闭环控制精度最高,但成本较高。
微步进控制能够提高步进电机的平稳性和分辨率,但相应的控制电路较为复杂。
因此,在选择步进电机控制方法时,需要综合考虑系统的实际需求和成本因素,选择最合适的控制方法来实现系统的稳定运行和高精度控制。