太原理工大学离散数学试题

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。

A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。

答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。

答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。

答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。

答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A、B卷及答案)离散数学考试试题(A卷及答案)一、证明题(10分)1) (P∧Q∧A→C)∧(A→P∨Q∨C)? (A∧(P?Q))→C。

P<->Q=(p->Q)合取(Q->p)证明: (P∧Q∧A→C)∧(A→P∨Q∨C)(?P∨?Q∨?A∨C)∧(?A∨P∨Q∨C)((?P∨?Q∨?A)∧(?A∨P∨Q))∨C反用分配律((P∧Q∧A)∨(A∧?P∧?Q))∨C( A∧((P∧Q)∨(?P∧?Q)))∨C再反用分配律( A∧(P?Q))∨C(A∧(P?Q))→C2) ?(P↑Q)??P↓?Q。

证明:?(P↑Q)??(?(P∧Q))??(?P∨?Q))??P↓?Q。

二、分别用真值表法与公式法求(P→(Q∨R))∧(?P∨(Q?R))的主析取范式与主合取范式,并写出其相应的成真赋值与成假赋值(15分)。

主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。

主析取范式可由析取范式经等值演算法算得。

证明:公式法:因为(P→(Q∨R))∧(?P∨(Q?R))(?P∨Q∨R)∧(?P∨(Q∧R)∨(?Q∧?R))(?P∨Q∨R)∧(((?P∨Q)∧(?P∨R))∨(?Q∧?R))分配律(?P∨Q∨R)∧(?P∨Q∨?Q)∧(?P∨Q∨?R)∧(?P∨R∨?Q)∧(?P ∨R∨?R) (?P∨Q∨R)∧(?P∨Q∨?R)∧(?P∨?Q∨R)4M使(非P析取Q析取R)为0所赋真值,即100,二进制为4M∧6M∧50m∨1m∨2m∨3m∨7m所以,公式(P→(Q∨R))∧(?P∨(Q?R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。

真值表法:0 0 1 0 1 00 1 11 0 0 1 0 1 1 1 0 1 1 1 0111111111111111111为000、001、010、011、111:成假赋值为:100、101、110。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。

A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。

A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。

A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。

A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。

答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。

答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。

答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。

答案:可达10. 命题逻辑中,合取(AND)的符号是______。

答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。

证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。

因此,若p∧q为真,则p和q都为真。

12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。

请找出f的值域。

答案:根据函数的定义,f的值域是其所有输出值的集合。

因此,f的值域为{4,5,6}。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。

A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。

A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。

A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。

A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。

A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。

A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。

A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。

A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。

A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。

A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。

太原理工大学离散数学试题

太原理工大学离散数学试题

一、填空题1 设集合A,B ,其中A = {1,2,3}, B= {1,2},则 A - B = __{3}__________________;(A) - (B) = ___________________{3},{1,3},{2,3},{123}______ .2. 设有限集合A, |A| = n,则| (A×A)| = _____2^(n^2)_____________________.3.设集合 A = { a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 _______________________________________, 其中双射的是 __________________________.4. 已知命题公式G=(P Q)∧ R,则 G 的主析取范式是_______________________________ __________________________________________________________.5.设G 是完全二叉树,G 有 7 个点,其中 4 个叶点,则G 的总度数为__________ ,分枝点数为 ________________.6 设A 、B为两个集合 , A= {1,2,4},B = {3,4},则从 A B=_________________________;A B= _________________________;A - B=_____________________ .7.设R是集合 A 上的等价关系,则R 所具有的关系的三个特性是__自反,对称,传递____________________, ________________________,_______________________________.8.设命题公式 G= (P (Q R)),则使公式 G 为真的解释有 __________________________ ,_____________________________, __________________________.9. 设集合 A = {1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)},则R1R2= ________________________,R 2R1 =____________________________,2R1=________________________.10. 设有限集A, B , |A| = m, |B| = n,则|| (A B)| = _____________________________.11 设A,B,R是三个集合,其中R 是实数集, A = {x | -1≤x≤ 1, x R}, B = {x | 0≤ x < 2, x R},则A-B = __________________________ , B-A = __________________________ ,A ∩B = __________________________ , .13.设集合 A = {2, 3, 4, 5, 6} ,R 是 A 上的整除,则 R 以集合形式 (列举法 )记为 ___________ _______________________________________________________ .14.设一阶逻辑公式 G = xP(x)xQ(x) ,则 G 的前束范式是 __________________________ _____.15.设 G 是具有 8 个顶点的树,则G 中增加 _________条边才能把 G 变成完全图。

