SPSS中判别分析方法的正确使用

合集下载

【精品】多元统计分析--判别分析SPSS实验报告

【精品】多元统计分析--判别分析SPSS实验报告

【精品】多元统计分析--判别分析SPSS实验报告一、实验目的1.掌握判别分析的基本原理和应用方法;2.掌握SPSS软件进行判别分析的具体操作;3.通过一个实例,学习如何运用判别分析对指标进行判别。

二、实验内容三、实验原理1.判别分析基本原理:判别分析(Discriminant Analysis),是一种统计学中的分类技术,它是对变量进行归类的技术。

判别分析是用来确定一个对象或自变量集合属于哪一个预设类型或者组别的过程。

判别分析能够生成一个函数,将数据点映射到特定的类型上。

判别分析的应用领域非常广泛,主要应用于以下领域:(1)股票市场(预测股价的涨跌与时间、公司发展情况等因素的关系);(2)医学(区分疾病、患者状态等);(3)市场调查(确定客户类型、产品或服务喜好);(4)产业分析(区分有助于产品销售的市场决策因素);(5)经济学(预测月度或季度的经济指标)。

3.判别分析的主要应用步骤:(1)建立模型:首先选择和收集数据,将收集的数据分为训练集和测试集;(2)训练模型:使用训练数据建立模型;(3)评估模型:通过模型诊断来评估建立的模型的好坏;(4)应用模型:对新的数据建立模型并进行预测。

四、实验过程1. 上机操作:1)打开SPSS软件,加载数据文件;2)选择分类变量和连续变量;3)选择训练数据集;4)建立模型;5)预测实验数据集。

2. 操作步骤:SPSS分析的步骤如下:1)将数据输入SPSS软件,确保数据格式正确;2)选择Analyse- Classify- Discriminant;3)有两种不同的分类变量,单分类或多分类,如果你要解释一个特定的分类变量,选择单分类。

如果你不确定哪个分类变量最适合,请尝试不同的选项;4)选择两个或更个你认为与指定分类变量相关的连续变量;5)选择要用于判别分析的数据集;6)确定分类变量分类比率。

这可以在设置选项中完成;7)点击OK,开始进行分析;8)评估结果,包括汇总、判别函数、方差-方差贡献、判别矩阵;五、实验结果选取鸢尾花数据,经过训练,得到如下表所示的结果。

判别分析的一般步骤和SPSS实现

判别分析的一般步骤和SPSS实现

判别分析的一般步骤和SPSS实现判别分析是一种统计学方法,用于确定一组预测变量对于区分不同组别的目标变量的重要性。

它可以帮助我们理解和解释数据,以及预测未来的观察结果。

下面将介绍判别分析的一般步骤和如何使用SPSS软件来实现。

步骤一:数据收集和准备首先,收集需要的数据,并进行数据清洗和整理。

确保数据的完整性和准确性。

此外,还需要对数据进行标准化,以消除不同变量之间的度量单位差异。

步骤二:设定模型确定分析的目标变量和预测变量。

目标变量是我们想要预测或解释的变量,而预测变量则是用来预测目标变量的变量。

根据实际情况,选择适当的判别分析方法,如线性判别分析或二次判别分析。

步骤三:进行判别函数的计算计算出判别函数,用于将样本分成不同的组别。

判别函数是由预测变量的加权和组成的。

对于线性判别分析,判别函数的形式为:D = a1X1 + a2X2 + ... + anXn + c其中,D是判别分数,X是预测变量,a是权重,n是预测变量的数量,c是常数。

