中考数学复习圆课件
合集下载
2025年九年级中考数学一轮复习课件:第20讲圆的有关性质

所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补.
④了解三角形的外心.
核心知识梳理
串联体系,厘清脉络
. 定义:经过三角形三个顶点的圆
三
角
形
外
接圆ຫໍສະໝຸດ 垂直平分线 的交点). 圆心 :外心(三角形三条边的㉓ ___________
. 性质:三角形的外心到三角形的三个顶点的距离相等
BD.若∠BOC=2∠COD,则∠CBD=(
A.25°
B.30°
A)
C.35°
D.40°
三角形的内心与外心
15.(2023·内蒙古)如图,☉O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,
OF⊥AC,垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周
长为21,则EF的长为(B
☉O于点F,连接AF,则∠BAF等于( B )
A.12.5°
B.15°
C.20°
D.22.5°
18.如图,在正方形网格中,每个小正方形的边长都是1,☉O是△ABC的外接圆,
点A,B,O在网格线的交点上,则sin∠ACB的值是
.
考查角度2:跨学科整合
19.(2024·凉山州)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,
OB,OC.若∠DOE=130°,则∠BOC的度数为
100° .
垂径定理及其应用
3.(2024·北京)如图,☉O的直径AB平分弦CD(不是直径).若∠D=35°,则∠C=
55
°.
4.(2024·长沙)如图,在☉O中,弦AB的长为8,圆心O到AB的距离OE=4,则☉O的半
径长为( B )
A.4
B.4
④了解三角形的外心.
核心知识梳理
串联体系,厘清脉络
. 定义:经过三角形三个顶点的圆
三
角
形
外
接圆ຫໍສະໝຸດ 垂直平分线 的交点). 圆心 :外心(三角形三条边的㉓ ___________
. 性质:三角形的外心到三角形的三个顶点的距离相等
BD.若∠BOC=2∠COD,则∠CBD=(
A.25°
B.30°
A)
C.35°
D.40°
三角形的内心与外心
15.(2023·内蒙古)如图,☉O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,
OF⊥AC,垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周
长为21,则EF的长为(B
☉O于点F,连接AF,则∠BAF等于( B )
A.12.5°
B.15°
C.20°
D.22.5°
18.如图,在正方形网格中,每个小正方形的边长都是1,☉O是△ABC的外接圆,
点A,B,O在网格线的交点上,则sin∠ACB的值是
.
考查角度2:跨学科整合
19.(2024·凉山州)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,
OB,OC.若∠DOE=130°,则∠BOC的度数为
100° .
垂径定理及其应用
3.(2024·北京)如图,☉O的直径AB平分弦CD(不是直径).若∠D=35°,则∠C=
55
°.
4.(2024·长沙)如图,在☉O中,弦AB的长为8,圆心O到AB的距离OE=4,则☉O的半
径长为( B )
A.4
B.4
2019届人教版中考数学复习《圆》课件(共13张PPT)高品质版

∠BAC=40°,则
∠BOC=_8_0_°
5.如图,已知⊙O中,弧AD= D
O
弧BC,∠DCA=30°
则∠BAC= __3_0_°___.
若⊙O的直径AB=4,则
C
B
AD=___2____.
点与圆的 位置关系
O C
A B
点A在圆上 点B在圆外 点C在圆内
d =r d>r d<r
6、根据点与圆的关系解决下列问题:
(1)经过一点A的圆有( 无数 )个,经过A、B两
点的圆( 无数 )个,若AB=6则经过A、B两点的
圆的半径r的取 值范围是( R≥3
)
(2)经过三角形的三个顶点有且只有( 一) 个
圆 ,若AB=3,AC=5,BC=4则三角形的外接圆的
圆心在( AC的中点 ),半径是( 2.5 )。
直线与圆 相交
PA=PB ∠APO= ∠BPO ∠AOP= ∠BOP
圆与圆的 位置关系
相交 相切 (外切、内切) 相离(外离、内含)
R+r>d>R-r R+r=d d =R-r d<R-r d>R+r 10.(1)已知⊙O1和⊙O2的半径分别为3cm和5cm, 两圆的圆心距是6cm,则这两圆的位置关系是 相交 。
3、如图,在⊙O中,弦EF∥直径AB,若弧AE的度数为50°,则 弧BF的度数为 50° ,弧EF的度数为 80°,∠EOF= 80° , ∠EFO= 50° 。 弦AE与BF是什么关系?
