中考2016数学试题及答案
2016年江苏省徐州市中考数学试卷(解析版)

2016年徐州中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.1的相反数是()A.4B.-4C.4 1D.414【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.即a的相反数是-a.111【解答】解:的相反数是-()=.故选C.444【点评】主要考查相反数的概念:只有符号不同的两个数互为相反数,0的相反数是0.2.(2016?徐州)下列运算中,正确的是()A.x3+x3=x6B.x32x6=x27C.(x2)3+x3=x6B.x32x6=x27C.(x2)3=x5D.x÷x2=x-1【考点】整式的混合运算.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:(1)x3+x3=2x3,错误;(2)x32x6=x9,错误;(3)(x2)3+x3=2x3,错误;(2)x32x6=x9,错误;(3)(x2)3=x6,错误;(4)x÷x2=x-1,正确.故选D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(2016?徐州)下列事件中的不可能事件是()A.通常加热到100℃时,水沸腾B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是360°【考点】随机事件.【分析】不可能事件就是一定不会发生的事件,据此即可判断.【解答】解:A、是必然事件,选项错误;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是不可能事件,选项正确.故选D.【点评】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2016?徐州)下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【解答】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选;C.【点评】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.5.(2016?徐州)下列图案中,是轴对称的图形但不是中心对称的图形的是()【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念以及等边三角形、平行四边形、矩形、圆的性质解答.【解答】解:A、是轴对称图形,也是中心对称图形,不合题意;B、是轴对称但不是中心对称图形,符合题意;C、既是轴对称又是中心对称图形,不合题意;D、只是中心对称图形,不合题意.故选B.【点评】掌握好中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,两边图象折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后重合.6.(2016?徐州)某人一周内爬楼的层数统计如表周一周二周三周五周六周日263622243121关于这组数据,下列说法错误的是()A.中位数是22B.平均数是26C.众数是22D.极差是15【考点】极差;算术平均数;中位数;众数.【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:这个人一周内爬楼的层数按从小到大的顺序排列为21,22,22,24,26,31,36,中位数为24;平均数为(21+22+22+24+26+31+36)÷7=26;众数为22;极差为36-21=15;所以B、C、D正确,A错误.故选A.1【点评】此题考查了极差,平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.7.(2016?徐州)函数y2-x中自变量x的取值范围是()A.2≤xB.2≥xC.2<xD.2≠x【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0可知:2-x≥0,解得x的范围.【解答】解:根据题意得:2-x≥0,解得x≤2.故选B.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.8.(2016?徐州)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或6【考点】正方形的性质.【分析】根据题意列方程,即可得到结论.【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴13(6+9+x)39-x?(9-x)=13(62+92+x2),22解得x=3,或x=6,故选D.【点评】本题考查了正方形的性质,图形的面积的计算,准确分识别图形是解题的关键.9.(2016?徐州)9的平方根是_______.【考点】算术平方根;平方根.【分析】根据平方根的定义解答.【解答】解:9的平方根是±3.故答案为:±3.【点评】本题考查了平方根的定义,熟记概念是解题的关键.10.(2016?徐州)某市2016年中考考生约为61500人,该人数用科学记数法表示为_______.【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法进行解答即可.【解答】解:61500=6.153104.故答案为:6.153104.【点评】本题考查的是科学记数法,熟知把一个大于10的数记成a310n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法是解答此题的关键.11.(2016?徐州)若反比例函数的图像过(3,-2),则奇函数表达式为____________.【考点】待定系数法求反比例函数解析式.【分析】先设ky,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解x答】解:设函数解析式为ky,把点(-2,3)代入函数xky,得k=-6.x即函数关系式是6y.故答案为:x6y.x12.(2016?徐州)若二次函数y=x2+2x+m的图像与x轴没有公共点,则m的取值范围是__________.【考点】抛物线与x轴的交点.【分析】由题意可得二次方程无实根,得出判别式小于0,解不等式即可得到所求范围.【解答】解:∵二次函数y=x2+2x+m的图象与x轴没有公共点,∴方程x2+2x+m=0没有实数根,∴判别式△=22-4313m<0,解得:m>1;故答案为:m>1.【点评】本题考查二次函数的图象与x轴的交点、根的判别式;根据题意得出不等式是解决问题的关键.213.(2016?徐州)如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为_______.【考点】相似三角形的判定与性质;三角形中位线定理.1BC,DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质得出即可.【分析】根据三角形的中位线得出DE=21BC,DE∥BC,【解答】解:∵D、E分别为AB、AC的中点,∴DE=2∴△ADE∽△ABC,∴SDE21ADE,故答案为:1:4.()SBC4ABC【点评】本题考查了三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方.14.(2016?徐州)若等腰三角形的顶角为120°,腰长为2cm,则它的底边长为_______cm.【考点】等腰三角形的性质;三角形三边关系.【分析】作AD⊥BC于点D,可得BC=2BD,RT△ABD中,根据BD=ABcos∠B求得BD,即可得答案.【解答】解:如图,作AD⊥BC于点D,又∵AD⊥BC,∴BC=2BD,∵AB=2cm,3(cm),∴在RT△ABD中,BD=ABcos∠B=2332∵∠BAC=120°,AB=AC,∴BC=23cm,∴∠B=30°,故答案为:23.【点评】本题主要考查等腰三角形的性质及解直角三角形,熟练掌握等腰三角形的性质:①等腰三角形的两腰相等,②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解题关键.15.(2016?徐州)如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=°_______.【考点】三角形的内切圆与内心;圆周角定理.1∠ABC=35°,∠OCB=1∠ACB=20°,【分析】根据三角形内心的性质得到O B平分∠ABC,OC平分∠ACB,根据角平分线定义得∠OBC=22然后根据三角形内角和定理计算∠BOC.【解答】解:∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,1∠ABC=35°,∠OCB=1∠ACB=20°,∴∠BOC=180°-∠OBC-∠OCB=18°0-35°-20°=125°.故答案为125.∴∠OBC=22【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.16.(2016?徐州)用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为__________.【考点】圆锥的计算.【分析】设圆锥的底面圆的半径为r,根据半圆的弧长等于圆锥底面周长,列出方程求解即可.132π310=10π【解答】解:∵半径为10的半圆的弧长为:23∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=5故答案为:5开图为一扇形,:锥的侧面展【点评】本题主要考查了圆锥的计算,需要掌握弧长计算公式以及圆周长计算公式.解答此类试题时注意线长.这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母n的代数n个图案中这样的正方形的总个数可用含17.(2016?徐州)如图,每个图案都由大小相同的正方形组成,按照此规律,第式表示为_______.【考点】规律型:图形的变化类.a n=n(n+1)”,由此【分析】设第n个图案中正方形的总个数为a n,根据给定图案写出部分a n的值,根据数据的变化找出变换规律“即可得出结论.【解答】解:设第n个图案中正方形的总个数为an,观察,发现规律:a1=2,a2=2+4=6,a3=2+4+6=12,,,∴an=2+4+,+2n= n(2n2)=n(n+1).