通过计算判别函数,可以根据判别分数将样本分到不同的组别。

步骤四:进行判别分析的检验判别分析的检验包括Wilks' Lambda检验和方差分析。

Wilks' Lambda检验用于检验判别函数是否统计显著,以判断预测变量的组合是否能够显著解释目标变量的变异性。

方差分析用于检验各个预测变量在不同组别之间的差异是否显著。

步骤五:解释和评估结果在判别分析的最后一步,需要对结果进行解释和评估。

根据判别分析的结果,可以判断哪些预测变量对于区分不同组别的目标变量最为重要。

此外,还可以对模型的准确性进行评估,比如使用十折交叉验证等方法。

使用SPSS软件进行判别分析的步骤如下:步骤一:导入数据首先,在SPSS软件中打开数据文件或导入数据。

确保数据的格式正确,包括变量类型、缺失值处理等。

步骤二:设定模型在SPSS中,选择"分析"菜单中的"分类"选项,然后选择"判别分析"。

判别分析的SPSS实现

判别分析的SPSS实现

判别分析的SPSS实现判别分析(Discriminant Analysis)是一种统计分析方法,用于识别和分类不同群体之间的差异。

它通过建立数学模型来寻找最佳判别函数,将样本划入事先定义好的不同类别中。

SPSS是一种流行的统计软件,可以用于进行多种数据分析,包括判别分析。

在SPSS中进行判别分析的步骤如下:1.导入数据:打开SPSS软件,并导入需要进行判别分析的数据集。

选择“文件”-“打开”-“数据”命令,找到数据文件并点击“打开”按钮。

2. 选择变量:从数据文件中选择需要用于判别的变量。

在数据视图中,点击变量名旁边的方框来选定变量。

可以按住Ctrl键并单击多个变量来进行选择。

3.运行判别分析:选择“分析”-“分类”-“判别分析”命令,打开判别分析对话框。

在对话框的“变量”选项卡中,将选择的变量移入“输入变量”框中。

如果有分类变量,可以选择将其移入“说明变量”框中。

4.设置判别函数模型:在对话框的“选项”选项卡中,可以设置判别分析的具体模型。

可以选择线性判别函数或二次判别函数,并设置解释变量和额外变量。

5.运行分析:点击对话框底部的“确定”按钮,运行判别分析。

SPSS将计算出最佳的判别函数,并用于分类和预测。

6.解释结果:判别分析完成后,可以查看结果并进行解释。

SPSS将输出各个变量的判别系数、判别函数结果、群体统计信息等。

可以根据这些结果来理解不同变量对分类的重要性。

7.进行预测:判别分析还可以用于对新样本进行分类和预测。

在对话框的“选项”选项卡中,选择“保存变量”选项,并指定一个新的变量名。

运行分析后,可以查看新变量的值,以得到新样本的分类结果。

8.检验结果:可以使用SPSS提供的各种统计方法来检验判别分析结果的显著性。

例如,可以进行方差分析来检验不同群体之间的差异性。

判别分析是一种有效的统计方法,可以用于各种不同的研究领域。

在SPSS中,通过简单的几个步骤就可以实现判别分析,并得到结果。

同时,SPSS还提供了丰富的数据可视化和结果解释功能,可以帮助用户更好地理解和解释判别分析的结果。

利用SPSS进行判别分析的几个问题的说明

利用SPSS进行判别分析的几个问题的说明

利用SPSS进行判别分析的几个问题的说明陈敏琼【摘要】判别分析是多元统计分析中最常用的方法之一,但由于其原理的复杂性与方法的多样性,使其成为《多元统计分析》课程学习特别是SPSS软件操作学习的难点之一。

为此,对判别分析的几种方法的原理进行总结,针对利用SPSS进行判别分析过程中常见的若干疑点,先从理论上做推导说明,结合例子对SPSS判别分析的步骤和输出结果作详细解释和说明。

%Discriminant analysis is one of the most commonly used methods in multivariate statistical analysis, but because of the complexity of its principle and methods of diversity, making it one of the difficulties in learning the course of Multivariate Statistical Analysis, in particular the learning of SPSS software operating. To do this, summaries the principle of several methods of discriminant analysis, according to the common problems of SPSS in the process, does the first theoretical derivation, combined with examples, explains the steps and output re-sults of SPSS discriminant analysis in details.【期刊名称】《现代计算机(普及版)》【年(卷),期】2015(000)002【总页数】7页(P34-39,50)【关键词】判别分析;SPSS判别分析;步骤;解释说明【作者】陈敏琼【作者单位】中山大学新华学院,广州 510520【正文语种】中文判别分析是根据观测到的样品的若干数量特征(称为因子或判别变量)对样品进行归类、识别,判断其属性的预报(预测)的一种多元统计分析方法。

