大学物理选编答案(主编:陈晓,副主编:邬良能)_中国水利水电出版社(上)中国计量学院
大学物理习题选编答案(主编:陈晓) 中国水利水电出版社(上)

质点运动学1一、选择题1、 分别以r 、s 、υ和a表示质点运动的位矢、路程、速度和加速度,下列表述中正确的是 A 、rr ∆=∆B 、υ==dtds dtr d C 、dtd a υ=D 、υ=dtdr [ B ]2、 一质点沿Y 轴运动,其运动学方程为324t t y -=,=t 时质点位于坐标原点,当质点返回原点时,其速度和加速度分别为 A 、116-⋅s m ,216-⋅s mB 、116-⋅-s m ,216-⋅s mC 、116-⋅-s m ,216-⋅-s mD 、116-⋅s m ,216-⋅-s m [ C ]3、已知质点的运动方程为:θθcos cos 2Bt At x +=,θθsin sin 2Bt At y +=,式中θ、、B A 均为恒量,且0>A,0>B ,则质点的运动为:A .一般曲线运动;B .圆周运动;C .椭圆运动;D .直线运动; ( D )[分析] 质点的运动方程为22c o s c o s si n s i nx A t B t y A t B t θθθθ⎧=+⎨=+⎩由此可知 θt a n =xy , 即 ()x y θt a n =由于=θ恒量,所以上述轨道方程为直线方程。
又 ()()⎩⎨⎧+=+=θθs i nc o s Bt A v Bt A v y x 22⎩⎨⎧====恒量恒量θθsin cos B a B a y x 22由于0>A,0>B ,显然v 与a 同号,故质点作匀加速直线运动。
4、质点在平面内运动,位矢为)(t r,若保持0=dt dr ,则质点的运动是 A 、匀速直线运动 B 、 变速直线运动 C 、圆周运动D 、匀速曲线运动 [ C ]二、填空题5、一质点沿直线运动,其运动学方程为26t t x -=,则t 由0至4s 的时间间隔内,质点的位移大小为 8 m ,在t 由0到4s 的时间间隔内质点走过的路程为 10 m 。
大学物理第六版上册北京邮电大学出版课后答案详解精选全文完整版

可编辑修改精选全文完整版大学物理第六版上册北京邮电大学出版课后答案详解1、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性2、用如图所示的装置做“探究小车速度随时间变化的规律”实验:1.小车从靠近定滑轮处释放.[判断题] *对错(正确答案)3、马德堡半球实验测出了大气压,其大小等于760mm高水银柱产生的压强[判断题]对错(正确答案)答案解析:托里拆利实验最早测出了大气压强4、11.小敏学习密度后,了解到人体的密度跟水的密度差不多,从而她估测一个中学生的体积约为()[单选题] *A.50 m3B.50 dm3(正确答案)C.50 cm3D.500 cm35、9.在某原子结构模型示意图中,a、b、c是构成该原子的三种不同粒子,能得出的结()[单选题] *A.a和c数量不相等B.b决定原子种类C.质量集中在c上D.a和c之间存在吸引的力(正确答案)6、4.静止在水平地面上的物体受到向上的弹力是因为地面发生了形变.[判断题] *对(正确答案)错7、下列有关力做功的说法中正确的是()[单选题]A.用水平力推着购物车前进,推车的力做了功(正确答案)B.把水桶从地面上提起来,提水桶的力没有做功C.书静止在水平桌面上,书受到的支持力做了功D.挂钩上的书包静止时,书包受到的拉力做了功8、1.与头发摩擦过的塑料尺能吸引碎纸屑。
下列与此现象所反映的原理相同的是()[单选题] *A.行驶的汽车窗帘被吸出去B.挤压后的吸盘吸在光滑的墙上C.用干燥的双手搓开的塑料袋会吸在手上(正确答案)D.两个表面光滑的铅块挤压后吸在一起9、下列措施中,能使蒸发减慢的是()[单选题]A.把盛有酒精的瓶口盖严(正确答案)B.把湿衣服晾在通风向阳处C.用电吹风给湿头发吹风D.将地面上的积水向周围扫开10、停放在水平地面上的汽车对地面的压力和地面对车的支持力是平衡力[判断题] *对错(正确答案)答案解析:相互作用力11、52.“凿壁偷光”原指凿穿墙壁,让邻舍的烛光透过来,后用来形容家贫而勤奋读书。
大学物理习题答案 .doc

大学物理习题答案第一章质点运动学1-1 D 。
1-2 23 m/s 1-3 解:)/(16)/(0.80.4/16/0.8)(5.02.0,0.0/0.4222s m j j a i a a s m j i j v i v v sm a s m dt dyv t v y x y t v x x t a s m V y x y x y y x x x X=+=+=+====∴=∴==∴===∴=即又因方程当1-4 解:由加速度420232,3102)310()46()/(46)46(22220000-==+=∴++=⇒+==+=⇒+==⎰⎰⎰⎰⎰⎰x y ty t x j t i t r dt j t i t dt v r d s m j t i t v dt j i dt a v d tt rr ttv轨迹方程为1-5 解:(1)取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为m gyvx m y s m v gt y vt x 4522100,/10021,2==∴==== (2) 视线和水平线的夹角为5.12==xyarctgθ (3)在任意时刻 物品的速度与水平轴夹角为vgt arctgv v arctgxy ==α 取自然坐标,物品在抛出2S 时,重力加速度的切向分量与法向分量分别为22/62.9)cos(cos /88.1)sin(sin s m v gtarctg g g a s m vgtarctgg g a n t ======αα第二章 牛顿定律2-1 140 N/S ;24 M/S 。