+2故答案为:n(n+1).【点评】本题考查了规律型中的图形的变化类,解题的关键是找出变换规律“a n=n(n+1)”.本题属于基础题,难度不大,根据给定图案写出部分图案中正方形的个数,根据数据的变化找出变化规律是关.键18.(2016?徐州)如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于_______.【考点】旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.【分析】根据正方形的性质得AB=BC,∠BAE=∠C=90°,根据旋转的定义,把把△ABE绕点B顺时针旋转90°可得到△BCG,根据旋转S AS”的性质得BG=AB,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∠ABG=∠B=90°,于是可判断点G在CB的延长线上,接着利用“证明△FBG≌△EBF,得到EF=CF+AE,然后利用三角形周长的定义得到答案.【解答】解:∵四边形ABCD为正方形,∴FG=EF,∴AB=BC,∠BAE=∠C=90°,而FG=FC+CG=CF+,AE针旋转90°可得到△BCG,如图,∴EF=CF+AE,∴把△ABE绕点B顺时∴BG=AB,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∴△DEF的周长=DF+DE+CF+AE=CD+AD=2+2=4∴点G在DC的延长线上,故答案为:4.∵∠EBF=45°,∴∠FBG=∠EBG-∠EBF=45°,∴∠FBG=∠FBE,在△FBG和△EBF中,BF=BF∠FBG=∠FBE,BG=BE∴△FBG≌△EBF(SAS),【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形4全等.也考查了全等三角形的判定与性质和正方形的性质.三、解答题(本大题共有10个小题,共86分。
2016年江西省中考数学试卷及答案

2016年江西省中考数学试卷及答案一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列四个数中,最大的一个数是()A.2 B.C.0 D.﹣2【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.根据实数比较大小的方法,可得﹣2<0<<2,故四个数中,最大的一个数是2.故选:A.2.将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.【解析】先解出不等式3x﹣2<1的解集,即可解答本题.3x﹣2<1,移项,得3x<3,系数化为1,得x<1,故选D.3.下列运算正确的是()A.a2+a2=a4 B.(﹣b2)3=﹣b6 C.2x•2x2=2x3 D.(m﹣n)2=m2﹣n2【解析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选B.4.有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B C.D.【解析】根据主视图的定义即可得到结果.其主视图是C,故选C.5.设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2 B.1 C.-2 D.-1【解析】根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ=,故选D.6.如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③【解析】利用相似三角形的判定和性质分别求出各多边形竖直部分线段长度之和与水平部分线段长度之和,再比较即可.假设每个小正方形的边长为1,①:m=1+2+1=4,n=2+4=6,则m≠n;②如图1,在△ACN中,BM∥CN,∴=,∴BM=,在△AGF中,DM∥NE∥FG,∴=,=,解得DM=,NE=,∴m=2+=2.5,n=+1++=2.5,∴m=n;③如图1,由②易得:BE=,CF=,∴m=2+2++1+=6,n=4+2=6,∴m=n,则这三个多边形中满足m=n的是②和③;故选C.图1二、填空题(本大题共6小题,每小题3分,共18分)7.计算:﹣3+2= .【解析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,即可求得答案.﹣3+2=﹣1.故答案为:﹣1.8.分解因式:ax2﹣ay2= .【解析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).9.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.【解析】先利用旋转的性质得到∠B′AC′=33°,∠BAB′=50°,从而得到∠B′AC的度数.∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B′AC′=33°,∠BAB′=50°,∴∠B′AC =50°﹣33°=17°.故答案为:17°.10.如图所示,在ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.【解析】由“平行四边形的对边相互平行” “两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵AD⊥DF,AB∥BC, ∴EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.11.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=.【解析】由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数的系数k的几何意义即可得出S△OAP=k1,S△OBP=k2,根据△OAB的面积为2,再结合三角形之间的关系即可得出结论.∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=2,解得:k1﹣k2=4.故答案为4.12.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.【解析】分情况讨论:①当AP=AE=5时,△AEP是等腰直角三角形,得出底边PE=AE=5;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出底边AP;③当PA=PE时,底边AE=5;分别进行求解即可得出结论.如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=122P E BE-=4,∴底边AP1=221AB PB+==4;③当P2A=P2E时,底边AE=5;综上所述,等腰三角形AEP的底边长为5或4或5;故答案为:5或4或5.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程组:2,1. x yx y y-=⎧⎨-=+⎩(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.(1)【解】2,1, x yx y y+=⎧⎨-=+⎩①②①﹣②得y=1,把y=1代入①可得x=3,所以方程组的解为3,1. xy=⎧⎨=⎩(2)【证明】将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.∴∠AED=∠CED=90°,∵∠ACB=90°,∴∠AED=∠ACB=90°,∴DE ∥BC .14.先化简,再求值:(+)÷,其中x=6.【解】原式=÷=÷=•=,当x=6时,原式==﹣.15.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=.(1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式.【解】(1)∵点A (2,0),AB=,∴BO==134-=3, ∴点B 的坐标为(0,3).(2)∵△ABC 的面积为4,∴×BC×AO=4, ∴×BC×2=4,即BC=4,∵BO=3,∴CO=4﹣3=1,∴C (0,﹣1),设直线l 2的解析式为y=kx+b ,则02,1,k b b =+⎧⎨-=⎩解得1,21,k b ⎧=⎪⎨⎪=-⎩∴直线l2的解析式为y=x﹣1.16.为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”“日常学习”“习惯养成”“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【解】(1)乙组最关心“情感品质”的家长有:100﹣(18+20+23+17+5+7+4)=6(人),补全条形统计图如图:(2)×3600=360(人).答:估计约有360位家长最关心孩子“情感品质”方面的成长.(3)答案不唯一,结合自身情况或条形统计图,言之有理即可.如:由条形统计图中的数据可知,家长对孩子“情感品质”关心不够,可适当关注与指导.17.如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【解】(1)如图3所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图4所示,点M是长方形AFBE对角线的交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.(1)【证明】连接OC,如图(2)所示,则易知OC⊥CD,OA=OC,∴∠OAC=∠ACO,∵PE⊥OE,∴∠APE=∠PCD,∵∠APE=∠DPC,∴∠DPC=∠PCD,∴DC=DP.(2)【解】以A,O,C,F为顶点的四边形是菱形.理由如下:连接OC,BC,OF,AF,如图(3)所示,∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形AOCF为菱形.19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【解】(1)第5节套管的长度为50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得(50+46+42+…+14)﹣9x=311,即320﹣9x=311,解得x=1.