相等
E
F
A
O
B
在同圆或等圆中,同弧或等弧所对的圆周角相等,
都等于这条弧所对的圆心角的一半。
A
4.如图,在⊙O中,若已知
中考数学复习 3.3圆与圆的位置关系课件 新人教版

3;r (R>r)
已知:⊙O1和⊙O2的半径分别R=6和r=2, 圆心距为d。 (1) d分别为下列数值时,判断两圆位置关系. d=2 d=0 d=4 d=8 d=6
已知: ⊙O1和⊙O2的半径分别R和r,圆心距为d。 (2)d2=R2+r2 (3)(d+r)2=R2,
例1、如图⊙O的半径为5cm,点P是⊙O外一点 ,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小 圆⊙P的半径是多少?
ABCD是正方形.所以△ABC是等腰直角三角形. ∵相邻两个小圆外切 ∴AB=BC=2r
∵每个小圆与⊙O内切 ∴AC=2AO=2(25-r) AB 可得2r= 2(25-r) し 由 AC =sin45°, 2 25 解得r= √2+1 A D ∴ r≈10.36(毫米) ∴ 2r≈20.7(毫米) 答:圆片最大的直径约为20.7毫米
直线和圆有几种位置关系? 各种位置关系是通
•
•
相交 相切 相离
过直线与圆的公共点 的个数来定义的。
•
导 航
目
引入 摆摆 观察 位置 对称 量量 判定 例题 练习 小节 封底
两个圆没有公共点,并且每个圆上的点都 外离:
在另一个圆的外部时,叫做这两个圆外离。
两个圆没有公共点,并且一个圆上的点 内含: 在另一个圆的内部时叫做这两个圆内含。
•
•
图中的这些圆有什么位置关系?
图中的这些圆有什么位置关系?
图中的这些圆有什 么位置关系?
合作学习
1、画一条线段O1O2,在O1O2上取一点T,分别以点
O1、O2为圆心,O1T、O2T为半径作⊙O1和⊙O2, ⊙O 和⊙O 有几个公共点? 两圆圆心的距离O1O2 1个
已知:⊙O1和⊙O2的半径分别R=6和r=2, 圆心距为d。 (1) d分别为下列数值时,判断两圆位置关系. d=2 d=0 d=4 d=8 d=6
已知: ⊙O1和⊙O2的半径分别R和r,圆心距为d。 (2)d2=R2+r2 (3)(d+r)2=R2,
例1、如图⊙O的半径为5cm,点P是⊙O外一点 ,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小 圆⊙P的半径是多少?
ABCD是正方形.所以△ABC是等腰直角三角形. ∵相邻两个小圆外切 ∴AB=BC=2r
∵每个小圆与⊙O内切 ∴AC=2AO=2(25-r) AB 可得2r= 2(25-r) し 由 AC =sin45°, 2 25 解得r= √2+1 A D ∴ r≈10.36(毫米) ∴ 2r≈20.7(毫米) 答:圆片最大的直径约为20.7毫米
直线和圆有几种位置关系? 各种位置关系是通
•
•
相交 相切 相离
过直线与圆的公共点 的个数来定义的。
•
导 航
目
引入 摆摆 观察 位置 对称 量量 判定 例题 练习 小节 封底
两个圆没有公共点,并且每个圆上的点都 外离:
在另一个圆的外部时,叫做这两个圆外离。
两个圆没有公共点,并且一个圆上的点 内含: 在另一个圆的内部时叫做这两个圆内含。
•
•
图中的这些圆有什么位置关系?
图中的这些圆有什么位置关系?
图中的这些圆有什 么位置关系?