2-2 解:取沿斜面为坐标轴OX ,原点O 位于斜面顶点,则由牛顿第二定律有ma mg mg =-ααcos sin (1)又物体在斜面上作匀变速直线运动,故有)2()cos (sin cos 2)cos (sin 2121cos 22αμαααμαα-=∴-==g lt t g at l为使下滑的时间最短,可令dt/da=0 , 由式(2)有)(99.0)cos (sin cos 249120)sin (cos cos )cos (sin sin min s g lt tg o =-==-==++--αμαααμααμαααμαα则可得2-3 解:因加速度a=dv/dt ,在直线运动中,根据牛顿定律有 120t+40=mdv/dt 根据初始条件, 积分得)(0.20.20.60.5)0.60.40.6(0.5,0/)/(0.60.40.6)0.40.12(3220020m t t t x dt t t dx x t dt dx v s m t t v dtt dv txx tvv +++=∴++====++=⇒+=⎰⎰⎰⎰2-4解:以地面飞机滑行方向为坐标正方向,由牛顿定律及初始条件,有)(4676)2()/(0.302/3002002000m t mt v x x s dt t mv dx s m v t mv v dt mt dv tdt mdv ma F txx tvv =-=-=∴-==⇒-=⇒-=-===⎰⎰⎰⎰ααααα2-5解:(1))(11.6)1ln()1(00s mgkv k m t kvmg dvmdtdtdv mkv mg vt≈+=⇒+-==--⎰⎰(2))(183)1ln()1(000m kv mg kv mg k m y kvmg mvdv dy dydvmvkv mg dyvdv dt dy dy dv dt dv v y=⎥⎦⎤⎢⎣⎡-+-=∴+-==--⇒==⎰⎰代入第三章 动量守恒定律和能量守恒定律3-1 [B]3-2 解: 取图示坐标,绳索拉力对物体所作的功为⎰⎰=⋅=ddx F x d F W θcos)(69.1212J dx xd Fx x x =+-=⎰3-3 解:3732034320003432422237279180cos 993lkc dx x kc dxF x d F W x kc t kc kv F ct dtdxv ct x ttt ⎰⎰⎰-=-==⋅======∴=第四章刚体的转动4-1 [A]4-2 6.54 rad/s 2; 4.8 s .4-3 解1:s n n MJJ Mt J M t8.10)(200=-=-=⇒=-=πωωαωωα由 解2:根据角动量定理s n n MJJ Mt J Mdt t8.10)(2)(00=-=-=-=⎰πωωωω4-4 [C] 4-5 解:αα2121r m J r F T ==张力为下落的距离为时mm m gt m at s B s t m m gm a r a F F a m F g m F P T T T T 45.2221,0.122,,21222212'2'2'2=+===+=∴===-=-α()N g m m m m a g m F T 2.3922121=+=-=4-6 解:根据角动量守恒定律()1212212'222211'2121.29362,2,12,)(-=+=+==⎪⎭⎫⎝⎛==+=s lm m v m J J J lv l m J l m J J J J ωωωωω4-7 解:小孩与转台作为一转动系统,系统的角动量守恒。
大学物理第五版课后答案解析(上)[完整版]
![大学物理第五版课后答案解析(上)[完整版]](https://img.taocdn.com/s3/m/552b50ec9ec3d5bbfd0a745c.png)
1-1 。
分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1-2。
分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1-3 。
分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 。
分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5 。
大学物理课后习题答案第五章-推荐下载

vx ' u
1
v c2
vx
'
3 4
c
(2) vBA vAB vx ' 0.4c
5.6 惯性系S′相对另一惯性系 S 沿 x 轴作匀速直线运动,取两坐标原点重合时刻作为
计时起点.在S系中测得两事件的时空坐标分别为 x1 =6×104m, t1 =2×10-4s,以及
x2 =12×104m, t2 =1×10-4s.已知在S′系中测得该两事件同时发生.试问:
问在以下两种情况中,它们对 S ' 系是否同时发生?