答:每相邻两节套管间重叠的长度为1cm.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解】(1)∵现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,∴甲摸牌数字是4与5则获胜,∴甲获胜的概率为=.故答案为:.(2)方法一:画树状图得:则共有12种等可能的结果,乙获胜的概率为5 12.方法二:列表得:∴乙获胜的概率为.21.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)【解】(1)作OC⊥AB于点C,如右图3所示,由题意可得OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13(cm),即所作圆的半径约为3.13cm.(2)作AD⊥OB于点D,作AE=AB,如下图4所示,保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.128×0.1564≈0.98(cm),即铅笔芯折断部分的长度是0.98cm.五、(本大题共10分)22.如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”); (5)图n中,“叠弦角”的度数为(用含n的式子表示).【解】(1)如图1,∵四边形ABCD是正方形,由旋转知AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,∴∠DAP=∠D'AO,∴△APD≌△AOD'(ASA),∴AP=AO,∵∠OAP=60°,∴△AOP是等边三角形.(2)如图2,作AM⊥DE于M,作AN⊥CB于N.∵五边形ABCDE是正五边形,由旋转知AE=AE′,∠E=∠E′=108°,∠EAE′=∠OAP=60°,∴∠EAP=∠E ′AO ,∴△APE ≌△AOE ′(ASA ),∴∠OAE ′=∠PAE .在Rt △AEM 和Rt △ABN 中,∠AEM=∠ABN=72°,AE=AB, ∴Rt △AEM ≌Rt △ABN (AAS ),∴∠EAM=∠BAN ,AM=AN .在Rt △APM 和Rt △AON 中,AP=AO ,AM=AN ,∴Rt △APM ≌Rt △AON (HL ).∴∠PAM=∠OAN ,∴∠PAE=∠OAB,∴∠OAB =∠OAE ′(等量代换).(3)由(1)知△APD ≌△AOD ′,∴∠DAP=∠D ′AO ,在Rt △AD ′O 和Rt △ABO 中,,,AD AB AO AO '=⎧⎨=⎩ ∴Rt △AD ′O ≌Rt △ABO ,∴∠D′AO=∠BAO ,由旋转得∠DAD ′=60°,∵∠DAB=90°,∴∠D ′AB=∠DAB ﹣∠DAD ′=30°,∴∠D ′AO=∠D ′AB=15°,同理可得∠E ′AO=24°,故答案为:15°,24°.(4)如图3,∵六边形ABCDEF 和六边形AB′C′D′E′F′是正六边形,∴∠F=F′=120°,由旋转得AF=AF′,EF=E′F′,∴△APF ≌△AE′F′,∴∠PAF=∠E′AF′,由旋转得∠FAF′=60°,AP=AO,∴∠PAO =60°,∴△PAO 是等边三角形.故答案为:是.(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=60°-180n︒.故答案为:60°﹣.六、(本大题共12分)23.设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n(()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A n B n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【解】(1)∵点A1(1,2)在抛物线y=ax2上,∴a=2.(2)A n B n=2x2=2×[()n﹣1]2=,B n B n+1=.(3)①由Rt△A n B n B n+1是等腰直角三角形得A n B n=B n B n+1,则=,2n﹣3=n,n=3,∴当n=3时,Rt△A n B n B n+1是等腰直角三角形.②依题意得,∠A k B k B k+1=∠A m B m B m+1=90°,有两种情况:i)当Rt△A k B k B k+1∽Rt△A m B m B m+1时,=,=,=,所以k=m(舍去);ii)当Rt△A k B k B k+1∽Rt△B m+1B m A m时,=,=,=,∴k+m=6,∵1≤k<m≤n(k,m均为正整数),∴取2,5km=⎧⎨=⎩或2,4;km=⎧⎨=⎩当1,5km=⎧⎨=⎩时,Rt△A1B1B2∽Rt△B6B5A5,相似比为==64,当2,4km=⎧⎨=⎩时,Rt△A2B2B3∽Rt△B5B4A4,相似比为==8,所以存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64∶1或8∶1.。
湖南省娄底市2016年中考数学试题(附解析)

一、选择题(本大题共10小题,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣【答案】A.【解析】试题分析:只有符号不同的两个数互为相反数,由此可得2016的相反数是﹣2016,故答案选A.考点:相反数.2.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q【答案】D.【解析】试题分析:观察数轴可知,点Q到原点的距离最远,所以点Q的绝对值最大.故答案选D.考点:数轴;绝对值.3.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【答案】C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.4.下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等【答案】D.答案选D.考点:命题.5.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【答案】B.【解析】试题分析:选项A,圆锥的主视图是三角形,俯视图是带圆心的圆,本选项错误;选项B,圆柱的主视图是矩形、俯视图是矩形,本选项正确;选项C,球的主视图、俯视图都是圆,本选项错误;选项D,三棱柱的主视图为矩形和俯视图为三角形,本选项错误.故答案选B.考点:几何体的三视图.6.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【答案】C.【解析】试题分析:根据圆周角定理可得∠B=∠D=40°,∠ACB=90°,所以∠CAB=90°﹣40°=50°.故答案选C.考点:圆周角定理.7.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差【答案】B.【解析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B.考点:中位数.8.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>2【答案】A.【解析】试题分析:由被开方数大于等于0,分母不等于0可得x≥0且x﹣2≠0,即x≥0且x≠2.故答案选A.考点:函数自变量的取值范围.9.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.C n H2n+2B.C n H2n C.C n H2n﹣2D.C n H n+3【答案】A.考点:数字规律探究题.10.如图,已知在Rt △ABC 中,∠ABC=90°,点D 沿BC 自B 向C 运动(点D 与点B 、C 不重合),作BE ⊥AD 于E ,CF ⊥AD 于F ,则BE+CF 的值( )A .不变B .增大C .减小D .先变大再变小 【答案】C .考点:锐角三角函数的增减性.二、填空题(本大题共8小题,每小题3分,共24分) 11.已知反比例函数y=xk的图象经过点A (1,﹣2),则k= . 【答案】﹣2. 【解析】试题分析:已知反比例函数y=xk的图象经过点A (1,﹣2),所以k=1×(-2)=-2. 考点:反比例函数图象上点的坐标特征.12.已知某水库容量约为112000立方米,将112000用科学记数法表示为 . 【答案】1.12×105. 【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数且为这个数的整数位数减1,,由于112000亿有6位,所以可以确定n=6﹣1=5.即112000=1.12×105.考点:科学记数法.13.如图,四边形ABCD 为⊙O 的内接四边形,已知∠C=∠D ,则AB 与CD 的位置关系是 .【答案】AB ∥CD . 【解析】试题分析:已知四边形ABCD 为⊙O 的内接四边形,由圆内接四边形的对角互补的性质可得∠A+∠C=180°又因∠C=∠D ,可得∠A+∠D=180°,所以AB ∥CD . 考点:圆内接四边形的对角互补的性质;平行线的判定.14.如图,已知∠A=∠D ,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)【答案】∠B=∠DEF (答案不唯一,符合要求即可) 【解析】试题分析:已知∠A=∠D ,当∠B=∠DEF 时,△ABC ∽△DEF ,因为AB ∥DE 时,∠B=∠DEF ,添加AB ∥DE 时,使△ABC ∽△DEF . 考点:相似三角形的判定.15.将直线y=2x+1向下平移3个单位长度后所得直线的解析式是 . 【答案】y=2x ﹣2.考点:一次函数图象与几何变换.16.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是 .【答案】54.试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为54. 考点:概率公式.17.如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB=7,BC=6,则△BCD 的周长为 .【答案】13.考点:翻折变换(折叠问题).18.当a 、b 满足条件a >b >0时,+=1表示焦点在x 轴上的椭圆.若+=1表示焦点在x 轴上的椭圆,则m 的取值范围是 . 