人教版数学七年级上册复习知识点

合集下载

七年级上册人教版数学知识点

七年级上册人教版数学知识点

七年级上册人教版数学知识点七年级上册人教版数学知识点概述一、数与代数1. 有理数的运算- 正数和负数的概念- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小- 绝对值的概念和性质- 有理数的近似和有效数字2. 整式的加减- 单项式和多项式的定义- 合并同类项- 去括号法则- 因式分解的初步概念3. 一元一次方程- 方程的概念和方程的解- 解一元一次方程的基本步骤- 应用题的解决方法二、几何1. 图形的初步认识- 点、线、面、体的概念- 直线、射线、线段的特点- 角的概念和分类(如:锐角、直角、钝角)2. 相交线与平行线- 相交线的性质- 平行线的定义和性质- 平行公理及其推论3. 平面图形的认识- 四边形的种类和特点(如:正方形、长方形、平行四边形)- 面积的计算方法(长方形、正方形、三角形)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 绘制和解读条形统计图和折线统计图2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件发生的可能性计算四、解题方法和策略1. 逻辑思维的培养- 理解问题,分析条件- 明确目标,制定解题步骤- 检查和验证答案的正确性2. 题目类型的识别- 应用题、证明题、计算题的解题技巧- 常见题型的解题模板和方法以上是七年级上册人教版数学的主要知识点概述。

这些知识点构成了学生数学学习的基础,对于培养学生的逻辑思维能力、解决实际问题的能力以及为后续学习打下坚实的基础至关重要。

教师和家长应引导学生通过练习和实际应用来巩固和深化这些知识点,从而提高学生的数学素养。

人教版版七年级数学上册知识点总结

人教版版七年级数学上册知识点总结

人教版版七年级数学上册知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。

弧:圆上A、B两点之间的部分叫做弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

任何一个有理数都可以用数轴上的一个点来表示。

人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)

七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

(3)0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

人教七年级数学上知识点

人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。

二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。

三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。

四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。

五、解方程
一元一次方程的概念和性质,基本解法和应用。

六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。

七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。

八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。

九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。

十、几何变换
平移、旋转、翻折及其组合。

以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。

希望本文对广大师生有所帮助,祝大家学习进步!。

人教版七年级数学上册知识点归纳

人教版七年级数学上册知识点归纳

第一章有理数1.1 正数和负数(1)大于0的数叫做数;小于0的数叫做数;既不是正数,也不是负数;(2)在同一个问题中,分别用正数和负数表示;(3)和统称为自然数;(4)a 0 ⇔ a是正数; a 0 ⇔ a是非负数;a 0 ⇔ a是负数; a 0 ⇔ a是非正数.1.2 有理数(1)、、统称为整数;、统称为分数;和统称为有理数;(2)有理数的分类:有理数有理数(3)规定了、和的一条直线叫做数轴;(即数轴的三要素)(4)一般地,当a是正数时,则数轴上表示数a的点在原点的,距离原点个单位长度;表示数-a的点在原点的,距离原点个单位长度;(5)一般地,设a是正数,则在数轴上与原点的距离为a的点有个,它们分别在的左右,表示-a和a,我们称这两个点关于对称;(6)称为互为相反数;一般地,a的相反数是;特别地,0的相反数是;(7)相反数的几何意义:数轴上表示相反数的两个点关于原点;(8)a、b互为⇔ a+b= ;(即相反数之和为0)(9)a 、b 互为 ⇔1-=b a 或1-=ab ;(即相反数之 为-1) (10)a 、b 互为 ⇔ |a| |b|;(即相反数的绝对值相等)(11)一般地,在数轴上 叫做a 的绝对值;(|a| 0)(12)一个正数的绝对值是 ;一个负数的绝对值是 ;0的绝对值是 ;绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (13)01>⇔=a a a ; 01<⇔-=a a a;(14)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从 到 的顺序。