判别分析的SPSS实现

判别分析的SPSS实现

分别表示代入第一和第二个判别函数所得到的判别分数。
③Probabilities of group membership要求建立新变 量表明观测量属于某一类的概率。有m类,对一个观测 量就会给出m个概率值,因此建立m个新变量。例如,原 始和预测分类数是:指定该选择项,在第一次运行判别 过程后,给出的表明分类概率的新变量名为 dis1_2,dis2_2,dis3_2. 选择了新变量类型后,按"continue"
选择分类变量及其范围
在主对话框中左面的矩形框中选择表明已知的观测量
所属类别的变量(一定是离散变量,按上面一个箭头按钮,
使该变量名移到箭头按钮右面,“Grouping Variable”下面 的矩形框此时矩形框下面的“Define range…”按钮加亮,
按该按钮,屏幕显示一个小对话框,供指定该分类变量的数
Indepents对话框
数据变量 输入框
数据判别分析
完成前面四步骤的操作即可使用各种系统默认值对工作数据
集的数据进行判别分析了。可以使用的方法有两种:
(1)直接运行:在主对话框中按(用鼠标单击)"Ok"按钮 (2)生成SPSS命令程序后再运行:在主对话框中按"Paste"按 钮,激活"Syntax"窗,在该窗中按"Run"按钮执行该语句窗 中的程序。 无论哪种方法均可在"output"窗中显示出分析结果。 完全使用系统默认值进行判别分析,其结果有时不能令 人满意,因此根据以下步骤指定选择项是很有必要的。
以上三项都给予了确定的选择后,单击"continue"按钮,
返回主对话框。
指定分类参数和判别结果

