《核磁共振氢谱》PPT课件
合集下载
《核磁共振氢谱》PPT课件

各向异性效应
化合物中非球形对称的电子云,如 电子系统,对邻近质 子会附加一个各向异性的磁场,即这个附加磁场在某些区 域与外磁场 B0的方向相反,使外磁场强度减弱,起抗磁性 屏蔽作用,而在另外一些区域与外磁场 B0方向一样,对外 磁场起增强作用,产生顺磁性屏蔽的作用。
通常抗磁性屏蔽作用简称为屏蔽作用,产生屏蔽作用的区 域用“ + 〞表示,顺磁性屏蔽作用也称作去屏蔽作用,去 屏蔽作用的区域用“ -〞表示。
芳烃的各向异性效应
H: 7.3
环外氢受到强的去屏蔽作用: 8.9 ;环内H 在受到高度的屏蔽作用 ,故 : -1.8
双键的各向异性效应
屏蔽
去屏蔽
H
O
R
H: 56
H: 9-10
三键的各向异性效应
三键是一个 键〔sp杂化〕 和两 键组成。sp 杂化形成 线性分子,两对 p 电子相互 垂直,并同时垂直于键轴, 此时电子云呈圆柱状绕键轴 运动。炔氢正好处于屏蔽区 域内,所以在高场共振。同 时炔碳是 sp杂化轨道,C— H 键成键电子更靠近碳,使 炔氢去屏蔽而向低场移动, 两种相反的效应共同作用使 炔氢的化学位移为 2-3 ppm 。
氢化学位移
1. 化学位移值能反映质子的类型以及所处的化学环境,与分子 构造密切相关
2. (TMS)=0 (TMS)=10 =10-
3. 影响化学位移的因素:
4.
= d + p + a + s
5. H核外只有s电子,故d 起主要作用, a 和s对也有一 定的作用。
6.
影响化学位移的因素---诱导效应
X的电负性 4.0 3.5
(ppm) 4.26 3.24
3.1
2.8
核磁共振氢谱(化学位移)(共17张PPT)

不同质子的化学位移
不同质子的化学位移
LOGO
•TMS化学性质不活泼,与样品之间不发生化学反响和分子间缔合;
•TMS是一个对称结构,四个甲基的化学环境完全相同,不管在氢谱还 是碳谱都只产生一个吸收峰; •Si的电负性小(1.9),TMS中氢核与碳核周围的电子云密度高,屏蔽效应大, 产生NMR信号所需的磁场强度比一般有机物中的氢核和碳核产生NMR信号 所需的磁场强度大得多,处于较高场,与绝大局部样品信号不发生重叠和干 扰;
不同质子的化学位移
核外电子的影响,屏蔽效应,化学位移 核磁共振氢谱(1H-NMR) ——化学位移(chemical shifts) 测定和计算方法——标准物质(通常用TMS,即四甲基硅)对照法: 四甲基硅(TMS)作为标准物质的优点: 核外电子的影响,屏蔽效应,化学位移 Produced by Jiwu Wen 核外电子的影响,屏蔽效应,化学位移 由于屏蔽效应不同导致化学环境不同的原子核共振频率不同,因而在不同的位置上出现吸收峰,这种现象称为化学位移。 TMS沸点低(27℃),容易去除,有利于回收样品。 诱导效应:吸电子诱导效应降低原子核周围的电子云密度,化学位移向低场移动, 增大。 氢键:分子形成氢键后,氢核周围的电子云密度降低,产生去屏蔽作用,化学位移向低场移动, 增大。 (3)叁键的磁各向异性效应 核磁共振条件及面临的问题 TMS是一个对称结构,四个甲基的化学环境完全相同,不管在氢谱还是碳谱都只产生一个吸收峰; Produced by Jiwu Wen
h
h
2
B0(1
)
核共振频率不同,因而在不同的位置上出现 吸收峰,这种现象称为化学位移。
1
2
B0(1
)
化学位移的表示方法与测定
04-核磁共振氢谱-总PPT课件

质量数 原子序数 自旋量子数I
偶数
偶数
0
偶数
奇数
1,2,3….