即左边的数 右边的数;(①正数 0,0 负数,正数 负数;②两个负数,其 大的反而小;)1.3 有理数的加减法(1)有理数的加法法则:① 两数相加,取 符号,并把 相加; ② 两数相加,取 符号,并用 减去 ;互为相反数的两个数相加为 ;③一个数与0相加 ;(2)有理数加法的运算律:①加法 律:a+b= ; ②加法 律:(a+b)+c=(3)有理数的减法法则:减去一个数,等于 ;即:a-b=a+( );1.4 有理数的乘除法(1)有理数的乘法法则:①两数相乘,同号得 ,异号得 ,并把 相乘;②任何数与 相乘均为0;(2)倒数:在有理数中仍然成立,即 的两个数互为倒数;(3)积的符号与负因数个数之间的关系:几个不是0的数相乘,当负因数的个数为 数时,积是正数;当负因数的个数为 数时,积是负数;几个数相乘时,当有因数是0时,积为 ;(4)有理数的乘法运算律:①乘法 律:ab= ; ②乘法 律:(ab)c= ; ③乘法 律: a(b+c)= ;(5)有理数的除法法则:除以一个 的数,等于乘以其 ;即:)0(1≠⨯=÷b ba b a (6)两数相除,同号得 ,异号得 ,并把 相除;0除以任一 的数,都得 ;1.5 有理数的乘方(1)乘方: 的运算叫做乘方,乘方的结果叫做 ;(在na 中,a 是 ,n 是 )(2)有理数的乘方运算法则:①负数的 次幂是负数,负数的 次幂是正数;②正数的 次幂是正数;③0的 次幂是0;(3)有理数的混合运算顺序:①先 ,再 ,最后 ;②同级运算,从 到 ;③如有 ,先做 的运算,按 , , 的顺序进行;(4)科学记数法:把一个大于10的数记成 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法;(5)近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数 哪一位.(6)有效数字:从左边 的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.第二章 整式的加减2.1 整式(1)单项式:表示 的式子;(单独一个 或一个 也是单项式)(2)单项式的系数:单项式中的 ;(3)单项式的次数:一个单项式中,所有字母的;(4)多项式:几个的和;(5)多项式的项:叫做多项式的项;(6)多项式的次数:多项式里的次数;(7)常数项:不含的项;(8)整式:与统称为整式;2.2整式的加减(1)同类项:所含相同,并且也相同的项;(几个也是同类项)(2)叫做合并同类项;(3)合并同类项后,所得项的系数是,且字母部分;(4)去(添)括号:①若括号外的因数是数,去括号后原括号内各项的符号与原来的符号相同;②若括号外的因数是数,去括号后原括号内各项的符号与原来的符号相反;不变,都变;(5)一般地,几个整式相加减,如果有括号就先,然后再;第三章一元一次方程3.1 从算式到方程(1)方程:含的叫做方程;(2)一元一次方程:只含一个且都是1的方程叫做一元一次方程;标准式:ax+b=0(x是未知数,a、b是已知数,且a≠0);(3)方程的解:使方程等号左右两边的的值;(4)等式的性质1:等式两边,结果仍相等;如果a=b,那么;等式的性质2:等式两边,或,结果仍相等;如果a=b,那么;如果a=b,c 0,那么;3.2、3.3解一元一次方程——合并同类项与移项、去括号与去分母(1)一元一次方程解法的一般步骤:----------两边同乘()----------注意符号变化()----------注意要变号()--------合并后注意符号()---------等式两边x的系数()3.4实际问题与一元一次方程(1)“表示同一个量的两个不同的式子相等”是一个基本的相等关系;“工作量=人均效率×人数×时间”是计算工作量的常用数量关系式;(2)列一元一次方程解应用题:①读题分析法: 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.②画图分析法: 多用于“行程问题”仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.(3)列方程常用公式1)行程问题:距离=速度×时间;(2)工程问题: 工作量=工效×工时;工程问题常用等量关系: 先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系: 顺水路程=逆水路程(4)商品利润问题: 售价=定价 , %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润(5)配套问题:(6)分配问题:第四章 图形认识初步4.1多姿多彩的图形(1)几何图形:把从实物中抽象出的各种图形称为几何图形;(2)立体图形:各部分 同一平面内的几何图形;(如长方体、正方体、圆柱、圆锥、球等)(3)平面图形:各部分 同一平面的几何图形;(如线段、三角形、长方形、圆等)(4)立体图形与平面图形互相联系,立体图形中某些部分是平面图形;(如长方体的侧面是长方形)(5)立体图形的三视图:主视图(从 面看)、左视图(从 面看)、俯视图(从 面看)(6)展开图:有些立体图形是由一些 围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图;(7) 简称为体;(8)包围着体的是 ;(面有 和 两种)(9)面和面相交的地方形成 ;线和线相交的地方形成 ;(10) 动成线、 动成面、 动成体;(11)几何图形都是由、、、组成的,是构成图形的基本元素;4.2 直线、射线、线段(1)一个关于直线的基本事实:经过两点一条直线;简述为:;(2)直线的表示方法:①用一个字母表示直线(如直线l)②用一条直线上的来表示这条直线(如直线AB)射线和线段的表示方法类似;(3)两条直线相交:当两条不同的直线有一个,我们就称这两条直线,这个公共点叫做它们的。