离散数学试题及答案1(理工大学)

离散数学试题及答案1(理工大学)

离散数学试题及答案1(计算机科学与技术)一、单选题(题数:25,共 50.0 分)1不是可满足的公式必永()。

(2.0分)A、假B、真C、负D、正正确答案:A2方法简单但是里面充满了()(2.0分)A、方法论B、推广C、推理D、公式正确答案:A3在联结词的集合Ω中如果一个联结词可以用集合Ω中的其它联结词(),则该联结词在Ω中被称为是冗余的,否则该联结词被称为是独立的。

(2.0分)A、表示B、代言C、规划D、条件正确答案:A4在一阶谓词逻辑的()中,所有命题逻辑的推理规则都要继承下来(2.0分)A、推理B、公式C、检查D、发展正确答案:A5首先求出公式G的无ヨ前束型()(2.0分)A、公式B、实数C、分数D、结构正确答案:A6对()中出现的个体常项,指定一个D中的元素(2.0分)A、AB、FC、GD、V正确答案:A7个体常元:通常用排在前面的小写字毋及其下标()(2.0分)A、表示B、发展C、位置D、幅度正确答案:A8谓词逻辑的任一()A,都可化为和应的ヨ前束范式,并且A是普有效的当且仅当其前東范式是普遍有效的。

(2.0分)A、公式B、检查C、发展D、规划正确答案:A9方法简单但是里面充满了()(2.0分)A、方法论B、推广C、推理D、公式正确答案:A10度为()的顶点称为悬点,与悬点关联的边称为悬边(2.0分)A、1B、2C、3D、4正确答案:A11A,B是命题(),若A→B是永真式,则称A永真蕴含B(2.0分)A、公式B、证明C、发展D、研究正确答案:A12命题公式的主范式包括主()范式和主合取范式两种。

(2.0分)A、析取B、完整C、大众D、发展正确答案:A13在一阶谓词逻辑的()中,所有命题逻辑的推理规则都要继承下来(2.0分)A、推理B、公式C、检查D、发展正确答案:A14如果命题公式A在任意的真值赋值()下的真值都为0,则称A为永假式(或称矛盾式)(2.0分)A、函数B、结果C、大小D、位置正确答案:A15A,B是命题公式,若A→B是(),则称A永真蕴含B(2.0分)A、永真式B、不等式C、法线D、结构式正确答案:A16设公式()和B都是限制性公式(2.0分)A、AB、BC、CD、D正确答案:A17{0,1}上的n元函数f:{0,1}n→{0,1}称为一个n元()函数。

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案

第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分 考试时限:120 分钟一、选择题(每题2分,共20分)1. 下述命题公式中,是重言式的为( )(A ))()(q p q p ∨→∧ (B )q p ∨))()((p q q p →∨→⇔(C )q q p ∧→⌝)((D )q q p →⌝∧)(2. 对任意集合A,B,C,下列结论正确的是( )(A )若A ⊆B,B ∈C,则A ⊆C ; (B )若A ∈B,B⊆C,则A ⊆C ; (C )若A ⊆B,B ∈C,则A ∈C ; (D )若A ∈B,B ⊆C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系,,则由R 产生的S S ⨯上一个划分共有( )个分块。