(1)两事件发生于 S 系的同一地点;
(2)两事件发生于 S 系的不同地点。
解 由洛伦兹变化 t (t v x) 知,第一种情况, x 0 , t 0 ,故 S ' 系 c2
中 t 0 ,即两事件同时发生;第二种情况, x 0 , t 0 ,故 S ' 系中 t 0 ,两
第 5 章 狭义相对论 习题及答案
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看2与全22过,22度并22工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
大学物理习题册 陈晓 浙江大学出版社第七八章答案

??0??dSB磁场的高斯定理1、说明了下面的哪些叙述是正确的?穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;a穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;b一根磁感应线可以终止在闭合曲面内;c一根磁感应线可以完全处于闭合曲面内。
d[ ] 。
C、cd;D、ab A、ad;B、ac;1. A解释:磁感线闭合的特性。
洛仑兹力可以2、改变带电粒子的动量;BA、改变带电粒子的速率;] [ D、增加带电粒子的动能。
C、对带电粒子作功;B解释:洛仑兹力的特点,改变速度方向不改变速度大小。
I o IRI的圆线圈一个处于水平位置,一个处于竖直3如图所示,两个载有相等电流的半径为O? 位置,两个线圈的圆心重合,则在圆心处的磁感应强度大小为多少???R/IRI/2R22I/[ ] 、; C;、A0; B、、 D。
000C解释:两个圆电流中心磁感强度的合成,注意方向。
的长直圆筒上形成两个螺线管rR和I4一载有电流的细导线分别均匀密绕在半径为BB和(R=2r),两螺线管的匝数密度相等。
两螺线管中的磁感应强度大小应满足:rR B?4BBBB2B?B?2B?[ ]D 、、A;、;B;C 、。
rrRRRrRr B?nI?B,场强与半径无关。
解释:参考长直螺线管内部磁感强度公式05 B6 D7 B?B中,则粒子运动轨道所包围的粒子,以速度垂直射入均匀磁场一质量为m、电量为q B大小的关系曲线是[ 范围的磁通量与磁场磁感应强度]????mmmmBBBB OOOO)(D (C))(A)(B?m?R解释:由半径公式求出磁通量表达式,反比关系。
qB8在铜片上均匀分布,I厚度不计,电流如图所示,有一无限长通电流的扁平铜片,宽度为a, B 的大P点的磁感应强度在铜片外与铜片共面,离铜片右边缘为b处的小为:??II00;BA、、;??1?b?2a?)?b2(a2??IIb?ba?a00lnln [ ]、; D 。
、 C ??aba22b C?Idx0?dB点p积分求出解释:铜片上取线电流,由无限长线电流磁感强度公式?)x?b?a(a2.总磁感强度。
大学物理(第五版)课后习题答案
面向21 世纪课程教材学习辅导书习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答。
与上一版相比本书增加了选择题更换了约25的习题。
所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际。
此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学、电磁学、波动过程和光学热物理、相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力。
物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路。
只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力。
有鉴于此重分析、简解答的模式成为编写本书的指导思想。
全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生―即物穷理‖的精神通过解题过程体验物理科学的魅力和价值尝试―做学问‖的乐趣。
因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助。
本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100 3102 -93 中规定的法定计量单位。
本书由马文蔚教授主编由殷实、沈才康、包刚、韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢。
由于编者的水平有限敬请读者批评指正。
编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础但仅仅记住一些公式是远远不够的求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等根据模型、条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用1正确选择物理模型和认识运动过程力学中常有质点、质点系、刚体等模型每种模型都有特定的含义适用范围和物理规律采用何种模型既要考虑问题本身的限制又要注意解决问题的需要例如用动能定理来处理物体的运动时可把物体抽象为质点模型而用功能原理来处理时就必须把物体与地球组成一个系统来处理再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具2.叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化―复杂‖为―简单‖此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等叠加原理在诸如电磁学振动、波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟3.类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如txddv 与tθωdd taddv 与tωαdd 其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式这种类比不仅运动学有动力学也有如maF 与JαM0dvvmmtF 与0dLωJωtM 2022121dvvmmxF 与2022121dωJωJθM 可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩此外还有许多可以类比的实例如万有引力与库仑力、静电场与稳恒磁场电介质的极化与磁介质的磁化等等只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通4微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的一般来说它们是时空坐标的函数运用微积分可求得质点的运动方程和运动状态这是大学物理和中学物理最显著的区别例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数另外对物理量数学表达式进行合理变形就可得出新的物理含义如由tddav借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由tddvr也可求得质点的运动方程以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件在力学学习中我们会发现ta0vv和2021ttarv等描述质点运动规律的公式只是式tt0ddavvv0和式tttrdd000arv在加速度a为恒矢量条件下积分后的结果此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具2 如何对矢量函数进行微积分运算我们知道很多物理量都是矢量如力学中的r、v、a、p 等物理量矢量既有大小又有方向从数学角度看它们都是―二元函数‖在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对x、y 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量a 、v、s 等进行微积分运算3 积分运算中的分离变量和变量代换问题以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F m a 求得a的表达式再由式dv adt 通过积分运算求得v其中如果力为时间t 的显函数则a at此时可两边直接积分即ttta0ddvvv0但如果力是速率v 的显函数则a av此时应先作分离变量后再两边积分即tta0dd1vvvv0又如力是位置x 的显函数则aax此时可利用txddv得vxtdd并取代原式中的dt再分离变量后两边积分即xxtxa0ddvvvv0 用变量代换的方法可求得vx表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量5.