合作学习
1、画一条线段O1O2,在O1O2上取一点T,分别以点
O1、O2为圆心,O1T、O2T为半径作⊙O1和⊙O2, ⊙O 和⊙O 有几个公共点? 两圆圆心的距离O1O2 1个
中考数学专题复习《与圆有关的位置关系》课件

∴∠DOE=∠OED,∴OD=DE. ∵OD=OE,∴△ODE是等边三角形, ∴∠DOE=60°,∴∠CGE=30°. ∵☉O的半径为5,∴GE=10. ∵GE是☉O的直径,∴∠GCE=90°, ∴在Rt△GCE中,GC=GE•cos∠CGE=10×cos 30°=
(2)DE=2EF. 证法一:如图1. 由(1)知∠COE=∠DOE=60°,
( B) A.50° B.55° C.60° D.65°
考点5 三角形与圆
名称 三角形的外接圆 图形
三角形的内切圆
相关 经过三角形各顶点的 与三角形各边都相切的
概念 圆;外心是三角形三边 圆;内心是三角形三条角
中垂线的交点
平分线的交点
名称 三角形的外接圆
圆心 三角形的外心 名称
(续表)
三角形的内切圆 三角形的内心
考点1 点与圆的位置关系
设r为圆的半径,d为点P到圆心的距离,则:P在圆 外⇔d>r在圆上⇔d=r在圆内⇔d<r.
[典例1]如图,在△ACB中,∠ACB=90°, CD⊥AB于点D,若AB=5,BC=3. (1)以A为圆心,作半径为2的圆,则点 C与☉A的位置关系是 C在圆外 ; (2)以C为圆心,作半径为2.4的圆,则点D 与☉C的位置关系是 D在圆上 .
∴CE=DE. ∵OC=OE,∴△OCE为等边三角形, ∴∠OCE=60°.∵∠OCB=90°,∴∠ECF=30°. 在Rt△CEF中,
即DE=2EF.
证法二:如图1.过点O作OH⊥DF,垂足为H.∴∠OHF=90°. ∵∠OCB=∠DFC=90°, ∴四边形OCFH是矩形,∴CF=OH. ∵△ODE是等边三角形,∴DE=OE. ∵OH⊥DF,∴DH=EH. ∵∠COE=∠DOE, ∴CE=DE,∴CE=OE. ∵CF=OH,∴Rt△CFE≌Rt△OHE, ∴EF=EH,∴EH=DH=EF,∴DE=2EF.
2024年中考数学一轮复习考点精讲课件—圆的相关概念及性质

3)圆周角定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所
对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
考点二 圆的性质
题型01 由垂径定理及推论判断正误
【例1】(2023·浙江·模拟预测)如图,是⊙ 是直径,是弦且不是直径, ⊥ ,则下列结论不一定正
【详解】解:如图,连接,
∵线段是⊙ 的直径, ⊥ 于点E, = 16,
1
1
∴ = = 2 = 2 × 16 = 8,
∴在Rt △ 中,可有 = 2 + 2 = 62 + 82 = 10,
∴⊙ 半径是10.
故选:D.
考点二 圆的性质
题型03 根据垂径定理与全等三角形综合求解
直径)(4)平分弦所对的优弧(5)平分弦所对的劣弧,若已知五个条件中的两个,那么可推出其中三个,简
称“知二得三”,解题过程中应灵活运用该定理.
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;
2)有弦中点,连中点和圆心,得垂直平分.
考点二 圆的性质
3. 弧、弦、圆心角的关系
即的最小值是8.故选:C.
考点二 圆的性质
1. 圆的对称性
内容
补充
圆的轴对称 经过圆心任意画一条直线,并沿此直线圆对折,直线两旁的部分能够 ①圆的旋转不变性是其他中心对称图形所
性
完全重合,因此圆是轴对称图形,每一条直径所在的直线都是它的 没有的性质.
对称轴,圆有无数条对称轴.
圆的中心对 将圆绕圆心旋转180°能与自身重合,因此它是中心对称图形,它
①圆心,它确定圆的位置.
②半径,它确定圆的大小.
的点组成的图形.
对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
考点二 圆的性质
题型01 由垂径定理及推论判断正误
【例1】(2023·浙江·模拟预测)如图,是⊙ 是直径,是弦且不是直径, ⊥ ,则下列结论不一定正
【详解】解:如图,连接,
∵线段是⊙ 的直径, ⊥ 于点E, = 16,
1
1
∴ = = 2 = 2 × 16 = 8,
∴在Rt △ 中,可有 = 2 + 2 = 62 + 82 = 10,
∴⊙ 半径是10.
故选:D.