(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是一棵树当且仅当G 中( )(A )有些边是割边 (B )每条边都是割边(C )所有边都不是割边 (D )图中存在一条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平面图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下面命题公式中真值为1的是( )(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=<V,E>中,结点总度数与边数的关系是( )(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公用一个电源,则至少需有五插头的接线板数( )(A )7 (B )8 (C )9 (D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为( )(A )11 (B )14 (C )17(D )15二、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=__{3}__________________;ρ(A) - ρ(B)=___________________{3},{1,3},{2,3},{123}______ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = _____2^(n^2)_____________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是_______________________________________, 其中双射的是__________________________.4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B=_________________________; A⋃B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是__自反,对称,传递____________________, ________________________,_______________________________.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)}, 则R1•R2 = ________________________,R2•R1 =____________________________,R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________.14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

16. 设谓词的定义域为{a, b},将表达式∀xR(x)→∃xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________. 17. 设集合A ={1, 2, 3, 4},A 上的二元关系R ={(1,1),(1,2),(2,3)}, S ={(1,3),(2,3),(3,2)}。

则R ⋅S =_____________________________________________________, R 2=______________________________________________________.二、选择题1 设集合A={2,{a},3,4},B = {{a},3,4,1},E 为全集,则下列命题正确的是( )。

(A){2}∈A (B){a}⊆A (C)∅⊆{{a}}⊆B ⊆E (D){{a},1,3,4}⊂B.2 设集合A={1,2,3},A 上的关系R ={(1,1),(2,2),(2,3),(3,2),(3,3)},则R 不具备( ). (A)自反性 (B)传递性 (C)对称性 (D)反对称性3 设半序集(A,≤)关系≤的哈斯图如下所示,若A 的子集B = {2,3,4,5},则元素6为B 的( )。

(A)下界 (B)上界 (C)最小上界 (D)以上答案都不对4 下列语句中,( )是命题。

(A)请把门关上 (B)地球外的星球上也有人(C)x + 5 > 6 (D)下午有会吗? 5 设I 是如下一个解释:D ={a,b},1 0 1b)P(b,a) P(b,b) P(a,),(a a P则在解释I 下取真值为1的公式是( ).(A)∃x ∀yP(x,y) (B)∀x ∀yP(x,y) (C)∀xP(x,x) (D)∀x ∃yP(x,y).6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ). (A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6).7. 设G 、H 是一阶逻辑公式,P 是一个谓词,G =∃xP(x), H =∀xP(x),则一阶逻辑公式G →H 是( ). (A)恒真的 (B)恒假的 (C)可满足的 (D)前束范式.8 设命题公式G =⌝(P →Q),H =P →(Q →⌝P),则G 与H 的关系是( )。

(A)G ⇒H (B)H ⇒G (C)G =H (D)以上都不是. 9 设A, B 为集合,当( )时A -B =B. (A)A =B (B)A ⊆B (C)B ⊆A (D)A =B =∅.10 设集合A = {1,2,3,4}, A 上的关系R ={(1,1),(2,3),(2,4),(3,4)}, 则R 具有( )。

(A)自反性 (B)传递性 (C)对称性 (D)以上答案都不对 11 下列关于集合的表示中正确的为( )。

(A){a}∈{a,b,c} (B){a}⊆{a,b,c} (C)∅∈{a,b,c} (D){a,b}∈{a,b,c} 12 命题∀xG(x)取真值1的充分必要条件是( ).(A) 对任意x ,G(x)都取真值1. (B)有一个x 0,使G(x 0)取真值1. (C)有某些x ,使G(x 0)取真值1. (D)以上答案都不对.13. 设G 是连通平面图,有5个顶点,6个面,则G 的边数是( ). (A) 9条 (B) 5条 (C) 6条 (D) 11条.14. 设G 是5个顶点的完全图,则从G 中删去( )条边可以得到树. (A)6 (B)5 (C)10 (D)4.15. 设图G 的相邻矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110110101110110010111110,则G 的顶点数与边数分别为( ).(A)4, 5 (B)5, 6 (C)4, 10 (D)5, 8.三、计算证明题1.设集合A ={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。