奇数
奇数或偶数 1/2;3/2;5/2….
.
6
表 常见核的核磁共振数据
核 天然丰度% 自旋量子数I 磁矩μ/μ0
1H 99.985
1/2
4.83724
磁旋比
共振频率/MHz
γ / 107rad·s-1·T-1 (H0=2.3488T)
26.7519
三氯乙酸
CCL3COOH
二氧六环
P-C2H6O2
环己烷
C6H12
四氯化碳
CCl4
二硫化碳
CS2
二氯甲烷
CH2Cl2
7.27
76.9
2.05
206,29.1
4.0**
/
2.5
39.6
7.20
128.0
3.34,4.11
49.0
7.18,7.57,8.57 149.9,135.5,123.5
2.31,7.10
(3)I=1/2的原子核 1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自
旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有
机化合物的主要组成元素。 .
9
讨论:
在1950年,Proctor等研究发现:质子的共振频率与其结 构(化学环境)有关。在高分辨率下,吸收峰产生化学位移 和裂分,如右图所示。
.
15
表4-3 常见溶剂及其化学位移
名称
分子式
化学位移/ppm*
1H
13C
氯仿-d1
CHCl3- d1
丙酮- d6
核磁共振氢谱PPT课件

•
m=I, I-1, I-2, ……-I
• 每种取向各对应一定能量状态
• I=1/2的氢核只有两种取向
• I=1的核在B0中有三种取向
.
10
z
z
z
m =+1
m =
B0
m = +1/2
m =
m =
m =
m = 1/2
m = 1
m = 1 m = 2
I = 1/2
I=1
I=2
I=1/2的氢核 与外磁场平行,能量较低,m=+1/2, E 1/2= -B0
与外磁场方向相反, 能量较高, m= -1/2, .
E -1/2=1B1 0
• 核磁矩与外磁场相互作用而产生的核磁场作用能 E, 即各能级的能量为 E=-ZB0
E 1/2= -B0 E-1/2= B0
.
12
I=1/2的核自旋能级裂分与B0的关系
• 由式 E = -ZB0及图可知1H核在磁场 中,由低能 级E1向高能级E2跃迁,所需能量为 △E=E2-E1= B0 -(-B0) = 2 B0
代入上式得: h I(I1) 2
当I=0时,P=0,原子核没有自旋现象,只有I﹥0,原 子核才有自旋角动量和自旋现象
.
9
二、核自旋能级和核磁共振
(一)核自旋能级
• 把自旋核放在场强为B0的磁场中,由于磁矩 与磁 场相互作用,核磁矩相对外加磁场有不同的取向,共 有2I+1个,各取向可用磁量子数m表示
.
6
• 自旋角动量
– 一些原子核有自旋现象,因而具有自旋角动 量。由于核是带电粒子,故在自旋同时将产 生磁矩。核磁矩与角动量都是矢量,磁矩的 方向可用右手定则确定。
核磁共振氢谱-课件

(3) 与 B0 相互垂直的射频场
n射 = ——
2π
B0
对于同一种核 ,磁旋比 为定值,B0改变,共振频率n发生变化;不同原子核磁旋 比 不同,产生共振的条件不同,需要的磁场强度B0和射频频率n不同。
要满足核磁共振条件,可通过二种方法来实现:
扫频 — 固定磁场强度,改变射频频率对样品扫描 扫场 — 固定射频频率,改变磁场强度对样品扫描
如果高能态核无法返回到低能态,那么随着跃迁的不断进行,这种微弱的优势将进一 步减弱直至消失,处于低能态的1H核数目与处于高能态1H核数目相等,体系净吸收为0, 与此同步NMR的讯号也会逐渐减弱直至最后消失。上述这种现象称为饱和。
只有当激发和辐射的几率相等时,才能维持Boltzmann分布,不会出现饱和现象,可以连 续观测到光谱信号。
可以辐射到空间的电磁频率, 有线电视系统就是采用射频 传输方式的。
因此,核磁共振研究磁性原子核对射频能的吸收。
• NMR:磁性核受幅射而发生跃迁所形成的吸收光谱, 是研究分子结构、构型构象等的重要方法。
核磁共振的研究对象:磁性核。 磁性核:具有磁矩的原子核。 磁矩是由于核的自旋运动产生的。
带电原子核自旋
实际上多用后者。 对于1H 核,不同的频率对应的磁场强度: 射频(MHZ) 60 100 200 300 400 500 磁场强度(特斯拉) 1.4092 2.3500 4.7000 7.1000 9.3950 11.7500
仪器的射频频率越大,磁场强度越大,谱图分辨率越高。
课堂练习
1.