考点二 圆的性质
题型03 根据垂径定理与全等三角形综合求解
直径)(4)平分弦所对的优弧(5)平分弦所对的劣弧,若已知五个条件中的两个,那么可推出其中三个,简
称“知二得三”,解题过程中应灵活运用该定理.
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;
2)有弦中点,连中点和圆心,得垂直平分.
考点二 圆的性质
3. 弧、弦、圆心角的关系
即的最小值是8.故选:C.
考点二 圆的性质
1. 圆的对称性
内容
补充
圆的轴对称 经过圆心任意画一条直线,并沿此直线圆对折,直线两旁的部分能够 ①圆的旋转不变性是其他中心对称图形所
性
完全重合,因此圆是轴对称图形,每一条直径所在的直线都是它的 没有的性质.
对称轴,圆有无数条对称轴.
圆的中心对 将圆绕圆心旋转180°能与自身重合,因此它是中心对称图形,它
①圆心,它确定圆的位置.
②半径,它确定圆的大小.
的点组成的图形.
安徽中考数学复习知识系统课件:第六章圆

(1)当已知直线与圆有公共点时,连半径,证 垂直 . (2)当不知道直线与圆是否有公共点时,过圆心作直线的垂线,证圆心到直线的距离等 于 半径 .
5.切线长定理.
PA=PB , ∠APO=∠BPO .
______p_r_____
图1
2.直角三角形的内切圆(如图2)
设AB=c,BC=a,AC=b,∠C=90°,内切圆半径为r,则r=
题图
【分析】仔细分析题意,寻找问题的解决方案. 极据题意,可知点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两 条公路夹角的平分线上,所以点C应是它们的交点.即到城镇A、B距离相等的 点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的 角平分线上,因此分别作出垂直平分线与角平分线,它们的交点即为所求作的 点C.由于两条公路所夹角的角平分线有两条,因此点C有2个.
.
【解】(1)4π
(2)15
(3)6π
扇形面积
(2013·朝阳)如图,AC是汽车挡风玻璃前的刮雨刷,如果AO=65 cm,CO=
15 cm,当AC绕点O旋转90°时,则刮雨刷AC扫过的面积为
cm2.
【分析】根据旋转的性质可以判断△ACO≌△A'C'O,∴S阴影= S扇形AA'O-S扇形CC'O=×(652-152)=1 000π cm2.
或S扇形=
.
知识点2:圆锥的侧面积和全面积
1.圆柱的侧面展开图是 矩形 ,这个矩形的长等于圆柱的_底__面__周__长___ C,宽是圆柱的 高 l,如果圆柱的底面半径是r,则S圆柱侧=Cl=2πrl. (如图1)
2.圆锥的侧面展开图是 扇形 ,这个扇形的 弧长 等于圆锥的底面周长C, 扇形半径 等于圆锥的母线长l.若圆锥的底面半径为r,这个扇形的圆心角为α,
5.切线长定理.
PA=PB , ∠APO=∠BPO .
______p_r_____
图1
2.直角三角形的内切圆(如图2)
设AB=c,BC=a,AC=b,∠C=90°,内切圆半径为r,则r=
题图
【分析】仔细分析题意,寻找问题的解决方案. 极据题意,可知点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两 条公路夹角的平分线上,所以点C应是它们的交点.即到城镇A、B距离相等的 点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的 角平分线上,因此分别作出垂直平分线与角平分线,它们的交点即为所求作的 点C.由于两条公路所夹角的角平分线有两条,因此点C有2个.
.
【解】(1)4π
(2)15
(3)6π
扇形面积
(2013·朝阳)如图,AC是汽车挡风玻璃前的刮雨刷,如果AO=65 cm,CO=
15 cm,当AC绕点O旋转90°时,则刮雨刷AC扫过的面积为
cm2.
【分析】根据旋转的性质可以判断△ACO≌△A'C'O,∴S阴影= S扇形AA'O-S扇形CC'O=×(652-152)=1 000π cm2.
或S扇形=
.
知识点2:圆锥的侧面积和全面积
1.圆柱的侧面展开图是 矩形 ,这个矩形的长等于圆柱的_底__面__周__长___ C,宽是圆柱的 高 l,如果圆柱的底面半径是r,则S圆柱侧=Cl=2πrl. (如图1)
2.圆锥的侧面展开图是 扇形 ,这个扇形的 弧长 等于圆锥的底面周长C, 扇形半径 等于圆锥的母线长l.若圆锥的底面半径为r,这个扇形的圆心角为α,
中考数学《与圆有关的计算》复习课件

C=πd= 2πR . (2)半径为 R 的圆中,n°���的���������圆������心角所对 的弧长为 l,则 l= ������������������ .