判别分析的一般步骤及SPSS实现

判别分析的一般步骤及SPSS实现

判别分析的一般步骤及SPSS实现判别分析是一种用于分类变量的统计方法,它可以用于确定一个或多个预测变量对于区分不同组之间差异的程度。

判别分析由一系列步骤组成,包括问题的定义、数据的准备、模型的建立、模型的评估和结果的解释。

以下是判别分析的一般步骤以及如何在SPSS中实现这些步骤的详细说明。

第一步:问题的定义在进行判别分析之前,需要明确研究的目的和问题。

例如,我们可能希望根据顾客的一些特征(如性别、年龄、收入等)来预测顾客是否购买一些产品。

这样的问题可以通过判别分析解决。

第二步:数据的准备在进行判别分析之前,需要确保数据满足分析的要求。

数据应包括一个或多个预测变量和一个分类变量。

如果数据中存在缺失值,需要进行缺失值的处理。

如果数据中存在异常值,可以选择忽略或进行适当的修正。

第三步:模型的建立在SPSS中,可以使用“分类函数”来建立判别分析模型。

选择“分析”菜单中的“分类”选项,然后选择“判别”子菜单。

在“判别”对话框中,选择一个或多个预测变量,并将分类变量指定为“因变量”。

此外,还可以选择是否进行卡方检验以及是否使用交叉验证等选项。

卡方检验可以用于评估预测变量与分类变量之间的关联性,而交叉验证可以用于评估模型对于不同样本的预测效果。

第四步:模型的评估在SPSS中,判别分析的模型评估结果可以在“判别”输出中找到。

主要关注以下几个指标:1.方差贡献表:可以查看每个预测变量对于判别函数的贡献程度,以及它们之间的相关性。

2.群组描述:可以查看不同组之间的平均值,以确定最能区分不同组的预测变量。

3.准确性表:可以查看模型的整体分类准确率以及每个组的分类准确率。

4.标准化系数表:可以查看每个预测变量对于判别函数的贡献程度,使用标准化系数来比较不同预测变量的影响。

第五步:结果的解释对于判别分析的结果进行解释是非常重要的,以帮助我们理解预测变量如何影响分类变量,并从中得出有用的结论。

可以通过参考判别函数的系数、标准化系数和方差贡献来解释结果。

判别分析实验报告 SPSS

判别分析实验报告  SPSS

判别分析实验报告 SPSS一、实验目的判别分析是一种用于分类和预测的统计方法。

本次实验旨在通过使用 SPSS 软件,掌握判别分析的基本原理和操作流程,能够运用判别分析方法对实际数据进行分类,并对分类结果进行评估和解释。

二、实验数据本次实验使用的数据集包含了两个类别(类别 A 和类别 B)的样本,每个样本具有若干个特征变量,如年龄、收入、教育程度等。

数据集共有 200 个样本,其中类别 A 有 100 个样本,类别 B 有 100 个样本。

三、实验步骤1、数据导入首先,打开 SPSS 软件,选择“文件”菜单中的“打开”选项,将实验数据文件导入到 SPSS 中。

2、变量定义在 SPSS 数据视图中,对各个变量进行定义,包括变量名称、变量类型、变量标签等。

3、判别分析操作选择“分析”菜单中的“分类”子菜单,然后点击“判别分析”选项。

在弹出的判别分析对话框中,将类别变量选入“分组变量”框中,将其他特征变量选入“自变量”框中。

4、选择判别方法SPSS 提供了多种判别方法,如费希尔判别法、贝叶斯判别法等。

本次实验选择费希尔判别法。

5、模型评估在判别分析结果中,查看判别函数的系数、判别函数的显著性检验、分类结果的准确性等指标,以评估模型的性能。

四、实验结果与分析1、判别函数系数判别函数的系数反映了各个自变量对判别函数的贡献程度。

通过查看系数的大小和符号,可以了解各个变量在区分不同类别中的重要性。

例如,年龄变量的系数为正,说明年龄越大,越有可能属于某个类别;而收入变量的系数为负,说明收入越低,越有可能属于另一个类别。

2、判别函数的显著性检验通过对判别函数的显著性检验,可以判断判别函数是否能够有效地区分不同的类别。

如果检验结果显著,说明判别函数具有统计学意义,可以用于分类。

3、分类结果SPSS 会给出每个样本的分类结果,以及分类的准确性。

通过比较实际类别和预测类别,可以评估模型的分类效果。

如果分类准确性较高,说明模型能够较好地对样本进行分类;如果分类准确性较低,则需要进一步分析原因,可能是数据质量问题、变量选择不当或者判别方法不合适等。

判别分析的一般步骤及SPSS实现

判别分析的一般步骤及SPSS实现

判别分析的SPSS实现
由此表可知,两个Fisher判别函数分别为: y 1 7 4 .9 9 1 .8 6 1 X 1 1 .6 5 6 X 2 0 .8 7 7 X 3 0 .7 9 8 X 4 0 .0 9 8 X 5 1 .5 7 9 X 6 y 2 2 9 .4 8 2 0 .8 6 7 X 1 1 .1 5 5 X 2 0 .3 5 6 X 3 0 .0 8 9 X 4 0 .0 5 4 X 5 0 .6 9 X 6
1
4
40.17 13.45 1.43 13.88 101.2 66.2
1
5
50.06 23.03 2.83 23.74 112.52 63.3
1
6
33.24 6.24 1.18 22.9 160.01 65.4
2
7
32.22 4.22 1.06 20.7 124.7 68.7
2
8
41.15 10.08 2.32 32.84 172.06 65.85