2. 下述原子核没有自旋角动量的是 (
自旋量子数 I=1/2的原子核(氢核), 可当作电荷均匀分布的球体,绕自旋轴转 动时,产生磁场,类似一个小磁铁。
核磁共振氢谱解析ppt课件

第三章 核磁共振氢谱
1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
前言
过去50年,波谱学已全然改变了化学家、生物学家和 生物医学家的日常工作,波谱技术成为探究大自然中 分子内部秘密的最可靠、最有效的手段。NMR是其中 应用最广泛研究分子性质的最通用的技术:从分子的 三维结构到分子动力学、化学平衡、化学反应性和超 分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系 1953年 Varian公司试制了第一台NMR仪器
• 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫 时间成反比。
• 饱和:高能级的核不能回到低能级,则NMR信号 消失的现象。
核磁共振仪
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800
MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
前言
过去50年,波谱学已全然改变了化学家、生物学家和 生物医学家的日常工作,波谱技术成为探究大自然中 分子内部秘密的最可靠、最有效的手段。NMR是其中 应用最广泛研究分子性质的最通用的技术:从分子的 三维结构到分子动力学、化学平衡、化学反应性和超 分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系 1953年 Varian公司试制了第一台NMR仪器
• 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫 时间成反比。
• 饱和:高能级的核不能回到低能级,则NMR信号 消失的现象。
核磁共振仪
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800
MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
《核磁共振氢谱》课件

芳烃的氢谱解析
芳烃的氢谱特征
芳烃的氢谱峰形较复杂,有多个峰,且峰与峰之间的距离较近。
芳烃的氢谱解析要点
根据峰的数量和位置,确定芳烃的类型和碳原子数;根据峰的强度 和形状,确定氢原子的类型和数量。
实例分析
以苯为例,其氢谱有多个峰,分别对应于不同位置上的氢原子。
PART 04
氢谱解析中的常见问题与 解决策略
偶合常数
当两个氢原子之间的距离足够近时, 它们的核磁共振信号会发生偶合,导 致峰分裂成双重峰。偶合常数是衡量 两个氢原子之间距离的指标。
氢谱解析的一般步骤
确定峰的位置和强度
根据核磁共振氢谱中的峰位置和强度,可以推断出分子中氢原子 的类型和数量。
确定氢原子的连接关系
通过分析峰的偶合常数,可以确定氢原子之间的连接关系,从而确 定分子的结构。
峰的简化问题
总结词
峰的简化问题是指某些情况下氢谱峰的数量过多,使得解析变得复杂。
详细描述
在某些情况下,由于分子结构中存在多个等效氢原子,会产生大量的重叠峰。这增加了氢谱解析的难 度。解决策略包括利用分子对称性来简化氢谱,以及利用去偶技术来消除某些峰的干扰,从而使得氢 谱更加简洁明了。
解析中的不确定性问题
多核共振技术
总结词
多核共振技术能够同时研究多个原子核的相 互作用和动态行为,有助于更全面地了解分 子结构和化学反应过程。
详细描述
多核共振技术是一种新兴的技术,它通过同 时研究多个原子核的相互作用和动态行为, 能够提供更全面、更深入的分子结构和化学 反应过程信息。这一技术的应用,将有助于 推动化学、生物学、物理学等领域的发展, 为解决复杂体系的研究提供新的手段。
2023-2026
ONE
核磁共振氢谱PPT课件

TMS
7.0 6.0 5.0 4.0 3.0 2.0 1.0 0
图1:乙基苯(10% CCpplt精4 选溶版液)于100兆赫的NMR
25
2. 化学位移的表示
由于化学位移的差别范围很小(10×10-6), 所以精确测出绝对数 值比较困难。现均以相对数表示:即以被测质子共振时的磁场 强度B0样与某一标准物质的质子共振时的磁场强度B0标之差和标 准物质共振时磁场强度B0标的比值δ来表示:
ppt精选版
24
例如: 图1给出了乙基苯在100MHz时的高分辨率核
磁共振图谱. 在乙基苯的分子中, -CH3 上的三个质子, -CH2- 上的两个质子, C6H5-上的五个质子.它们在 不同的磁场强度下产生共振吸收峰, 也就是说,它们
有着不同的化学位移.