回练课本 1.(1)半径为 4,圆心角为 90°的扇形弧长
为 2π ;
(2)50°的圆心角所对的弧长是 2.5π cm,
则此弧所在圆的半径是 9 cm .
若圆锥的底面圆半径是 5,则圆锥的母线 l=
.
22.(2014 珠海)已知圆柱体的底面半径为 3 cm,高为 4 cm,则圆柱体
的侧面积为( A )
A.24π cm2 C.12 cm2
B.36π cm2 D.24 cm2
基础训练
1.(2019 温州一模)如图,已知扇形的圆心角∠AOB=120°,半径 OA=2,则扇形的弧长
2.圆、扇形面积计算
(1)半径为 R 的圆面积 S=
πR2
.
(2)半径为 R 的圆中,圆心角为
n°的扇形面���������积���������为������ S 扇= ������������lR
或 S 扇= ������������������ .
2.(1)半径为 4,圆心角为 90° 的扇形面积为 4π ; (2)一个扇形的半径是 24 cm,面积是 240π cm2,则扇 形的圆心角是 150° .
3
即 V=13πR2h.
(3)如图所示,“粮仓”的容积为45π m3 (单位:m).
4.正多边形与圆
(1)正多边形:各边相等,各角相等的多边形叫做
正多边形.
(2)圆与正多边形的有关概念:一个正多边形的
外接圆的圆心叫做这个正多边形的中心,外接
圆的半径叫做正多边形的半径;正多边形每一
回练课本 1.(1)半径为 4,圆心角为 90°的扇形弧长
为 2π ;
(2)50°的圆心角所对的弧长是 2.5π cm,
则此弧所在圆的半径是 9 cm .
若圆锥的底面圆半径是 5,则圆锥的母线 l=
.
22.(2014 珠海)已知圆柱体的底面半径为 3 cm,高为 4 cm,则圆柱体
的侧面积为( A )
A.24π cm2 C.12 cm2
B.36π cm2 D.24 cm2
基础训练
1.(2019 温州一模)如图,已知扇形的圆心角∠AOB=120°,半径 OA=2,则扇形的弧长
2.圆、扇形面积计算
(1)半径为 R 的圆面积 S=
πR2
.
(2)半径为 R 的圆中,圆心角为
n°的扇形面���������积���������为������ S 扇= ������������lR
或 S 扇= ������������������ .
2.(1)半径为 4,圆心角为 90° 的扇形面积为 4π ; (2)一个扇形的半径是 24 cm,面积是 240π cm2,则扇 形的圆心角是 150° .
3
即 V=13πR2h.
(3)如图所示,“粮仓”的容积为45π m3 (单位:m).
4.正多边形与圆
(1)正多边形:各边相等,各角相等的多边形叫做
正多边形.
(2)圆与正多边形的有关概念:一个正多边形的
外接圆的圆心叫做这个正多边形的中心,外接
圆的半径叫做正多边形的半径;正多边形每一
第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt

复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5
∘
解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1
2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2014菏泽 )
2015菏泽
18.(本题10分) 如图,在⊿ABC中,BA=BC,以AB为直径的⊙O分别交
AC、BC于点D、E,BC的延长线与⊙O的切线AF交 于点F。 (1)求证:∠ABC=2∠CAF; (2)若AC=2,CE:EB=1:4,求CE的长.
21.(10分)(2016•菏泽)如图,直角△ABC 内接于⊙O,点D是直角△ABC斜边AB上的一点, 过点D作AB的垂线交AC于E,过点C作 ∠ECP=∠AED,CP交DE的延长线于点P,连 结PO交⊙O于点F. (1)求证:PC是⊙O的切线; (2)若PC=3,PF=1,求AB的长.
A. 2 B.2 2-2 C.2- 2 D. 2-1 【解析】∵等腰直角三角形外接圆半径的长为 2,
∴此直角三角形的斜边长为 4,两条直角边长都为 2 2.设 它内切圆的半径为 r,则12(2 2+2 2+4)r=12×2 2×2 2, 解得 r=2 2-2.故选 B.