X 4 : 55岁组死亡概率 X5 : 80岁组死亡概率 X6 : 平均预期寿命
表7.1 各地区死亡概率表
X1
X2
X3
X4
X5
X6
类别
1
34.16 7.44 1.12 7.87 95.19 69.3
1
2
33.06 6.34 1.08 6.77 94.08 69.7
1
3
36.26 9.24 1.04 8.97 97.3 68.8
比较三个值,可以看出第一个待判样品应该属于第三组.
判别分析的SPSS实现
表7.3 Bayes判别法的输出结果
Classification Fu nction Coe fficie n ts
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利 用 IJII 进 行 ’()*# 判 别 前 $ 首 先 应对数据进行 ’=K>L 组间协方差阵齐性 检 验 $ 通 过 该 检 验 后 使 用 IJII 中 的
’()*# 判别分析得到的结果才较为准确 ’
如果方差不等 $’()*# 的判别函数就应为 二次函数在 IJII 中 $ 并未直接给出此结 果#
’()*# 判别 & 逐步判别 # 在 +,++ 中直接给
出 了 -"#.*& 和 ’()*# 两 种 方 法 的 判 别 $ 但 是 +,++ 对 于 这 两 种 判 别 方 式 的 命 名 和我们一般教科书里的命名不尽相同$ 再加之这两种方法本身的复杂性 $ 使用 起来要特别小心 # 一 !%&’()* 和 +,-)’ 方 法 在 ./.. 中的应用 在 +,++ 系 统 中 $ 在 /01##2") 3
N9IJII 中的典则判别函数实际是我 们一般意义的 !"#.*& 判别函数 $ 但 是 二
者仍然有区别在 IJII 中的输出窗口中 $
!"#.*& 的 结 果 又 被 称 为 /(6=6"/(0 4"#/&"5"6(67 $ 也 就 是 说 !"#.*& 的 结 果 是
以典则判别函数的形式给出的 # 两种方 法的结果基本相同 $ 只是相差一个常数 项 # IJII 中 的 输 出 结 果 中 ?(6=6"/(0
D A8EF 8 差阵为 @A8B$ 且 % C
6838
#8
O"#P&"5"6167 -<6P7"=6 ?=%QQ"P"%67# 中 保
存的系数在剔除掉常数项后的结果就是
来 自 总 体 : 的 样 本 的 个 数 为 6: $ 方
-"#.%& 判别的系数 #
仍以上例为例 $ 若是 -"#.%& 判 别 函 数 的 系 数 $ 为 %1R FST9T;:UVUW 3T9TXMV;8W
!"#"$
知识丛林 ]^_+^_?‘abc_a
!""# 年 第 ! 期! 总 第 !"$ 期 "
!"!! 中 判别分析方法的正确使用
! 任志娟
判别分析是多元统计中判别样品所 属类型的一种常用方法 # 它的研究对象 是训练样本 $ 也就是说原始数据的具体 分类是事先已知的 $ 然后根据原始数据 求出判别函数 $ 将待判样本的数据代入 判别函数中 $ 判断其类型 # 常用的判别分 析 方 法 主 要 有 % 距 离 判 别 &!"#$%& 判 别 & 的 $ 因 此 +,++ 用 -"#.*& 对 ’()*# 方 法 进 行了命名 ! 本文以下所提到的判别方法 的名称与一般教课书中的名称相同 "# 并 且 因 为 ’()*# 判 别 函 数 只 有 在 各 个 总 体 的样本的协方差阵相同时才是线性的$ 因此在得到该判别函数的系数时 $ 对样 本的协方差的估计必须是在总体协方差 相等情况下的估计 # 举例 % 假设已知的样本来自两个总 体 $ 总体 8 和总体 : $ 来 自 总 体 8 的 样 本 的 个 数 为 68 $ 方 的值再进行距离大小的比较 $ 用 IJII 中 的 4"#/&"5"6(67 并 不 能 直 接 在 数 据 窗 口 得到 !"#.*& 判定的结果 #
+,++ 给 出 的 类 型 是 准 确 的 $ 如 果 该 检 验
通 不 过 $ 要 考 虑 用 ’()*# 的 二 次 的 形 式 $ 需要自己计算 # ! 作者单位 \ 首都经济贸易大学 "
" 责任编辑 \ 易永生 #
2<6/7"=6# # 但是 $ 经验证实为一般教课书
中 的 ’()*# 线 性 判 别 函 数 # 命 名 出 现 不 一致的原因是 % 按判别函数值最大的一 组 进 行 归 类 这 种 思 想 是 -"#.*& 提 出 来
D A:EF 8 差阵为 GA:E$ 且 % C
6:38
#:
4"#/&"5"6167 中 给 出 -"#.*& 判 别 和 ’1)*#
判别方法 $ 使用时应注意以下几条 %