求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选运用牛顿定律、转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大因而只要问题不涉及加速度则应首先考虑以下路径2 角动量方法如问题不涉及加速度但涉及时间此法可首选3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题当然对复杂问题几种方法应同时考虑此外三个守恒定律动量守恒、能量守恒、角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题总之应学会从不同角度分析与探讨问题以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠―悟性‖但这种―悟性‖产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至t Δt时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ r 平均速度为v平均速率为v 1 根据上述情况则必有 A Δr Δs Δr B Δr ≠ Δs ≠ Δr当Δt→0 时有 dr ds ≠ dr C Δr ≠ Δr ≠ Δs当Δt→0 时有 dr dr ≠ ds D Δr ≠ Δs ≠ Δr当Δt→0 时有 dr dr ds 2 根据上述情况则必有 A v v v v B v ≠v v ≠ v C v v v ≠ v D v ≠v v v分析与解1 质点在t 至t Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs PP′ 位移大小Δr PP′而Δr r - r 表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能但当Δt→0 时点P′无限趋近P 点则有 dr ds但却不等于dr故选B 2 由于 Δr ≠Δs故tstΔΔΔΔr即 v ≠v 但由于 dr ds故tstddddr即 v v由此可见应选C 1 -2 一运动质点在某瞬时位于位矢rxy的端点处对其速度的大小有四种意见即1trdd 2tddr 3tsdd 422ddddtytx 下述判断正确的是 A 只有12正确B 只有2正确 C 只有23正确 D 只有34正确分析与解trdd表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率通常用符号vr表示这是速度矢量在位矢方向上的一个分量tddr表示速度矢量在自然坐标系中速度大小可用公式tsddv计算在直角坐标系中则可由公式22ddddtytxv求解故选D 1 -3 质点作曲线运动r 表示位置矢量v表示速度a表示加速度s 表示路程a 表示切向加速度对下列表达式即1d v /dt a2dr/dt v3ds/dt v4d v /dt a 下述判断正确的是A 只有1、4是对的B 只有2、4是对的C 只有2是对的D 只有3是对的分析与解tddv表示邢蚣铀俣萢 它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用trdd在极坐标系中表示径向速率vr如题1 -2 所述tsdd在自然坐标系中表示质点的速率v而tddv表示加速度的大小而不是切向加速度a 因此只有3 式表达是正确的故选D 1 -4 一个质点在做圆周运动时则有 A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量a 起改变速度大小的作用而法向分量an起改变速度方向的作用质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的至于a 是否改变则要视质点的速率情况而定质点作匀速率圆周运动时a 恒为零质点作匀变速率圆周运动时a 为一不为零的恒量当a 改变时质点则作一般的变速率圆周运动由此可见应选B 1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作 A 匀加速运动θcos0vv B 匀减速运动θcos0vv C 变加速运动θcos0vv D 变减速运动θcos0vv E 匀速直线运动0vv 分析与解本题关键是先求得小船速度表达式进而判断运动性质为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为22hlx其中绳长l 随时间t 而变化小船速度22ddddhltlltxv式中tldd表示绳长l随时间的变化率其大小即为v0代入整理后为θlhlcos/0220vvv方向沿x 轴合蛴伤俣缺泶锸娇膳卸闲〈 鞅浼铀僭硕 恃 讨论有人会将绳子速率v0按x、y 两个方向分解则小船速度θcos0vv这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为32262ttx式中x 的单位为mt 的单位为s求1 质点在运动开始后4.0 s内的位移的大小 2 质点在该时间内所通过的路程3 t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等质点在t 时间内的位移Δx 的大小可直接由运动方程得到0Δxxxt而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了为此需根据0ddtx来确定其运动方向改变的时刻tp 求出0 tp 和tp t 内的位移大小Δx1 、Δx2 则t 时间内的路程21xxs如图所示至于t 4.0 s 时质点速度和加速度可用txdd和22ddtx两式计算解 1 质点在4.0 s内位移的大小m32Δ04xxx 2 由0ddtx 得知质点的换向时刻为s2pt t0不合题意则m0.8Δ021xxx m40Δ242xxx 所以质点在4.0 s时间间隔内的路程为m48ΔΔ21xxs 3 t4.0 s时1s0.4sm48ddttxv2s0.422m.s36ddttxa 1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图a所示设t0 时x0试根据已知的v-t 图画出a-t 图以及x -t 图分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中AB、CD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线又由速度的定义可知x-t 曲线的斜率为速度的大小因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线根据各段时间内的运动方程xxt求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图解将曲线分为AB、BC、CD 三个过程它们对应的加速度值分别为2sm20ABABABttavv 匀加速直线运动0BCa 匀速直线运动2sm10CDCDCDttavv 匀减速直线运动根据上述结果即可作出质点的a-t 图图B 在匀变速直线运动中有2021ttxxv 由此可计算在0 2 和4 6 时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0 2 和4 6 时间内的x -t 图在2 4 时间内质点是作1sm20v的匀速直线运动其x -t 图是斜率k20的一段直线图c 1 -8 已知质点的运动方程为jir222tt式中r 的单位为mt 的单位为 求 1 质点的运动轨迹2 t 0 及t 2 时质点的位矢3 由t 0 到t 2 内质点的位移Δr 和径向增量Δr 4 2 内质点所走过的路程s 分析质点的轨迹方程为y fx可由运动方程的两个分量式xt和yt中消去t 即可得到对于r、Δr、Δr、Δs 来说物理含义不同可根据其定义计算其中对s的求解用到积分方法先在轨迹上任取一段微元ds则22dddyxs最后用ssd积分求 解1 由xt和yt中消去t 后得质点轨迹方程为2412xy 这是一个抛物线方程轨迹如图a所示2 将t 0 和t 2 分别代入运动方程可得相应位矢分别为jr20 jir242 图a中的P、Q 两点即为t 0 和t 2 时质点所在位置3 由位移表达式得jijirrr24Δ020212yyxx 其中位移大小m66.5ΔΔΔ22yxr 而径向增量m47.2ΔΔ2020222202yxyxrrrr 4 如图B所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds则22dddyxs由轨道方程可得xxyd21d代入ds则2 内路程为m91.5d4d402xxssQP 1 -9 质点的运动方程为23010ttx 22015tty 式中xy 的单位为mt 的单位为 试求1 初速度的大小和方向2 