传热学8热辐射基本定律

合集下载

热辐射的规律

热辐射的规律

热辐射的规律热辐射是一种物体由于其温度而产生的电磁辐射现象,是物体内部分子振动引起的。

根据斯特藩-玻尔兹曼定律,热辐射的辐射能量密度正比于温度的四次方。

这意味着温度越高,辐射能量密度越大,辐射出的光谱也越短波长。

热辐射规律在自然界中随处可见。

太阳作为地球上最重要的热辐射源,发出的热辐射使得地球获得能量并维持生态系统的平衡。

夜晚的星空中,恒星发出的热辐射让我们看到美丽的星光。

地球的大气层也会吸收和辐射热能,形成温室效应,维持地球的温度适宜生命存在。

在工业生产中,热辐射也扮演着重要的角色。

工业炉燃烧产生的热辐射能源被用于加热材料、生产电力等工艺。

人们利用太阳能光伏电池板,将太阳的热辐射转化为电能,实现清洁能源的利用。

在日常生活中,我们也可以感受到热辐射的存在。

炉灶上的火焰、电热水壶的加热、暖气片散发的热量,都是热辐射的表现。

我们在冬天里暖暖的被窝中感受到的温暖,也是热辐射的结果。

热辐射不仅存在于宏观世界中,也存在于微观世界中。

原子和分子之间的振动和旋转运动产生的热辐射被称为分子热辐射。

分子热辐射是一种宏观物体所不具备的微观现象,它在大气层的能量传递中起着重要作用。

热辐射的规律性使得人类能够利用热能进行生产和生活。

人们通过深入研究热辐射的特性,不断开发新的利用方式和技术,以提高能源利用效率,减少环境污染。

热辐射作为一种基本的物理现象,贯穿于人类社会的各个领域,为人类的发展和进步提供了重要支撑。

总的来说,热辐射的规律性在自然界和人类社会中都具有重要意义。

通过深入研究热辐射现象,人类可以更好地理解能量的传递和转化规律,为可持续发展和环境保护提供重要的科学依据。

希望未来能够进一步挖掘热辐射的潜力,开发更多高效、清洁的能源利用方式,为人类社会的可持续发展做出更大贡献。

传热学知识点

传热学知识点

传热学主要知识点1.热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。

[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==6. 热辐射的特点。

a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h因素:流速、流体物性、壁面形状大小等。

传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。

8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。

9.复杂传热过程Upside surface: adiabaticDownside surface: adiabatic xair LL 2L A/4A/4A/2第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

传热学-第八章热辐射基本定律及物体的辐射特性

传热学-第八章热辐射基本定律及物体的辐射特性

17
对于指定波长,而在方向上平均的
E 情况,则定义了半球光谱发射率,
即实际物体的光谱辐射力与黑体的
λ
光谱辐射力之比
ε
,T E ,ac etm ua ,iT tlt e E d ,T E ,blac,T kbE o b d, y T
这样,前面定义的半球总发射率则可以写为:
Absorptivity deals with what happens to __________________ _____________, while
emissivity deals with __________________ ___
Semi-transparent medium
24
首先介绍几个概念: 1. 投入辐射:单位时间内投射到单位表面积上的总辐射能 2. 选择性吸收:投入辐射本身具有光谱特性,因此,实际
(4)立体角 定义:球面面积除以球半径的平方称为立体角,单位: sr(球面度),如图8-8和8-9所示:
dd rA 2c s indd
10
图8-8 立体角定义图
11
图8-9 计算微元立体角的几何关系
12
(5) 定向辐射强度L(, ):
定义:单位时间内,物体在垂直发射方向的单位面积上,
在单位立体角内发射的一切波长的能量,参见图8-10。
E 2 L co d sL
图8-11 Lambert定律图示
14
§ 8-3 实际固体和液体的辐射特性
1 发射率 ❖ 前面定义了黑体的发射特性:同温度下,黑体发射热
辐射的能力最强,包括所有方向和所有波长; ❖ 真实物体表面的发射能力低于同温度下的黑体; ❖ 因此,定义了发射率 (也称为黑度) :相同温度下,

传热学名词解释——章熙民(第六版)

传热学名词解释——章熙民(第六版)