【答案】3<m <8. 【解析】试题分析:由题意得,m+2>0,2m-6>0,m+2>2m-6,解得3<m <8,所以m 的取值范围是3<m <8, 考点:阅读理解题.三、解答题(本大题共2小题,每小题6分,满分12分)19.计算:(π﹣)0+|2﹣1|+()﹣1﹣2sin45°.【答案】2. 【解析】试题分析:根据零指数幂、绝对值的性质、负整数指数幂、特殊角的三角函数值依次计算后试题解析:原式==1+2﹣1+2﹣2=2. 考点:实数的运算.20.先化简,再求值:(1﹣)•,其中x 是从1,2,3中选取的一个合适的数.【答案】原式=3-x x,当x=2时,原式=2-.考点:分式的化简求值.四、解答题(本大题共2小题,每小题8分,满分16分)21.在2016CCTV 英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表: 根据所给信息,解答下列问题:(1)在表中的频数分布表中,m= ,n= .(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?【答案】(1)80,0.20;(2)详见解析;(3)1200.【解析】试题分析:(1)用抽查的总人数乘以成绩在70≤x<80段的人数所占的百分比即可求得m;用成绩在80≤x<90段的频数除以总人数即可求得n;(2)根据(1)求出的m的值,直接补全频数分布直方图即可;(3)用娄底市共有的人数乘以80分以上(包括80分)所占的百分比,即可得出答案.答:估计约有1200人进入决赛.考点:频数(率)分布表;频数(率)分布直方图;用样本估计总体.22.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)【答案】立柱BH的长约为16.3米.【解析】试题分析:设DH=x米,由三角函数得出CH=3x,即可得BH=BC+CH=2+3x,再求得AH=3BH=23+3x,由AH=AD+DH得出方程23+3x=20+x,,解方程求出x,即可得出结果.解得:x=10﹣3,∴BH=2+3(10﹣3)=103﹣1≈16.3(米).答:立柱BH的长约为16.3米.考点:解直角三角形的应用.五、解答题(本大题共2小题,每小题9分,满分18分)23.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【答案】(1)乙骑自行车的速度为300米/分钟;(2)当甲到达学校时,乙同学离学校还有600米. 【解析】试题分析:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是21x 米/分钟,公交车的速度是2x 米/分钟,根据“甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟”列方程解方程即可;(2)用(1)的结果乘以2即可.试题解析:解:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是21x 米/分钟,公交车的速度是2x 米/分钟,根据题意得230002600300021600-=-+x x x, 解得:x=300,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟; (2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米. 考点:分式方程的应用.24.如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1B 1C 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1、BC 1分别交于点E 、F . (1)求证:△BCF ≌△BA 1D .(2)当∠C=α度时,判定四边形A 1BCE 的形状并说明理由.【答案】(1)详见解析;(2)四边形A1BCE是菱形,理由详见解析.∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∴A1B=BC,∴四边形A1BCE是菱形.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质.六、解答题(本大题共2小题,每小题10分,满分20分)25.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.【答案】(1)详见解析;(2)(i)CE=65;(ii)详见解析.【解析】试题分析:(1)因为∠ACB=∠DCO=90°,所以∠ACD=∠OCB,又因为点O是Rt△ACB 中斜边AB的中点,所以OC=OB,所以∠OCB=∠B,利用等量代换可知∠ACD=∠B;(2)(i )因为BC 2=AB •BE ,所以△ABC ∽△CBE ,所以∠ACB=∠CEB=90°,因为tan ∠ACD=tan∠B ,利用勾股定理即可求出CE 的值;(ii )过点A 作AF ⊥CD∴∠ACD=∠B ,(2)(i )∵BC 2=AB •BE , ∴ECBE AB BC , ∵∠B=∠B ,∴△ABC ∽△CBE ,∴∠ACB=∠CEB=90°,∵∠ACD=∠B ,∴tan ∠ACD=tan ∠B=43, 设BE=4x ,CE=3x ,由勾股定理可知:BE 2+CE 2=BC 2,∴(4x )2+(3x )2=100, ∴解得x=25,∴CE=65;∴直线CD与⊙A相切.考点:圆的综合题.26.如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.【答案】(1)y=x 2﹣5x ﹣6;(2)存在,P (2,﹣12);(3)Q 点一共有5个,(25,﹣25).【解析】试题分析:(1)抛物线经过点A (﹣1,0),B (5,﹣6),C (6,0),可利用两点式法设抛物线的解析式为y=a (x+1)(x ﹣6),代入B (5,﹣6)即可求得函数的解析式;(2)作辅助线,将四边形PACB 分成三个图形,两个三角形和一个梯形,设P (m ,m 2﹣5m ﹣6),四边形PACB 的面积为S ,用字母m 表示出四边形PACB、 a=1,∴y=(x+1)(x ﹣6)=x 2﹣5x ﹣6;(2)存在,如图1,分别过P 、B 向x 轴作垂线PM 和BN ,垂足分别为M 、N ,设P (m ,m 2﹣5m ﹣6),四边形PACB 的面积为S ,则PM=﹣m 2+5m+6,AM=m+1,MN=5﹣m ,CN=6﹣5=1,BN=5,∴S=S △AMP +S 梯形PMNB +S △BNC =21(﹣m 2+5m+6)(m+1)+21(6﹣m 2+5m+6)(5﹣m )+21×1×6 =﹣3m 2+12m+36=﹣3(m ﹣2)2+48,当m=2时,S 有最大值为48,这时m 2﹣5m ﹣6=22﹣5×2﹣6=﹣12,∴Q 3(25,﹣25).考点:二次函数综合题.。
2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
2016年天津市中考数学试卷及解析答案

2016年天津市中考数学试卷及解析答案2016年天津市中考数学试卷一、选择题:共12小题,每小题3分,共36分1.计算 (-2)-5 的结果等于()。
A。
-7 B。
-3 C。
3 D。
72.sin60°的值等于()。
A。
√2/2 B。
√3/2 C。
1/2 D。
1/√23.下列图形中,可以看作是中心对称图形的是()。
A。
B。
C。
D。
4.2016年5月24日《XXX》报道,2015年天津外环线内新栽植树木xxxxxxx株,将xxxxxxx用科学记数法表示应为()。
A。
0.612×10^7 B。
6.12×10^6 C。
61.2×10^5 D。
612×10^45.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()。
A。
B。
C。
D。
6.估计的值在()。
A。
2和3之间 B。
3和4之间 C。
4和5之间 D。
5和6之间7.计算。
的结果为()。
A。
1 B。
x C。
D。
8.方程 x^2+x-12=0 的两个根为()。
A。
x1=-2,x2=6 B。
x1=-6,x2=2 C。
x1=-3,x2=4 D。
x1=-4,x2=39.实数a,b在数轴上的对应点的位置如图所示,把 -a,-b,按照从小到大的顺序排列,正确的是()。
A。
-a << -b B。
<<-a<<-b C。
-b << -a D。
<<-b<<-a10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()。
A。
∠DAB′=∠CAB′ B。
∠ACD=∠B′CD C。
AD=AE D。
AE=CE11.若点A(-5,y1),B(-3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()。
A。
y1<y3<y2 B。
y1<y2<y3 C。
湖南常德2016中考试题数学卷(解析版)