C6H5-
3H 2H
-CH3
5H
-CH2-
21
高场
低频
0
ppm
ppt精选版
28
位移的标准
四甲基硅烷 Si(CH3)4 (TMS)
规定:TMS=0
为什么用TMS作为基准?
(1 ) 12个氢处于完全相同的化学环境,只产生一个吸收峰;
(2)屏蔽强烈,位移最大(0)。与一般有机化合物中的质子峰 不重叠;
(3)化学惰性;易溶于有机溶剂;沸点低,易回收。
H+
H+
H+
自旋
H+
β
能量较高 ΔE
H+
H+
H+
α 自旋
H+
能量较低
没有磁场
有磁场B0
质子在没有磁场和有磁场情况下的磁矩方向 ppt精选版
B0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 影响化学位移的因素:
= d + p + a + s H核外只有s电子,故d 起主要作用, a 和s对也有一定的 作用。
影响化学位移的因素---诱导效应
核外电子云的抗磁性屏蔽是影响质子化学位移的主要因素。
核外电子云密度与邻近原子或基团的电负性大小密切相关, 电负性强的原子或基团吸电子诱导效应大,使得靠近它们的 质子周围电子云密度减小,质子所受到的抗磁性屏蔽( d)
范德华效应
当两个原子相互靠近时,由于受到范德华力作用, 电子云相互排斥,导致原子核周围的电子云密度降低 ,屏蔽减小,谱线向低场方向移动,这种效应称为范 德华效应。
这种效应与相互影响的两个原子之间的距离密切相关 ,当两个原子相隔 0.17nm(即范德华半径之和)时 ,该作用对化学位移的影响约为 0.5,距离为 0 . 2 0 nm 时 影 响 约 为 0 . 2 , 当 原 子 间 的 距 离 大 于 0.25nm 时可不再考虑。
共轭效应
在共轭效应中,推电子基使H减小,拉电子基使H增
大。
(+1.43)
H
O CH 3 H
H
(+1.29)
H
(-1.10)
H
H
(-0.59)
H
O
H
(0.00)
H
(-0.21)
H
(-0.81)
相连碳原子的杂化态影响
碳碳单键是碳原子 sp杂化轨道重叠而成的,而碳碳双键和三键分别 是 sp2和 sp杂化轨道形成的。s电子是球形对称的,离碳原子近, 而离氢原子较远。所以杂化轨道中 s成分越多,成键电子越靠近碳 核,而离质子较远,对质子的屏蔽作用较小。
芳烃的各向异 8.9;环内H 在受到高度的屏蔽作 用,故 : -1.8
双键的各向异性效应
屏蔽
去屏蔽
H O
R
H: 5-6
H: 9-10
三键的各向异性效应
三键是一个 键(sp杂化) 和两键组成。sp 杂化形成 线性分子,两对 p 电子相互 垂直,并同时垂直于键轴, 此时电子云呈圆柱状绕键轴 运动。炔氢正好处于屏蔽区 域内,所以在高场共振。同 时炔碳是 sp杂化轨道,C—H 键成键电子更靠近碳,使炔 氢去屏蔽而向低场移动,两 种相反的效应共同作用使炔 氢的化学位移为 2-3 ppm。
1H 是有机化合物中最常见的同位素,1H NMR 谱是有机物结构解 析中最有用的核磁共振谱之一。
核磁共振氢谱
6 4 44
提供的结构信息: 、J、峰的裂分情况和峰面积
氢化学位移
1. 化学位移值能反映质子的类型以及所处的化学环境,与分子 结构密切相关
2. (TMS)=0
(TMS)=10 =10-
单键的各向异性效应