7.(2015·宜昌)如图,圆形薄铁片与直角三角尺、直尺
A.70°
B.60°
C.55°
D.35°
2.(2015·邵阳)如图,四边形 ABCD 内接于⊙O,已知 ∠ADC=140°,则∠AOC 的大小是( A )
A.80°
B.100°
C.60°
D.40°
3.(2015·河北)如图,AC,BE 是⊙O 的直径,弦 AD 与 BE 相交于点 F,下列三角形中,外心不是点 O 的是 (B)
A.△ABE B.△ACF C.△ABD D.△ADE
4.如图,已知半径 OD 与弦 AB 互相垂直,垂足为点 C, 若 AB=8 cm,CD=3 cm,则⊙O 的半径为(m
B.5 cm 19
D. 6 cm
6.(2015·内江)如图,在⊙O 的内接四边形 ABCD 中,AB 是 直径,∠BCD=120°,过 D 点 的切线 PD 与直线 AB 交于点 P, 则∠ADP 的度数为( C )
圆的有关问题:
1、与圆的对称性有关的问题 2、与圆周角有关的问题 3、与圆有关的位置关系 4、与切线有关的问题 5、与圆内接多边形有关的问题 6、与圆有关的公式
7、与圆有关的两心
知识点应用 1.(2015·重庆)如图,AC 是⊙O 的切线,切点为 C,
BC 是⊙O 的直径,AB 交⊙O 于点 D,连结 OD,若∠BAC =55°,则∠COD 的大小为( A )
B. π2+1
C.π+1 D.π+12
【解析】如图所示.
点 A 运动的路径线与 x 轴围成的面积=S1+S2+S3+
2S=903π6×0 12+90π×360 22+903π6×0 12+2×21×1×1=π+
1.故选 C. 答案:C
9.(2015·滨州)若等腰直角三角形的外接圆半径的长为 2,则其内切圆半径的长为( B )
2017菏泽
谈收获 作业
8.(2015·衢州实验中学模拟)如图,在直角坐标系中放
置一个边长为 1 的正方形 ABCD,将正方形 ABCD 沿 x 轴 的正方向无滑动的在 x 轴上滚动,当点 A 离开原点后第一 次落在 x 轴上时,点 A 运动的路径线与 x 轴围成的面积为 ()
A. π2+12
答案:B
菏泽中考大回放
2012菏泽 只考了一个填空题 3分 11. 如图,PA,PB是⊙O是切线,A,B为切 点, AC是⊙O的直径,若∠P =46°,则 ∠BAC = 度.
18.(10分)(2013•菏泽)如图,BC是⊙O的直径, A是⊙O上一点,过点C作⊙O的切线,交BA的延长线 于点D,取CD的中点E,AE的延长线与BC的延长线交 于点P. (1)求证:AP是⊙O的切线; (2)OC=CP,AB=6,求CD的长.
紧靠在一起平放在桌面上.已知铁片的圆心为 O,三角尺
的直角顶点 C 落在直尺的 10 cm 处,铁片与直尺的唯一公
共点 A 落在直尺的 14 cm 处,铁片与三角尺的唯一公共点
为 B.下列说法错误的是( A.圆) 形铁片的半径是4 cm B.四边形AOBC为正方形 C.弧AB的长度为4π cm D.扇形OAB的面积是4π cm2
A.40° B.35° C.30°
D.45°
7.如图,四边形 ABCD 是菱形,∠A=60°,AB=2, 扇形 BEF 的半径为 2,圆心角为 60°,则图中阴影部分的 面积是( )
A.
23π-
3 2
B. 23π- 3
C.π-
3 2
D.π- 3
【解析】如图,连结 BD,设 BE 与 AD 的交点为 G,BF 与 CD 的交点为 H.∵四边形 ABCD 是菱 形,∠A=60°,∴△ABD 是等边 三角形.∵∠EBF=60°,可得∠ABG=∠DBH,又∵∠A =∠BDH=60°,BD=BA,∴△ABG≌△DBH,∴S 阴影 =S 扇形 BEF-S△ABD=603π6×0 22-12×2× 3=23π- 3.故选 B.