一、选择题(本大题8个小题,每小题3分,满分24分)1.4的平方根是()A.2 B.﹣2 C.±2D.±2【答案】D.【解析】试题分析:根据平方根的定义可得4的平方根是±2.故答案选D.考点:平方根.2.下面实数比较大小正确的是()A.3>7 B. C.0<﹣2 D.22<3【答案】B.考点:实数的大小比较.3.如图,已知直线a∥b,∠1=100°,则∠2等于()A.80° B.60° C.100° D.70°【答案】A.【解析】试题分析:根据对顶角相等可得∠3=∠1=100°,再根据两直线平行,同旁内角互补可得∠2=180°﹣∠3=180°﹣100°=80°.故答案选A.考点:平行线的性质.4.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A. B. C. D.【答案】A.【解析】试题分析:从上面看可知上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故答案选A.考点:简单组合体的三视图.5.下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【答案】D.考点:概率的意义6.若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.5【答案】C.【解析】试题分析:已知﹣x3y a与x b y是同类项,根据同类项的定义可得a=1,b=3,则a+b=1+3=4.故答案选C.考点:同类项.7.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b ;④b 2﹣4ac >0,其中正确的个数是( )A .1B .2C .3D .4【答案】C.考点:二次函数图象与系数的关系.8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天【答案】B.【解析】试题分析:根据题意设有x 天早晨下雨,这一段时间有y 天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组⎩⎨⎧=--=-6)9(7x y x y ,解得x=4,y=11,所以一共有11天,故答案选B . 考点:二元一次方程组的应用.二、填空题(本大题8个小题,每小题3分,满分24分)9.使代数式有意义的x 的取值范围是 .【答案】:x ≥3.【解析】试题分析:根据二次根式有意义的条件被开方数为非负数可得2x ﹣6≥0,解得x ≥3. 考点:二次根式有意义的条件.10.计算:a 2•a 3= .【答案】a 5.【解析】试题分析:根据同底数的幂的乘法,底数不变,指数相加,可对方a 2•a 3=a 2+3=a 5. 考点:同底数幂的乘法.11.如图,OP 为∠AOB 的平分线,PC⊥OB 于点C ,且PC=3,点P 到OA 的距离为 .【答案】3.考点:角平分线的性质.12.已知反比例函数y=xk 的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式 . 【答案】x y 2-=(答案不唯一,符合k <0即可)【解析】 试题分析:已知反比例函数y=xk 的图象在每一个象限内y 随x 的增大而增大,根据反比例函数的性质即可得出k <0,写出一个符合条件的解析式即可.考点:反比例函数的性质.13.张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是 .【答案】18.【解析】试题分析:对这组数据按从小到大的顺序重新排序:16,16,18,18,18,18,19,19,21,21;可得位于最中间的两个数都是18,所以这组数据的中位数是18.考点:中位数.14.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.【答案】3π.考点:圆周角定理;扇形面积的计算.,折痕为EF,若15.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1AD= .∠BAE=55°,则∠D1【答案】55°.考点:平行四边形的性质;折叠的性质.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.【答案】(1,8).【解析】试题分析:已知以O ,A ,B ,C 四点为顶点的四边形是“和点四边形”,根据题意可得点C 的坐标为(2﹣1,5+3),即C (1,8)考点:阅读理解题.三、(本大题2个小题,每小题5分,满分10分)17.计算:﹣14+sin60°+()﹣2﹣()0. 【答案】5.【解析】试题分析:根据乘方的运算、特殊角的三角函数值、负整数指数幂、零指数幂依次计算后合并即可.试题解析:原式=﹣1+2233⨯+4﹣1=﹣1+3+3=5. 考点:实数的运算.18.解不等式组,并把解集在是数轴上表示出来..【答案】详见解析.考点:解一元一次不等式组;在数轴上表示不等式的解集.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再求值:(),其中x=2.【答案】原式=11+x ,当x=2时,原式=31.【解析】试题分析:根据分式的运算法则化简后再代入求值即可.试题解析:原式=11311)1)(1()1(2-+-+÷⎥⎦⎤-+⎢⎣⎡-+-x x x x x x x x x =112112-++÷-+x x x x x =21111)(+-⋅-+x x x x =11+x , 当x=2时,原式=31121=+. 考点:分式的化简求值.20.如图,直线AB 与坐标轴分别交于A (﹣2,0),B (0,1)两点,与反比例函数的图象在第一象限交于点C (4,n ),求一次函数和反比例函数的解析式.【答案】y=21x+1,y=x 12.【解析】试题分析:设一次函数的解析式为y=kx+b ,把A (﹣2,0),B (0,1)代入得出方程组,解方程组即可;求出点C 的坐标,设反比例函数的解析式为y=x m ,把C (4,3)代入y=xm 求出m 即可.∴C (4,3),把C (4,3)代入y=xm 得:m=3×4=12, ∴反比例函数的解析式为y=x 12. 考点:反比例函数与一次函数的交点问题.五、(本大题2个小题,每小题7分,满分14分)21.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?【答案】(1)第一批T 恤衫进了30件,第二批进了15件;(2)第二批衬衫每件至少要售170元.【解析】(1)设第一批T 恤衫每件进价是x 元,则第二批每件进价是(x ﹣10)元,再根据等量关系“第二批进的件数=21×第一批进的件数”列方程解方程即可;(2)设第二批衬衫每件售价y 元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.答:第一批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.考点:分式方程的应用;一元一次不等式的应用.22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)【答案】海监执法船在前往监视巡查的过程中行驶了67海里.【解析】试题分析:过B作BD⊥AC,在RtABD中,利用勾股定理求出BD与AD的长,在RtBCD中,求出CD的长,再由AD+DC求出AC的长即可.考点:解直角三角形的应用.六、(本大题2个小题,每小题8分,满分16分)23.今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?【答案】(1)24886例;(2)1.27亿元;(3)147%;(4)61.(4)画树状图为:(用A 、B 、C 、D 分别表示甲乙丙丁)共有12种等可能的结果数,其中选中甲、乙两人的结果数为2,所以恰好选中甲、乙两人的概率=122=61.考点:条形统计图;折线统计图;用样本估计总体;列表法与树状图法.24.如图,已知⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,且BD=BC ,延长AD 到E ,且有∠EBD=∠CAB.(1)求证:BE 是⊙O 的切线;(2)若BC=,AC=5,求圆的直径AD 及切线BE 的长.【答案】(1)详见解析;(2)R=3,BE=5113.【解析】试题分析:(1)连接OB ,根据已知条件易证∠EBD=∠CAB ,继而得到∠BAD=∠EBD ,根据直径所对的圆周角为直角即可证得结论;(2)连接CD ,交OB 于点F ,易证OF 为三角形ADC的中位线,根据三角形的中位线定理求得OF,再用平行线分线段成比例定理求出半径R,最后用切割线定理即可.∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,即353DE =, ∴DE=53, ∵∠OBE=∠OFD=90°,∴DF ∥BE , ∴OEOD OB OF =, ∴5325+=R R R , ∵R >0,∴R=3,∵BE 是⊙O 的切线,∴BE=5113)5332(53=+⨯⨯=⨯AE DE . 考点:圆的综合题.七、(本大题2个小题,每小题10分,满分20分)25.已知四边形ABCD 中,AB=AD ,AB⊥AD,连接AC ,过点A 作AE⊥AC,且使AE=AC ,连接BE ,过A 作AH⊥CD 于H 交BE 于F .(1)如图1,当E 在CD 的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E 不在CD 的延长线上时,BF=EF 还成立吗?请证明你的结论.【答案】(1)详见解析;(2)结论仍然成立,理由详见解析.【解析】试题分析:(1)①根据已知条件,利用SAS即可判定△ABC≌△ADE;②易证BC∥FH和CH=HE,根据平行线∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴∠ACH=∠HAE ,∴∠3=∠ACH ,在△MAE 和△DAC 中, ∵∴△MAE ≌△DAC (ASA ),∴AM=AD ,∵AB=AD ,∴AB=AM ,∵AF ∥ME , ∴AM ABFE BF=1,∴BF=EF .考点:全等三角形的判定与性质.26.如图,已知抛物线与x 轴交于A (﹣1,0),B (4,0),与y 轴交于C (0,﹣2).(1)求抛物线的解析式;(2)H 是C 关于x 轴的对称点,P 是抛物线上的一点,当△PBH 与△AOC 相似时,求符合条件的P 点的坐标(求出两点即可);(3)过点C 作CD∥AB,CD 交抛物线于点D ,点M 是线段CD 上的一动点,作直线MN 与线段AC 交于点N ,与x 轴交于点E ,且∠BME=∠BDC,当CN 的值最大时,求点E 的坐标.【答案】(1)y=21x 2﹣23x ﹣2;(2)P 的坐标为(﹣1,0)或(8,18);(3)E 的坐标为(﹣617,0).后即可求出P 的坐标;(3)设M 的坐标为(m ,0),由∠BME=∠BDC 可知∠EMC=∠MBD ,所以△NCM ∽△MDB ,利用对应边的比相等即可得出CN 与m 的函数关系式,利用二次函数的性质即可求出m=23时,CN 有最大值,∴△AOC 是直角三角形,∴△PBH 也是直角三角形,由题意知:H (0,2),∴OH=2,∵A (﹣1,0),B (4,0),∴OA=1,OB=4, ∴OH OBOA OH∵∠AOH=∠BOH ,∴△AOH ∽△BOH ,∴∠AHO=∠HBO ,∴∠AHO+∠BHO=∠HBO+∠BHO=90°, ∴∠AHB=90°,设直线AH 的解析式为:y=kx+b ,把A (﹣1,0)和H (0,2)代入y=kx+b , ∴,∴解得k=2,b=2,∴直线AH 的解析式为:y=2x+2, 联立,解得:x=1或x=﹣8,当x=﹣1时,y=0,当x=8时, y=18∴x=0或x=3,∴D (3,﹣2),∵B (4,0),∴由勾股定理可求得:BD=5, ∵M (m ,0),∴MD=3﹣m ,CM=m (0≤m ≤3)∴由抛物线的对称性可知:∠NCM=∠BDC , ∴△NCM ∽△MDB , ∴BD CNMD CN=, ∴53mm CN=-,∴CN=2059)23(55)3(5522+--=--m m m ,∴当m=23时,CN 可取得最大值,∴此时M 的坐标为(23,﹣2),∴MF=2,BF=25,MD=23∴由勾股定理可求得:MB=241,∵E (n ,0),∴EB=4﹣n ,∵CD ∥x 轴,考点:二次函数综合题.。