进行 ’()*# 估计时要求计算出 CA8EFCA:E
T9TT8U;TE ’ 用 +,++ 计算的结果为下表 %
!"#$#%&"’ (%)&*%+%#"#, -.#&,%$# !$/00%&%/#,) -<6/7"=6 [8 [: [; A?=6#7(67E 8 9T;; 39TXN 9TT: 3:9NY8 : 39T88 98:8 9TT8 39MXV
! 参见 ! 多元统计分析 " 袁志发 #周静竽 ,::N 例 :
!"#
统计与决策
万方数据
SPSS中判别分析方法的正确使用
作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 被引用次数: 任志娟 首都经济贸易大学 统计与决策 STATISTICS AND DECISION 2006,(3) 3次
引证文献(3条) 1.陈希镇.曹慧珍 判别分析和SPSS的使用[期刊论文]-科学技术与工程 2008(13) 2.刘华波.贺立源.马文杰.李翠英 透射图像颜色特征在烟叶识别中应用的探索[期刊论文]-农业工程学报 2007(9) 3.彭语冰.俞桂杰 基于多元统计分析和横截面回归的航线需求预测模型[期刊论文]-工业技术经济 2007(4)
布要求不同 % 一 般 来 说 $-"#.*& 判 别 对 数 据 分 布 没有特殊的要求 $’1)*# 判别要求数据分 布是多元正态分布 $ 但在实际操作过程 中 $ 要求并不严格 #
M9IJII 数据窗口中的最终结果是按 照 ’()*# 的后验概率的大小确定的
在 IJII 中 $ 可以在数窗口中给出 用判别函数计算出的样品的类型 $ 并且 可以和事先给定的样吕的类型进行比 较 # 但 是 虽 然 IJII 在 输 出 窗 口 给 出 了
/F31R[$ 将 [FA8TN9MXU8$8:9;VNX$8MX9VTYTER
代入 $ 得 %/F3:9NY8 二 ! 结论 综上 $ 在 +,++ 中进行判别分析时 $ 若使用 -"#.*& 判别分析 $ 要利用 给 出 的 -"#.*& 判 别 函 数 的 系 数 $ 自 己 计 算 待 判 样品的函数值 $ 然后计算距离 $ 从而最终 确 定 样 品 的 类 型 ’ 在 进 行 ’()*# 判 别 分 析时 $ 要首先对样本的方差 3 协方差阵进 行齐次性检验 $ 如果该检验通过 $ 直接用
D $ 则对 C D 的计算公式应为 % FC DF C 8 A#8H#:E 68H6:3:
89 首 先 要 对 原 始 数 据 进 行 统 计 检
验% 在进行判别分析前 $ 应首先检验各 类的均值是不是有差异 ! 因为判别分析 要求给定的样本数据必须是差异明显 的 "$ 如果检验后某两个总体的差异不显 著 $ 应将两个总体合并为一个总体 $ 再由 剩下的互不相同的总体重新建立判别函 数#
!"#$%"&%’&()*& +,*--(+(*"$#
将两种结果进行对比 $ 发现 +,++ 的 结果多一常数项 /F3:9NY8 # 理 论 可 以 证 明 %-"#.*& 判 别 分 析 就 相当于研究 Z 的指标与分组假变量之 间的典型相关分析 $ 但二者相差一常数
:9 两 种 判 别 方 法 对 总 体 的 数 据 的 分
2"#.*&># 选项 $ 在输出结 果 的 末 尾 $ 给 出 的 ?0(##"2"/(7"=6 -<6/7"=6 ?=*22"/"*67# 下 注
明 是
-"#.*&>#
0"6*(&
4"#/&"5"6(67
IJII 中 的 结 果 是 划 分 为 第 三 类 $ 是 因 为
第三类的后验概率最大 # 由于两种判别方法得出的最终结果 并不是完全一致的 $ 要想知道 !"#.*& 判 别的结果 $ 必须对 !"#.*& 判别计算 出 来
本文链接:/Periodical_tjyjc200603075.aspx 授权使用:浙江大学(wfzjdx),授权号:095066c4-97ee-4de5-a84c-9ec1014bfc3c 下载时间:2011年4月10日
;9+,++ 中 的 -"#.*& 判 别 函 数 实 为 ’()*# 判别函数 %
在 +,++ 中 $ 选中 4"#/&"5"6(67 (6(0)#"# 下 #7(7"#7"/ 中 的 2<6/7"=6 /=*22"/"*67# 中 的
!"#.*& 和 ’()*# 两种判别函数的系数 $ 在
数 据 窗 口 给 出 的 结 果 却 是 按 照 ’()*# 计 算的后验概率的大小最终确定的判定结 果 $ 而不是 !"#.*& 判别函数的结果 # 以 ! 为例 $ 按照 !"#.*& 判别的方 法 $ 第四个样本应划分为第二类 $ 但是按照
相关文档
最新文档