加速度的大小和方向分析由运动方程的分量式可分别求出速度、加速度的分量再由运动合成算出速度和加速度的大小和方向解 1 速度的分量式为ttxx6010ddv ttyy4015ddv 当t 0 时vox -10 m· -1voy 15 m· -1 则初速度大小为120200sm0.18yxvvv 设vo与x 轴的夹角为α则23tan00xyαvv α123°41′ 2 加速度的分量式为2sm60ddtaxxv 2sm40ddtayyv 则加速度的大小为222sm1.72yxaaa 设a 与x 轴的夹角为β则32tanxyaaβ β-33°41′或326°19′ 1 -10 一升降机以加速度1.22 m· -2上升当上升速度为2.44 m· -1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距2.74 m计算1螺丝从天花板落到底面所需要的时间2螺丝相对升降机外固定柱子的下降距离分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 y1t和y2 y2t并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度升降机厢的高度就是螺丝或升降机运动的路程解1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为20121attyv 20221gtthyv 当螺丝落至底面时有y1 y2 即20202121gtthattvv s705.02aght 2 螺丝相对升降机外固定柱子下降的距离为m716.021202gttyhdv 解2 1以升降机为参考系此时螺丝相对它的加速度大小a′g a螺丝落至底面时有2210tagh s705.02aght 2 由于升降机在t 时间内上升的高度为2021atthv 则m716.0.。
大学物理第五版上册标准答案-副本
1-9 质点的运动方程是x= -10t+30t (2)和y= 15t -20t(2),式中的x ,y 的单位是m ,t 的单位是s 求初速度的大小和方向 加速度的大小和方向分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为 t txx 6010d d +-==v , t tyy 4015d d -==v 当t =0 时, v o x =-10 m ·s-1 , v o y =15 m ·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则 23tan 00-==xy αv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v,2s m 40d d -⋅-==ta y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β ,β=-33°41′(或326°19′)1-13 质点沿直线运动,加速度是a=4-t (2),如何当t=3s 时,x=9m ,v=2m 。
S (-1) 求质点的运动方程分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和txd d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得00421212x t t t x ++-=v (2)将t =3s时,x =9 m,v =2 m ·s-1代入(1) (2)得v 0=-1 m ·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1-22 一个质点沿半径是r 的圆周规律s=vt-1/2bt (2)而运动,v ,b 都是常量。
大学物理习题集加答案解析
大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
物理学答案(第五版)(可编辑)
物理学答案(第五版)物理学答案第五版 --马文蔚txt人和人的心最近又最远真诚是中间的通道试金可以用火试女人可以用金试男人可以用女人--往往都经不起那么一试面向 21 世纪课程教材学习辅导书物理学第五版习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答与上一版相比本书增加了选择题更换了约25%的习题所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学电磁学波动过程和光学热物理相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力有鉴于此重分析简解答的模式成为编写本书的指导思想全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生即物穷理的精神通过解题过程体验物理科学的魅力和价值尝试做学问的乐趣因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100~3102 -93 中规定的法定计量单位本书由马文蔚教授主编由殷实沈才康包刚韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢由于编者的水平有限敬请读者批评指正编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律.由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理.力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系.掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础.但仅仅记住一些公式是远远不够的.求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等.根据模型条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用.1.正确选择物理模型和认识运动过程力学中常有质点质点系刚体等模型.每种模型都有特定的含义适用范围和物理规律.采用何种模型既要考虑问题本身的限制又要注意解决问题的需要.例如用动能定理来处理物体的运动时可把物体抽象为质点模型.而用功能原理来处理时就必须把物体与地球组成一个系统来处理.再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论.在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具.2叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成.例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向.对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动.运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化复杂为简单.此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解.在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等.叠加原理在诸如电磁学振动波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟.3类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性.而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面.例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如与与其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式.这种类比不仅运动学有动力学也有如与与与可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去.当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩.此外还有许多可以类比的实例如万有引力与库仑力静电场与稳恒磁场电介质的极化与磁介质的磁化等等.只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通.4.微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难.要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的.