2016年山东省菏泽市中考数学试卷(含答案解析)

2016年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置)1.(3分)下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和02.(3分)以下微信图标不是轴对称图形的是()A.B.C.D.3.(3分)如图所示,该几何体的俯视图是()A.B.C.D.4.(3分)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.56.(3分)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④7.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:38.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为.10.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.11.(3分)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是岁.12.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.13.(3分)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.14.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.(6分)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.16.(6分)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.17.(6分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C 之间的距离.18.(6分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)19.(7分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.20.(7分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.21.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.22.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.23.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.2016年山东省菏泽市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置)1.(3分)下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和0【分析】根据倒数的定义可知,乘积是1的两个数互为倒数,据此求解即可.【解答】解:A、4×(﹣4)≠1,选项错误;B、﹣3×≠1,选项错误;C、﹣2×(﹣)=1,选项正确;D、0×0≠1,选项错误.故选C.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.(3分)以下微信图标不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.3.(3分)如图所示,该几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.【点评】本题考查了三视图的知识,掌握俯视图是从物体的上面看得到的视图是解题的关键.4.(3分)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3【分析】根据a的取值范围,先去绝对值符号,再计算求值.【解答】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.【点评】此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(3分)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【解答】解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.7.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:3【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9.故选A.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.8.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC ﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3.故选D.【点评】本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 4.51×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于45100000有8位,所以可以确定n=8﹣1=7.【解答】解:45100000这个数用科学记数法表示为4.51×107.故答案为:4.51×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.10.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.【点评】本题考查了平行线的性质:两直线平行,内错角相等.11.(3分)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是15岁.【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【解答】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数,∵15岁的有21人,∴这个班同学年龄的中位数是15岁;故答案为:15.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.12.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= 6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【点评】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.13.(3分)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD=CE=a,∠DCE=45°,再利用正方形的性质得CB=CD=a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解.【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a,在Rt△BEF中,tan∠EBF===,即tan∠EBC=.故答案为.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了等腰直角三角形的性质.14.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=﹣1.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.(6分)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣2×+2+1=+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(6分)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.【分析】首先利用平方差公式和完全平方公式计算,进一步合并,最后代入求得答案即可.【解答】解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2=﹣y(4x﹣3y).∵4x=3y,∴原式=0.【点评】此题考查整式的化简求值,注意先化简,再代入求得数值即可.17.(6分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C 之间的距离.【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案.【解答】解:如图,作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20(1+),CD+BD=BC,即x+x=20(1+),解得:x=20,∴AC=x=20(海里).答:A、C之间的距离为20海里.【点评】此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.18.(6分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)【分析】设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【解答】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:=2×,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意,答:A4薄型纸每页的质量为3.2克.