碳碳单键是由碳原子的 sp3杂化轨道重叠而成的。sp3杂化轨道是非球形对称的 ,所以也会产生各向异性效应。在沿着单键键轴方向的圆锥是去屏蔽区,而键轴 的四周为屏蔽区。
与双键、三键形成的环电流相比,单键各向异性效应弱得多,而且因为单键在大 部分情况下能自由旋转,使这一效应平均化,只有当单键旋转受阻时才能显示出 来。
Hc HbHO Ha
(Hb)=3.55 ppm (Hc)=0.88 ppm
氢键的影响
-OH、-NH2等基团能形成氢键。例如,醇形成的分子间氢键和 -二酮的烯醇式形成的分子内氢键。
R ROHO
H OO
R
R'
H
1. 因为有两个电负性基团靠近形成氢键的质子,它们分别通过共价键和氢键产
生吸电子诱导作用,造成较大的去屏蔽效应,使共振发生在低场。
核磁共振氢谱
核磁共振氢谱(1H NMR),也称为质子磁共振谱(proton magnetic resonance,pmr),是发展最早,研究得最多 ,应用最为广泛的核磁共振波谱。在较长一段时间里核 磁共振氢谱几乎是核磁共振谱的代名词。原因:
一是质子的旋磁比 较大,天然丰度接近 100%,核磁共振测定 的绝对灵敏度是所有磁核中最大的。在 PFT NMR 出现之前,天 然丰度低的同位素,如13C 等的测定很困难.
sp3、sp2和 sp杂化轨道中的 s成分依次增加,成键电子对质子的屏
蔽作用依次减小, 值应该依次增大。实际测得的乙烷、乙烯和乙 炔的质子 值分别为 0.88、5.23 和 2.88。
乙烯与乙炔的次序颠倒了。这是因为下面将要讨论的非球形对称的 电子云产生各向异性效应,它比杂化轨道对质子化学位移的影响更 大。
电负性基团越多,吸电子诱导效应的影响越大,相应的质子 化学位移值越大,如一氯甲烷、二氯甲烷和三氯甲烷的质子 化学位移分别为 3.05、5.30 和 7.27。
电负性基团的吸电子诱导效应沿化学键延伸,相隔的化学键 越多,影响越小。例如,在甲醇、乙醇和正丙醇中的甲基随 着离 OH 基团的距离增加化学位移向高场移动,分别为 3.39,1.18 和0.93。可见取代基对 位上的质子影响很大, 对 位上的质子虽有影响,但影响程度大大降低,而对位质 子影响可以忽略不计。
减小,所以共振发生在较低场,值较大。
CH3X
CH3F CH3OCH3 CH3Cl CH3Br CH3CH3 CH3H CH3Li
X的电负性 4.0 3.5
(ppm) 4.26 3.24
3.1 2.8 2.5 3.05 2.68 0.88
2.1 0.98 0.2 -1.95
影响化学位移的因素---诱导效应
若考虑 C1上的平伏氢(Heq)和直立氢(Hax),C1—C6键与 C1—C2键均分对它 们产生屏蔽和去屏蔽作用,两种作用相互抵销。而 C2—C3键和 C5—C6键的作用 使直立氢(Hax)处于屏蔽区,在较高场共振,而平伏氢( Heq)处于去屏蔽区 ,在较低场共振。两者的化学位移差很小,约 0.5。
各向异性效应
化合物中非球形对称的电子云,如 电子系统,对邻近质 子会附加一个各向异性的磁场,即这个附加磁场在某些区 域与外磁场 B0的方向相反,使外磁场强度减弱,起抗磁性 屏蔽作用,而在另外一些区域与外磁场 B0方向相同,对外 磁场起增强作用,产生顺磁性屏蔽的作用。
通常抗磁性屏蔽作用简称为屏蔽作用,产生屏蔽作用的区 域用“ + ”表示,顺磁性屏蔽作用也称作去屏蔽作用,去 屏蔽作用的区域用“ -”表示。