一般来说它们是时空坐标的函数.运用微积分可求得质点的运动方程和运动状态.这是大学物理和中学物理最显著的区别.例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数.另外对物理量数学表达式进行合理变形就可得出新的物理含义.如由借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由也可求得质点的运动方程.以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程.在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件.在力学学习中我们会发现和等描述质点运动规律的公式只是式和式在加速度为恒矢量条件下积分后的结果.此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具.2 如何对矢量函数进行微积分运算.我们知道很多物理量都是矢量如力学中的rvap 等物理量矢量既有大小又有方向从数学角度看它们都是二元函数在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对xy 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量atvs 等进行微积分运算.3 积分运算中的分离变量和变量代换问题.以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F =m a 求得a的表达式再由式dv = adt 通过积分运算求得v其中如果力为时间t 的显函数则a =a t 此时可两边直接积分即但如果力是速率v 的显函数则a = a v 此时应先作分离变量后再两边积分即又如力是位置x 的显函数则a=a x 此时可利用得并取代原式中的dt再分离变量后两边积分即用变量代换的方法可求得v x 表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量.5求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选.运用牛顿定律转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大.因而只要问题不涉及加速度则应首先考虑以下路径.2 角动量方法如问题不涉及加速度但涉及时间此法可首选.3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题.当然对复杂问题几种方法应同时考虑.此外三个守恒定律动量守恒能量守恒角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题.总之应学会从不同角度分析与探讨问题.以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠悟性.但这种悟性产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强.第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至 t +Δt 时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ|r|平均速度为平均速率为.1 根据上述情况则必有A |Δr|Δs ΔrB |Δr|≠Δs ≠Δr当Δt→0 时有|dr| ds ≠ drC |Δr|≠Δr ≠Δs当Δt→0 时有|dr| dr ≠ dsD |Δr|≠Δs ≠Δr当Δt→0 时有|dr| dr ds2 根据上述情况则必有A ||||B ||≠||≠C ||||≠D ||≠||分析与解 1 质点在t 至 t +Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs =PP′位移大小|Δr|=PP′而Δr =|r|-|r|表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能.但当Δt→0 时点P′无限趋近P点则有|dr|=ds但却不等于dr.故选 B .2 由于|Δr |≠Δs故即||≠.但由于|dr|=ds故即||=.由此可见应选 C .1 -2 一运动质点在某瞬时位于位矢r xy 的端点处对其速度的大小有四种意见即1 2 3 4 .下述判断正确的是A 只有 1 2 正确B 只有 2 正确C 只有 2 3 正确D 只有 3 4 正确分析与解表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率.通常用符号vr表示这是速度矢量在位矢方向上的一个分量表示速度矢量在自然坐标系中速度大小可用公式计算在直角坐标系中则可由公式求解.故选 D .1 -3 质点作曲线运动r 表示位置矢量 v表示速度a表示加速度s 表示路程 at表示切向加速度.对下列表达式即1 d v dt =a2 drdt =v3 dsdt =v4 d v dt|=at.下述判断正确的是A 只有 1 4 是对的B 只有 2 4 是对的C 只有 2 是对的D 只有 3 是对的分析与解表示切向加速度at它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用在极坐标系中表示径向速率vr 如题1 -2 所述在自然坐标系中表示质点的速率v而表示加速度的大小而不是切向加速度at.因此只有 3 式表达是正确的.故选 D .1 -4 一个质点在做圆周运动时则有A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用而法向分量an起改变速度方向的作用.质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的.至于at是否改变则要视质点的速率情况而定.质点作匀速率圆周运动时 at恒为零质点作匀变速率圆周运动时 at为一不为零的恒量当at改变时质点则作一般的变速率圆周运动.由此可见应选 B .1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作A 匀加速运动B 匀减速运动C 变加速运动D 变减速运动E 匀速直线运动分析与解本题关键是先求得小船速度表达式进而判断运动性质.为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为其中绳长l 随时间t 而变化.小船速度式中表示绳长l 随时间的变化率其大小即为v0代入整理后为方向沿x 轴负向.由速度表达式可判断小船作变加速运动.故选 C .讨论有人会将绳子速率v0按xy 两个方向分解则小船速度这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为式中x 的单位为mt 的单位为 s.求1 质点在运动开始后40 s内的位移的大小2 质点在该时间内所通过的路程3 t=4 s时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了.为此需根据来确定其运动方向改变的时刻tp 求出0~tp 和tp~t 内的位移大小Δx1 Δx2 则t 时间内的路程如图所示至于t =40 s 时质点速度和加速度可用和两式计算.解 1 质点在40 s内位移的大小2 由得知质点的换向时刻为t=0不合题意则所以质点在40 s时间间隔内的路程为3 t=40 s时1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图 a 所示.设t=0 时x=0.试根据已知的v-t 图画出a-t 图以及x -t 图.分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中ABCD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动.加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线.又由速度的定义可知x-t 曲线的斜率为速度的大小.因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x t 求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图.解将曲线分为ABBCCD 三个过程它们对应的加速度值分别为匀加速直线运动匀速直线运动匀减速直线运动根据上述结果即可作出质点的a-t 图〔图 B 〕.在匀变速直线运动中有由此可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内质点是作的匀速直线运动其x -t 图是斜率k=20的一段直线〔图 c 〕.1 -8 已知质点的运动方程为式中r 的单位为mt 的单位为s.