【点评】本题主要考查分式方程的应用,根据题意准确找到相等关系并据此列出方程是解题的关键.19.(7分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】此题是平行四边形的判定与性质题,主要考查了平行四边形的判定和性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG 是平行四边形.20.(7分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.【分析】(1)将A坐标代入一次函数解析式中即可求得a的值,将A(﹣1,4)坐标代入反比例解析式中即可求得m的值;(2)解方程组,即可解答.【解答】解:(1)∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A的坐标是(﹣1,4),代入反比例函数y=,∴m=﹣4.(2)解方程组解得:或,∴该双曲线与直线y=﹣2x+2另一个交点B的坐标为(2,﹣2).【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象上点的坐标特征,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.21.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.【分析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可.(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.【解答】解:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)解法一:延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.解法二:设⊙O的半径为x,则OC=x,OP=1+x∵PC=3,且OC⊥PC∴32+x2=(1+x)2解得x=4∴AB=2x=8【点评】本题考查切线的判定、切割线定理、等角的余角相等等知识,解题的关键是熟练运用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.22.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.【分析】(1)锐锐两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果;(2)由题意得出第一道题对的概率为,第二道题对的概率为,即可得出结果;(3)用树状图得出共有6种等可能的结果,锐锐顺利通关的只有1种情况,即可得出结果.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题的3个选项,树状图如图所示:共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.【点评】本题考查了等腰三角形的性质、全等三角形的判定及性质、解直角三角形以及角的计算,解题的关键是:(1)通过角的计算结合等腰三角形的性质证出△ACD≌△BCE;(2)找出线段AD、DE的长.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,利用角的计算找出相等的角,再利用等腰三角形的性质找出相等的边或角,最后根据全等三角形的判定定理证出三角形全是关键.24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【分析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据S△BDC =S△BDH+S△DHC即可解决问题.(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b 经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC =S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.【点评】本题考查待定系数法确定二次函数解析式、二次函数性质等知识,解题的关键是求出对称轴与直线BC交点H坐标,学会利用判别式确定两个函数图象的交点问题,属于中考常考题型.。
2016年福建省厦门市中考真题数学试题(解析版)

2016年福建省厦门市中考真题一、选择题(本大题10小题,每小题4分,共40分)1.(4分)1°等于()A.10′B.12′C.60′D.100′2.(4分)方程x2﹣2x=0的根是()A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=﹣23.(4分)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C 是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB4.(4分)不等式组的解集是()A.﹣5≤x<3 B.﹣5<x≤3C.x≥﹣5 D.x<35.(4分)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE6.(4分)已知甲、乙两个函数图象上部分点的横坐标x与对应的纵坐标y分别如表所示,两个函数图象仅有一个交点,则交点的纵坐标y是()甲x 1 2 3 4y 0 1 2 3乙x ﹣2 2 4 6y 0 2 3 4A.0 B.1 C.2 D.37.(4分)已知△ABC的周长是l,BC=l﹣2AB,则下列直线一定为△ABC的对称轴的是()A.△ABC的边AB的垂直平分线B.∠ACB的平分线所在的直线C.△ABC的边BC上的中线所在的直线D.△ABC的边AC上的高所在的直线8.(4分)已知压强的计算公式是P=,我们知道,刀具在使用一段时间后,就好变钝,如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是()A.当受力面积一定时,压强随压力的增大而增大B.当受力面积一定时,压强随压力的增大而减小C.当压力一定时,压强随受力面积的减小而减小D.当压力一定时,压强随受力面积的减小而增大9.(4分)动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.8 B.0.75 C.0.6 D.0.4810.(4分)设681×2019﹣681×2018=a,2015×2016﹣2013×2018=b,,则a,b,c的大小关系是()A.b<c<a B.a<c<b C.b<a<c D.c<b<a二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是.12.(4分)化简:=.13.(4分)如图,在△ABC中,DE∥BC,且AD=2,DB=3,则=.14.(4分)公元3世纪,我国古代数学家刘徽就能利用近似公式得到的近似值.他的算法是:先将看出:由近似公式得到;再将看成,由近似值公式得到;…依此算法,所得的近似值会越来越精确.当取得近似值时,近似公式中的a是,r是.15.(4分)已知点P(m,n)在抛物线y=ax2﹣x﹣a上,当m≥﹣1时,总有n≤1成立,则a的取值范围是.16.(4分)如图,在矩形ABCD中,AD=3,以顶点D为圆心,1为半径作⊙D,过边BC 上的一点P作射线PQ与⊙D相切于点Q,且交边AD于点M,连接AP,若AP+PQ=2,∠APB=∠QPC,则∠QPC的大小约为度分.(参考数据:sin 11°32′=,tan 36°52′=)三、解答题(共86分)17.(7分)计算:.18.(7分)解方程组.19.(7分)某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司2015年平均每人所创年利润.部门人数每人所创年利润/万元A 1 36B 6 27C 8 16D 11 2020.(7分)如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.21.(7分)已知一次函数y=kx+2,当x=﹣1时,y=1,求此函数的解析式,并在平面直角坐标系中画出此函数图象.22.(7分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A,B的对应点分别是点D,E,画出旋转后的三角形,并求点A与点D之间的距离.(不要求尺规作图)23.(7分)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.24.(7分)如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)用药后的时间x(小时)变化的图象(图象由线段OA与部分双曲线AB组成).并测得当y=a时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物需要多长时间达到最大浓度?25.(7分)如图,在平面直角坐标系xOy中,已知点A(1,m+1),B(a,m+1),C(3,m+3),D(1,m+a),m>0,1<a<3,点P(n﹣m,n)是四边形ABCD内的一点,且△P AD 与△PBC的面积相等,求n﹣m的值.26.(11分)已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).(1)如图1,若∠COA=60°,∠CDO=70°,求∠ACD的度数.(2)如图2,点E在线段OD上(不与O,D重合),CD、CE的延长线分别交⊙O于点F、G,连接BF,BG,点P是CO的延长线与BF的交点,若CD=1,BG=2,∠OCD=∠OBG,∠CFP=∠CPF,求CG的长.27.(12分)已知抛物线y=﹣x2+bx+c与直线y=﹣4x+m相交于第一象限不同的两点,A(5,n),B(e,f)(1)若点B的坐标为(3,9),求此抛物线的解析式;(2)将此抛物线平移,设平移后的抛物线为y=﹣x2+px+q,过点A与点(1,2),且m﹣q=25,在平移过程中,若抛物线y=﹣x2+bx+c向下平移了S(S>0)个单位长度,求S的取值范围.