(1) 画出半序集(A,R)的哈斯图;(2) 写出A 的子集B = {3,6,9,12}的上界,下界,最小上界,最大下界; (3) 写出A 的最大元,最小元,极大元,极小元。

2. 设集合A ={1, 2, 3, 4},A 上的关系R ={(x,y) | x, y ∈A 且 x ≥ y}, 求(1) 画出R 的关系图; (2) 写出R 的关系矩阵.3. 设R 是实数集合,σ,τ,ϕ是R 上的三个映射,σ(x) = x+3, τ(x) = 2x, ϕ(x) = x/4,试求复合映射σ•τ,σ•σ, σ•ϕ, ϕ•τ,σ•ϕ•τ. 4. 设I 是如下一个解释:D = {2, 3},a b f (2) f (3) P (2, 2) P (2, 3) P (3, 2) P (3, 3) 323211试求 (1) P (a , f (a ))∧P (b , f (b ));(2) ∀x ∃y P (y , x ).5. 设集合A ={1, 2, 4, 6, 8, 12},R 为A 上整除关系。

(1) 画出半序集(A,R)的哈斯图;(2) 写出A 的最大元,最小元,极大元,极小元;(3) 写出A 的子集B = {4, 6, 8, 12}的上界,下界,最小上界,最大下界. 6. 设命题公式G = ⌝(P →Q)∨(Q ∧(⌝P →R)), 求G 的主析取范式。

7. (9分)设一阶逻辑公式:G = (∀xP (x )∨∃yQ (y ))→∀xR (x ),把G 化成前束范式. 9. 设R 是集合A = {a, b, c, d}. R 是A 上的二元关系, R = {(a,b), (b,a), (b,c), (c,d)},(1) 求出r(R), s(R), t(R); (2) 画出r(R), s(R), t(R)的关系图.11. 通过求主析取范式判断下列命题公式是否等价:(1) G = (P ∧Q)∨(⌝P ∧Q ∧R)(2) H = (P ∨(Q ∧R))∧(Q ∨(⌝P ∧R))13. 设R 和S 是集合A ={a , b , c , d }上的关系,其中R ={(a , a ),(a , c ),(b , c ),(c , d )},S ={(a , b ),(b , c ),(b , d ),(d , d )}. (1) 试写出R 和S 的关系矩阵; (2) 计算R •S , R ∪S , R -1, S -1•R -1.四、证明题1. 利用形式演绎法证明:{P→Q, R→S, P∨R}蕴涵Q∨S。

2. 设A,B为任意集合,证明:(A-B)-C = A-(B∪C).3. (本题10分)利用形式演绎法证明:{⌝A∨B, ⌝C→⌝B, C→D}蕴涵A→D。

4. (本题10分)A, B为两个任意集合,求证:A-(A∩B) = (A∪B)-B .参考答案一、填空题1. {3}; {{3},{1,3},{2,3},{1,2,3}}.2n.2.23.α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}; α3, α4.4.(P∧⌝Q∧R).5.12, 3.6.{4}, {1, 2, 3, 4}, {1, 2}.7.自反性;对称性;传递性.8.(1, 0, 0), (1, 0, 1), (1, 1, 0).9.{(1,3),(2,2),(3,1)}; {(2,4),(3,3),(4,2)}; {(2,2),(3,3)}.10.2m⨯n.11.{x | -1≤x < 0, x∈R}; {x | 1 < x < 2, x∈R}; {x | 0≤x≤1, x∈R}.12.12; 6.13.{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.14.∃x(⌝P(x)∨Q(x)).15.21.16.(R(a)∧R(b))→(S(a)∨S(b)).17.{(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.二、选择题1. C.2. D.3. B.4. B.5. D.6. C.7. C.8. A. 9. D. 10. B. 11. B.13. A. 14. A. 15. D三、计算证明题1. (1)(2) B 无上界,也无最小上界。

相关文档
最新文档