(完整版)人教版七年级数学上册知识点归纳

(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

人教版七年级数学上册知识点大全(最新最全)

人教版七年级数学上册知识点大全(最新最全)

人教版七年级数学上册知识点大全1 .有理数:(1)凡能写成9(p.q 为整数且pwO)形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数:“不一定是负数,+a 也不一定是正数;兀不是有理(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴 上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数=0和正整数; a>0oa 是正数; aVO = a 是负数;a20 u> a 是正数或0 o a 是非负数;aW 0 Q a 是负数或0 0 a 是非 正数.2 .数轴:数轴是规定了原点、正方向、单位长度的一条直线.3 .相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c 的相反数是-a+b-c ; a-b 的相反数是b-a ; a+b 的相反数是-a-b ;(3)相反数的和为0 Q a+b=0 O a 、b 互为相反数.⑷相反数的商为-L(5)相反数的绝对值相等4 .绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)有理数的分类: 正有理数蹈零②有理数, [正整数 整数零 负整数a (a >0)(2)绝对值可表示为:|a| =、0 (a = 0)或 -a (a<0) »(3) © = l = a>0 ;© = -l = a<0; a a (4) a|是重要的非负数,即|a 20;(5) 理数比大小:〔1〕正数永远比0大,负数永远比0小;〔2〕正数大于一切负数;〔3〕两个负数比拟,绝对值大的反而小;〔4〕数轴上的两个数,右边的数总比左边的数大;〔5〕 -h -2, +1, +4, -0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准.6.倒数: 乘积为1的两个数互为倒数;注意:0没有倒数; 假设ab=l= a 、b 互为倒数; 为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1, -1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0.1, -1. 7.有理数加法法那么:〔1〕同号两数相加,取相同的符号,并把绝对值相力口;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(a > 0) (a K0)假设 ab=To a 、b 互(3) 一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b) +c=a+ (b+c).9.有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+ (-b).10有理数乘法法那么:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正.11有理数乘法的运算律:(1)乘法的交换律:ab=ba; (2)乘法的结合律:(ab) c=a (be);(3)乘法的分配律:a (b+c) =ab+ac .(简便运算)12.有理数除法法那么:除以一个数等于乘以这个数的倒数;注意:零不能做除数, 即£无意义.13.有理数乘方的法那么:(1)正数的任何次幕都是正数;(2)负数的奇次暴是负数;负数的偶次算是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做森;(3) 1是重要的非负数,即120;假设a'lblR o a=0,b=0;O.l 2=0.01〔4〕据规律「=底数的小数点移动一位,平方数的小数点移动二位. io- =100 15 .科学记数法:把一个大于10的数记成aXl 〔r 的形式,其中a 是整数数位只有一位 的数,这种记数法叫科学记数法.16 .近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一 位. 17 .有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个 近似数的有效数字.整式的加减1 .单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2 .单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3 .多项式:几个单项式的和叫多项式.4 .多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式 叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;6 .同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7 .合并同类项法那么: 系数相加,字母与字母的指数不变.8 .去〔添〕括号法那么:去〔添〕括号时,假设括号前边是“ + 〞号,括号里的各项都不变号;假设括号前边是“-〞 号,括号里的各项都要变号.9 .整式的加减:一找:〔划线〕;二“ 十 〞〔务必用+号开始合并〕三合:〔合并〕5.整式,单项式 多项式10.多项式的升幕和降寨排列:把一个多项式的各项按某个字母的指数从小到大〔或从大到小〕排列起来,叫做按这个字母的升号排列〔或降寨排列〕.一元一次方程1.等式:用号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上〔或减去〕同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以〔或除以〕同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:〞方程的解就能代入〞!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6. 一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7. 一元一次方程的标准形式:ax+b=0 〔x是未知数,a、b是数,且a#0〕.8. 一元一次方程解法的一般步骤:化简方程--------- 分数根本性质去分母-------- 同乘〔不漏乘〕最简公分母去括号----------- 注意符号变化移项-------- 变号〔留下靠前〕合并同类项------- 合并后符号系数化为1 -------- 除前面10.列一元一次方程解应用题:〔1〕读题分析法: 多用于“和,差,倍,分问题〞仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共, 合,为,完成,增加,减少,配套——〞,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.〔2〕画图分析法:...... 多用于“行程问题〞利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,依照题意画出有关图形,使图形各局部具有特定的含义,通过图形找相等关系是解决问题的关键, 从而取得布列方程的依据,最后利用量与量之间的关系〔可把未知数看做量〕, 填入有关的代数式是获得方程的根底.。