求1 质点的运动轨迹2 t =0 及t =2s时质点的位矢3 由t =0 到t =2s内质点的位移Δr 和径向增量Δr4 2 s内质点所走过的路程s.分析质点的轨迹方程为y =f x 可由运动方程的两个分量式x t 和y t 中消去t 即可得到.对于rΔrΔrΔs 来说物理含义不同可根据其定义计算.其中对s的求解用到积分方法先在轨迹上任取一段微元ds则最后用积分求s.解 1 由x t 和y t 中消去t 后得质点轨迹方程为这是一个抛物线方程轨迹如图 a 所示.2 将t =0s和t =2s分别代入运动方程可得相应位矢分别为图 a 中的PQ 两点即为t =0s和t =2s时质点所在位置.3 由位移表达式得其中位移大小而径向增量4 如图 B 所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds 则由轨道方程可得代入ds则2s内路程为1 -9 质点的运动方程为式中xy 的单位为mt 的单位为s.试求 1 初速度的大小和方向 2 加速度的大小和方向.分析由运动方程的分量式可分别求出速度加速度的分量再由运动合成算出速度和加速度的大小和方向.解 1 速度的分量式为当t =0 时 vox =-10 ms-1 voy =15 ms-1 则初速度大小为设vo与x 轴的夹角为α则α=123°41′2 加速度的分量式为则加速度的大小为设a 与x 轴的夹角为β则β=-33°41′或326°19′1 -10 一升降机以加速度122 ms-2上升当上升速度为244 ms-1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距274 m.计算 1 螺丝从天花板落到底面所需要的时间 2 螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 =y1 t 和y2 =y2 t 并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度.升降机厢的高度就是螺丝或升降机运动的路程.解 1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为当螺丝落至底面时有y1 =y2 即2 螺丝相对升降机外固定柱子下降的距离为解2 1 以升降机为参考系此时螺丝相对它的加速度大小a′=g +a螺丝落至底面时有2 由于升降机在t 时间内上升的高度为则1 -11 一质点P 沿半径R =30 m的圆周作匀速率运动运动一周所需时间为200s设t =0 时质点位于O 点.按 a 图中所示Oxy 坐标系求 1 质点P 在任意时刻的位矢2 5s时的速度和加速度.分析该题属于运动学的第一类问题即已知运动方程r =r t 求质点运动的一切信息如位置矢量位移速度加速度.在确定运动方程时若取以点 03 为原点的O′x′y′坐标系并采用参数方程x′=x′ t 和y′=y′ t 来表示圆周运动是比较方便的.然后运用坐标变换x =x0 +x′和y =y0 +y′将所得参数方程转换至Oxy 坐标系中即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 1 如图 B 所示在O′x′y′坐标系中因则质点P 的参数方程为坐标变换后在Oxy 坐标系中有则质点P 的位矢方程为2 5s时的速度和加速度分别为1 -12 地面上垂直竖立一高200 m 的旗杆已知正午时分太阳在旗杆的正上方求在下午2∶00 时杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至200 m分析为求杆顶在地面上影子速度的大小必须建立影长与时间的函数关系即影子端点的位矢方程.根据几何关系影长可通过太阳光线对地转动的角速度求得.由于运动的相对性太阳光线对地转动的角速度也就是地球自转的角速度.这样影子端点的位矢方程和速度均可求得.解设太阳光线对地转动的角速度为ω从正午时分开始计时则杆的影长为s=htgωt下午2∶00 时杆顶在地面上影子的速度大小为当杆长等于影长时即s =h则即为下午3∶00 时.1 -13 质点沿直线运动加速度a=4 -t2 式中a的单位为ms-2 t的单位为s.如果当t =3s时x=9 mv =2 ms-1 求质点的运动方程.分析本题属于运动学第二类问题即已知加速度求速度和运动方程必须在给定条件下用积分方法解决.由和可得和.如a=a t 或v =v t 则可两边直接积分.如果a 或v不是时间t 的显函数则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知应有得 1由得 2将t=3s时x=9 mv=2 ms-1代入 1 2 得v0=-1 ms-1x0=075 m.于是可得质点运动方程为1 -14 一石子从空中由静止下落由于空气阻力石子并非作自由落体运动现测得其加速度a=A -Bv式中AB 为正恒量求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题与上题不同之处在于加速度是速度v 的函数因此需将式dv =a v dt 分离变量为后再两边积分.解选取石子下落方向为y 轴正向下落起点为坐标原点.1 由题意知 1用分离变量法把式 1 改写为2将式 2 两边积分并考虑初始条件有得石子速度由此可知当t→∞时为一常量通常称为极限速度或收尾速度.2 再由并考虑初始条件有得石子运动方程1 -15 一质点具有恒定加速度a =6i +4j式中a的单位为ms-2 .在t =0时其速度为零位置矢量r0 =10 mi.求 1 在任意时刻的速度和位置矢量 2 质点在Oxy 平面上的轨迹方程并画出轨迹的示意图.分析与上两题不同处在于质点作平面曲线运动根据叠加原理求解时需根据加速度的两个分量ax 和ay分别积分从而得到运动方程r的两个分量式x t 和y t .由于本题中质点加速度为恒矢量故两次积分后所得运动方程为固定形式即和两个分运动均为匀变速直线运动.读者不妨自己验证一下.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 以下五种运动形式中, a 保持不变的运动是
A、圆锥摆运动. C、行星的椭圆轨道运动. 2、 下列说法正确的是 A、质点作圆周运动时的加速度指向圆心; B、匀速圆周运动的加速度为恒量; C、只有法向加速度的运动一定是圆周运动; D、只有切向加速度的运动一定是直线运动。 [ D ] 3、 一质点的运动方程是 r R cos ti R sin tj ,R、 为正常数。从 t= / 到 t= 2 / 时 间内 (1)该质点的位移是 (A) 2Ri ; (B) 2 Ri ; (2)该质点经过的路程是 [
uy 4u 0 l x x l2
y
代入上式定出 a、b,而得
船相对于岸的速度 v (vx,vy)明显可知是
v x v0 / 2
v0 45° u0
l x
v y (v 0 / 2 ) u y ,
《大学物理习题选编》动量与能量
将上二式的第一式进行积分,有
x
还有,
v0 2
2
n
v0 4Rb
2
10、一飞轮以速率 n=1500 转/分的转速转动,受到制动后均匀地减速,经 t=50 秒后静止。
《大学物理习题选编》动量与能量
试求: (1) 角加速度 ; (2) 制动后 t=25 秒时飞轮的角速度,以及从制动开始到停转,飞轮的转数 N; (3) 设飞轮半径 R=1 米,则 t=25 秒时飞轮边缘一点的速度和加速度的大小?
A
B
C
《大学物理习题选编》动量与能量
(B) t B > t C ; (C) t B < t C ; (D)条件不足,无法判定。 2. 一只质量为 m 的猴,原来抓住一根用绳吊在天花板上的质量为 M 的直杆,悬线突然断开,小猴则 沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 (A) g. (C) (B)
a t R rad / s2
(3) a n R 2 625 2 m/s2
2 a a2 n at
tan
an at
11.有一宽为 l 的大江,江水由北向南流去.设江中心流速为 u0,靠两岸的流速为零.江中 任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度 为 v 0 的汽船由西岸出发,向东偏北 45°方向航行, 试求其航线的轨迹方程以及到达东岸的地 点. 解:以出发点为坐标原点,向东取为 x 轴,向北取为 y 轴,因流速为y 方向,由题意可得 ux = 0 uy = a(xl/2)2+b 令 x = 0, x = l 处 uy = 0, x = l/2 处 uy=-u0
a x 2B cos 恒量 a y 2B sin 恒量
由于 A 0 , B 0 ,显然 v 与 a 同号,故质点作匀加速直线运动。
4、质点在平面内运动,位矢为 r (t ) ,若保持 dr
A、匀速直线运动 C、圆周运动
二、 填空题
dt
0 ,则质点的运动是
M m g. M M m (E) g. M
m g. M M m (D) g M m
. [ C ]
M
m
夹角为. 要使汽
3.