——★参*考*答*案★——一、选择题(本大题10小题,每小题4分,共40分)1.C『解析』1°等于60′.故选C.2.C『解析』x2﹣2x=0x(x﹣2)=0,解得:x1=0,x2=2.故选C.3.A『解析』∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.4.A『解析』,由①得,x<3,由②得,x≥﹣5,故不等式组的解集为:﹣5≤x<3.故选A.5.B『解析』∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.6.D『解析』由表格中数据可得:甲、乙有公共点(4,3),则交点的纵坐标y是:3.故选D.7.C『解析』∵l=AB+BC+AC,∴BC=l﹣2AB=AB+BC+AC﹣2AB,∴AB=AC,∴△ABC中BC边中线所在的直线是△ABC的对称轴,故选C.8.D『解析』因为菜刀用过一段时间后,刀刃比原来要钝一些,切菜时就感到费力,磨一磨,根据压强公式P=,是在压力一定时,减小了受力面积,来增大压强,所以切菜时,用同样大小的力,更容易把菜切断,切菜时不至于那么费力.故选D.9.B『解析』设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75.故选B.10.A『解析』∵a=681×2019﹣681×2018=681×(2019﹣2018)=681×1=681,b=2015×2016﹣2013×2018=2015×2016﹣(2015﹣2)×(2016+2)=2015×2016﹣2015×2016﹣2×2015+2×2016+2×2=﹣4030+4032+4=6,c=====<681,∴b<c<a.故选A.二、填空题(本大题有6小题,每小题4分,共24分)11.『解析』∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为:.12.1『解析』===1.故答案为1.13.『解析』∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=2,DB=3,∴AB=AD+DB=5,∴=;故答案为.14.或﹣或『解析』由近似值公式得到,∴a+=,整理得204a2﹣577a+408=0,解得a1=,a2=,当a=时,r=2﹣a2=﹣;当a=时,r=2﹣a2=.故答案为a=,r=﹣或a=,r=.15.﹣≤a<0『解析』根据已知条件,画出函数图象,如图所示.由已知得:,解得:﹣≤a<0.故答案为﹣≤a<016.6440『解析』如图,延长MP和AB交于点N,连接DN、DQ,∵射线PQ与⊙D相切于点Q,∴DQ⊥NQ,DQ=1,∵∠APB=∠QPC,∠QPC=∠BPN,∴∠APB=∠BPN,∵BP⊥AN,∴AP=PN,∴NQ=AP+PQ=2,由勾股定理得:DN==5,AN==4,在Rt△AND中,tan∠AND==,∵tan36°52′=,∴∠AND=36°52′,在Rt△NQD中,sin∠DNQ==,∵sin11°32′=,∴∠DNQ=11°32′,∴∠BNP=36°52′﹣11°32′=25°20′,∴∠QPC=∠BPN=90°﹣25°20′=64°40′.故答案为64,40.三、解答题(共86分)17.解:原式=10+8×﹣2×5=10+2﹣10=2.18.解:,②﹣①得3x=﹣9,解得x=﹣3,把x=﹣3代入x+y=1中,求出y=4,即方程组的解为.19.解:该公司2015年平均每人所创年利润为:=21,答:该公司2015年平均每人所创年利润为21万元.20.证明:∵OC=OE,∴∠E=∠C=25°,∴∠DOE=∠C+∠E=50°,∵∠A=50°,∴∠A=∠DOE,∴AB∥CD.21.解:(1)将x=﹣1,y=1代入一次函数解析式:y=kx+2,可得1=﹣k+2,解得k=1∴一次函数的解析式为:y=x+2;(2)当x=0时,y=2;当y=0时,x=﹣2,所以函数图象经过(0,2);(﹣2,0),此函数图象如图所示,,22.解:如图,∵在△ABC中,∠ACB=90°,AB=5,BC=4,∴AC==3,∵将△ABC绕点C顺时针旋转90°,点A,B的对应点分别是点D,E,∴AC=CD=3,∠ACD=90°,∴AD==3.23.解:过D作DE⊥BC交BC的延长线于E,则∠E=90°,∵sin∠DBC=,BD=,∴DE=2,∵CD=3,∴CE=1,BE=4,∴BC=3,∴BC=CD,∴∠CBD=∠CDB,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴AB∥CD,同理AD∥BC,∴四边形ABCD是菱形,连接AC交BD于O,则AC⊥BD,AO=CO,BO=DO=,∴OC==,∴AC=2.24.解:设直线OA的解析式为y=kx,把(4,a)代入,得a=4k,解得k=,即直线OA的解析式为y=x.根据题意,(9,a)在反比例函数的图象上,则反比例函数的解析式为y=.当x=时,解得x=±6(负值舍去),故成人用药后,血液中药物则至少需要6小时达到最大浓度.25.解:延长AB到点E,作CE丄AE于点E,延长AD到点F,作CF丄AF于点F,如图所示.∵A(1,m+1),B(a,m+1),C(3,m+3),D(1,m+a),∴AB∥x轴,AD∥y轴,AD=AB,AE=AF=2,∴四边形AECF为正方形.当点P为线段AC的中点时,有△PDA与△PBA面积相等,△PBA与△PBC相等,∵△P AD与△PBC的面积相等,∴点P为线段AC的中点,∴n﹣m=(x A+x C)=2.26.解:(1)∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.(2)连接AG,延长CP交BG于点Q,交⊙O于点H,令CG交BF于点R,如图所示.在△COD和△BOQ中,,∴△COD≌△BOQ(ASA),∴BQ=CD=1,∠CDO=∠BQO.∵BG=2,∴OQ⊥BG,∴∠CQG=90°.∵∠CGQ+∠GCQ+∠CQG=180°,∠RCP+∠CPR+∠CRP=180°,∠CGQ=∠CFP=∠CPF,∴∠CRP=∠CQG=90°,∵∠CFP=∠CPF,∴∠FCG=∠HCG,∴=.∵∠OCD=∠OBG,∠FCG=∠FBG,∴∠ABF=∠GCH,∴=.∵∠CDO=∠BQO=90°,∴,∴点G为中点,∴△AGB、△OQB为等腰直角三角形.∵BQ=1,∴OQ=BQ=1,OB=BQ=.在Rt△CGQ中,GQ=1,CQ=CO+OQ=+1,∴CG==.27.解:(1)∵直线y=﹣4x+m过点B(3,9),∴9=﹣4×3+m,解得:m=21,∴直线的解析式为y=﹣4x+21,∵点A(5,n)在直线y=﹣4x+21上,∴n=﹣4×5+21=1,∴点A(5,1),将点A(5,1)、B(3,9)代入y=﹣x2+bx+c中,得:,解得:,∴此抛物线的解析式为y=﹣x2+4x+6;(2)由抛物线y=﹣x2+px+q与直线y=﹣4x+m相交于A(5,n)点,得:﹣25+5p+q=n①,﹣20+m=n②,y=﹣x2+px+q过(1,2)得:﹣1+p+q=2③,则有解得:∴平移后的抛物线为y=﹣x2+6x﹣3=﹣(x﹣3)2+6,顶点为(3,6),一次函数的解析式为:y=﹣4x+22,A(5,2),∵当抛物线在平移的过程中,a不变,∵抛物线与直线有两个交点,如图所示,抛物线与直线一定交于点A,所以当抛物线过点C以及抛物线在点A处与直线相切时,只有一个交点介于点A、C之间,当抛物线y=﹣x2+bx+c过A(5,2)、C(0,22)时,得c=22,b=1,此时抛物线解析式为:y=﹣x2+x+22,顶点(,);﹣6=;初中学业水平考试试题则0<S<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考2016数学试题及答案
第一部分选择题
1. 当x=3时,下列各式中必然成立的是()
A. 2x + 1 = 8
B. x - 5 = 2x
C. 3x + 2 = 2x + 3
D. 4x - 3 = 3 - x
答案: B
2. 下列各点坐标中,纵坐标是负数的点是()
A. (3, 4)
B. (-2, -5)
C. (-1, 3)
D. (0, 1)
答案: B
3. 如果a:b = 4:5, b:c = 3:2,那么a:c的值为()
A. 12:10
B. 20:27
C. 8:15
D. 16:9
答案: C
4. 在矩形ABCD中,AB = 3cm, BC = 4cm,如图所示。
若点A沿着矩形与圆心重合的圆弧BC移动,点A所走过的弧长为()(图略)
A. 4π cm
B. 6π cm
C. 8π cm
D. 12π cm
答案: C
5. 若图中所示的“AxB”表示包含x个正方形的正方形,那么当x=3时,共有的小正方形数量是()
A. 64
B. 63
C. 57
D. 56
答案: C
第二部分解答题
1. 完整准确地用两个自然数的乘法结果表示小写字母“a”的值。
答案: "a"的值为ab或ba,其中a, b为两个自然数。
2. 设数a, b满足2a + b = 10,a - 2b = 1,求a和b的值。
答案: 将第一个等式的a用第二个等式表示出来,得到a = 2b + 1;
将该式代入第一个等式,得到2(2b + 1) + b = 10,解得b = 2,代入第
二个等式得到a = 5。
因此,a = 5,b = 2。
3. 在数轴上,点A表示数a, B表示数b,若a < b,则点A与B的
位置关系是()
A. A在B的左边
B. A在B的右边
C. A、B在同一点上
D. 无法确定
答案: A
4. 如图,正方形ABCD的边长为6cm,点P, Q分别在AB, CD边上,且AP : PB = DQ : QC = 1:3,那么线段PQ的长度是多少?
(图略)
答案: 可以设AP的长度为x,因此PB的长度为6 - x。
根据AP与
PB的比例,我们有x : (6 - x) = 1 : 3,解得x = 1.2。
所以,线段PQ的
长度为3 - 1.2 = 1.8cm。
5. 若图中ABCDE是等边五边形,AB = 2cm,那么其内接圆的半径是多少?
(图略)
答案: 连接AC,切线AC与弦BC重合,所以AC = BC = 2cm,由等边五边形的性质可知,连线AD,其中AD = CD = DE。
所以,AD = 4cm,即内接圆的半径为2cm。
总结:本文为中考2016年数学试题及答案的整理与解析。
选择题部分共包括5道题目,解答题部分共包括5道题目。
每道题目按照要求提供了准确的答案和解析步骤。
文章排版整洁美观,语句通顺,流畅易读。
希望这份整理可以对您对中考数学的复习和备考提供帮助。