人教版七年级数学上册知识点总结

人教版七年级数学上册知识点总结

人教版七年级数学上册知识点总结人教版七年级数学上册知识点总结(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a?b=a+(?b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学七年级上册
复习知识点
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
第一章有理数
1.1 正数与负数
①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
1.2 有理数
1.有理数(1)整数:正整数、0、负整数统称整数(integer),
(2)分数;正分数和负分数统称分数(fraction)。

(3)有理数;整数和分数统称有理数(rational number). 以用m/n(其中m,n 是整数,n≠0)表示有理数。

2.数轴
(1)定义:通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

(2)数轴三要素:原点、正方向、单位长度。

(3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。

(4)数轴上的点和有理数的关系:
所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

只有符号不同的两个数叫做互为相反数(opposite number)。

(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法
①有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

1.5 有理数的乘方
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。

在a的n 次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何次幂都是0。

有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。

比如:3.5449精确到0.01就是3.54而不是3.55.
第二章整式的加减
2.1 整式
单项式:由数字和字母乘积组成的式子。

系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.
单项式的系数:是指单项式中的数字因数;
单项数的次数:是指单项式中所有字母的指数的和.
多项式:几个单项式的和。

判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。

多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包
包括它前面的性质符号.
它们都是用字母表示数或列式表示数量关系。

注意单项式和多项式的每一项都包括它前面的符号。

单项式和多项式统称为整式。

2.2整式的加减
同类项:所含字母相同,并且相同字母的指数也相同的项。

与字母前面的系数(≠0)无关。

同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关
合并同类项:把多项式中的同类项合并成一项。

可以运用交换律,结合律和分配律。

合并同类项法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

整式加减的一般步骤:
1、如果遇到括号按去括号法则先去括号.
2、结合同类项.
3、合并同类项
2.3整式的乘法法则 :
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。

多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

2.4整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

相关文档
最新文档