一公路的水平弯道半径为 R,路面的外侧高出内侧,并与水平面
车通过该段路面时 不引起侧向摩擦力,则汽车的速率为 (A) (B) (C) (D) 答案:B 二、填空题 1.如果一个箱子与货车底板之间的静摩擦系数为,当这货车爬一与水平方向成 角的平缓山坡时,要 不 使 箱 子 在 车 底 板 上 滑 动 , 车 的 最 大 加 速 度 amax = ______________ (cos sin )g _________________________.
1500 2 50 rad/s 60 解: (1) 0 t;t 0
0
减速运动
t 0
t
rad / s2
s
(2) 0 t 25 rad
1 1 s 0 t- t 2 50 50 2500 625转 2 2 25;v R 25 m/s
10、某质点的初位矢 r 2i ,初速度 2 j ,加速度 a 4i 2tj ,求(1)该质点的速度;
(2)该质点的运动方程。
《大学物理习题选编》动量与能量
解: (1)
r r dv a dt r v v r t r 0 (4i 2tj )dt v v0 dv v v t2 v r 4ti 2 j v 2 j 2 v v r v 4ti ( 2 t 2 ) j
v r dr v dt r v v v v v t 2 r dt r (2) 0 r0 dr r r 0 4ti (t 2) j v 1 v v r (2 2t 2 )i ( 2t t 3 ) j 3
2
11.一质点沿 x 轴运动,其加速度 a 与位置坐标的关系为 a 2 6 x 。如果质点在原点处的速度为 0,试 求其在任意位置处的速度。 解:由题意 a( x ) 2 6 x ,求 v ( x )
7、 距河岸(看成直线)500 m 处有一艘静止的船, 船上的探照灯以转速为 n =1 r/min 转动. 当 光束与岸边成 60°角时,光束沿岸边移动的速度 v =
200 m . s 9
8、两条直路交叉成角,两辆汽车分别以速率 v 1 和 v 2 沿两条路行驶,一车相对另
2 2 2v 1v 2 cos 或 v 12 v 2 2v 1v 2 cos 一车的速度大小为 v 12 v 2
2 x A c t o s B t c os 2 tin B t s in y As
(
D )
y tan , x
即
y t a n x
由于 恒量,所以上述轨道方程为直线方程。 又
v x A 2Bt c o s v y A 2Bt s i n
2
a( x)
r dr dv dx dv v dt dx dt dx 4
v 0
x
0
(2 6 x 2 )dx vdv
3 2
4x 4x v C
原点 a 2, v 0 ,因此 C 0 ,只朝正方向运动
v 4x 4x2 2 x x2
质点运动学 2 一、 选择题
x 2 y2 1 25 64
dx v = -5.6sin 6 t t 5 0 x dt (2) vy yx 8* 6 cos 6 t 48 t 5 dt v r v 48 j
a x 180 2 a y 0 r r a 180 2i
到达东岸的地点(x,y )为
2 2u0 x l , y y x l l 1 3v 0
牛顿定律 一、选择题 1. 如图所示,质点从竖直放置的圆周顶端 A 处分别沿不同长度的弦 AB 和 AC (AC<AB )由静止下滑,不计摩擦阻力。质点下滑到底部所需要 的时间分别为 t B 和 t C ,则 (A) t B = t C ; [ A ]
at dv / dt b r r a an en at et
an v 0 bt / R
2
大小 b2 (2)
(v 0 bt)4 R
方向 tan
an at
根据题意:
b2 b2 (
v 0 bt 2 2 ) ; R
t (C) 2 j ;
B、匀速率圆周运动. D、抛体运动. [ D ]
B
]
(D) 0。 [ B ]
《大学物理习题选编》动量与能量
(A) 2R; 二、 填空题
(B) R ;
(C) 0;
(D) R 。
4、 质点在半径为 16m 的圆周上运动,切向加速度 at 4m / s 2 ,若静止开始计时,当 t= 2s 8 时,其加速度的方向与速度的夹角为 45 度;此时质点在圆周上经过的路程 s= 。
三、 计算题
1 9、 一质点作圆周运动, 设半径为 R, 运动方程为 s 0 t bt 2 ,其中 s 为弧长, 0 为初速, 2
b 为常数。求:
(1) 任一时刻 t 质点的法向、切向和总加速度; (2) 当 t 为何值时,质点的总加速度在数值上等于 b,这时质点已沿圆周运行了多少
圈? 解:(1) v dS / dt v 0 bt
3、已知质点的运动方程为: x Atcos Bt 2 cos , y Atsin Bt 2sin ,式中 A、B、 均 为恒量,且 A 0 , B 0 ,则质点的运动为: A.一般曲线运动; C.椭圆运动; [分析] 质点的运动方程为 由此可知 B.圆周运动; D.直线运动;
《大学物理习题选编》动量与能量
质点运动学 1 一、选择题 1、 分别以 r 、 s 、 和 a 表示质点运动的位矢、路程、速度和加速度,下列表述中正确的 是
A、 r r
dr ds B、 dt dt
C、 a
d dt
D、
dr dt
[
B
]
2、 一质点沿 Y 轴运动,其运动学方程为 y 4t 2 t 3 , t 0 时质点位于坐标原点,当质点 返回原点时,其速度和加速度分别为 A、 16m s 1 , 16m s 2 C、 16m s 1 , 16m s 2 B、 16m s 1 , 16m s 2 D、 16m s 1 , 16m s 2 [ C ]
B、 变速直线运动 D、匀速曲线运动 [ C ]
《大学物理习题选编》动量与能量