名词解释这些名词解释都是学长自己从传热学课本中总结的,课本上有的基本上都在这里。

绪论:1.传热学:传热学是研究温差作用下热量传递过程和传递速率的科学。

2.热传递:自然界和生产过程中,在温差的作用下,热量自发地由高温物体传递到低温物体的物理现象。

3.导热(热传导):是指物体各部分五项队位移或不同物体直接接触时依靠分子、原子及自由电子等微观粒子热运动而进行的热量传递现象。

(固液气中均可发生,但是在引力场的作用下,单纯的导热一般只发生在密实的固体中)4.热流密度q:单位时间内,通过物体单位横截面积上的热量——W/㎡。

5.热导率(导热系数):单位厚度的物体具有单位温度差时,在它单位面积上每单位时间的导热量——W/(m*K)。

6.导热热阻:温度差的情形下,导热过程中,物体抵抗传热的能力——K/W。

7.对流(热对流):在流体内部,仅依靠流体的宏观运动传递热量的现象称为热对流。

8.对流传热:工程上,流体在与它温度不同的壁面上流动时,两者间产生的热量交换,传热学中将这一过程称为“对流传热”过程。

9.表明面传热系数h:单位面积上,流体与壁面之间在单位温差下及单位时间内所能传递的热量——W/(㎡*K)。

10.对流传热热阻:温度差的情形下,对流过程中,物体抵抗传热的能力——K/W。

11.辐射(热辐射):依靠物体表面对外发射可见和不可见的射线(电磁波,或者说光子)传递热量。

12.辐射力E:物体表面每单位时间、单位面积对外辐射的热量成为辐射力。

13.辐射传热:物体间靠热辐射进行的热量传递称为辐射传热。

14.传热过程:工程中所遇到的冷热两种流体隔着固体壁面的传热,即热量从壁一侧的高温流体通过壁传给另一侧低温流体的过程,称为传热过程。

15.传热系数K:单位时间、单位壁面积上,冷热流体间温差为1K时所传递的热量——W/(㎡*K)。

16.单位面积传热热阻:温度差的情形下,传热过程中,单位面积物体抵抗传热的能力——K/W。

第一章:导热理论基础1.温度场:温度场是指某一时刻物体的温度在空间上的分布,一般来说,它是时间和空间的函数。

《传热学》杨世铭-陶文铨-第八章热辐射汇编

《传热学》杨世铭-陶文铨-第八章热辐射汇编

1 透明体:
黑体概念
黑体:是指能吸收投入到其面
上的所有热辐射能的物体,是 一种科学假想的物体,现实生 活中是不存在的。但却可以人 工制造出近似的人工黑体。
图8-5
黑体模型
12
§8-2
黑体辐射的基本定律
1.热辐射能量的表示方法
辐射力E:
单位时间内,物体的单位表面积向半球空间发射的所有 波长的能量总和。 (W/m2); 光谱辐射力Eλ : 单位时间内,单位波长范围内(包含某一给定波长),物 体的单位表面积向半球空间发射的能量。 (W/m3);
6
二 从电磁波的角度描述热辐射的特性
1.传播速率与波长、频率间的关系 热辐射具有一般辐射现象的共性,以光速在空间传播。 电磁波的速率与波长、频率间的关系
c f

式中:f — 频率,s-1; λ— 波长,μm
7
2. 电磁波谱
物体辐射的电磁波波长可以包括整个波谱,如图8-1所示,而 我们所感兴趣的,即工业上有实际意义的热辐射区域一般为 0.1~100μ m。 注1:红外线区段:0.76~20μm 可见光区段:0.38~0.76μm 太阳辐射: 0.2~2μm 注2:波长在1mm~1m之间的电磁波称为微波。
13
E、Eλ关系:
显然, E和Eλ之间具有如下关系:
E


0
E d
黑体一般采用下标b表示,如黑体的辐射力为Eb, 黑体的光谱辐射力为Ebλ
14
2.黑体辐射的三个基本定律及相关性质 (1)Planck定律(第 T )
1
式中,λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.742×10-16 Wm2; c2 — 第二辐射常数,1.4388×10-2 WK;

新大《传热学》习题及解答第8章 热辐射基本定律和辐射特性

新大《传热学》习题及解答第8章 热辐射基本定律和辐射特性

第8章 热辐射基本定律和辐射特性(题解)【习题8-3】 把太阳表面近似地看成是K 5800=T 的黑体,试确定太阳发出的辐射能中可见光所占的百分数。

解:K μm 220458003801⋅=⨯=.T λ,K μm 440858007602⋅=⨯=.T λ ()%.F b 191010=-λ,()%.F b 045520=-λ()()()%.%.%.F F F b b b 854419100455122100=-=-=---λλλλ【习题8-4】 一炉膛内火焰的平均温度为500K 1,炉墙上有一看火孔。

试计算当看火孔打开时从孔(单位面积)向外辐射的功率。

该辐射能中波长为μm 2的光谱辐射力是多少?哪一种波长下的能量最多? 解:小孔辐射看成黑体辐射:25484m W 10872150010675⨯=⨯⨯==-..T E b σ对μm 2=λ的辐射:()()()31015001021043881561651m W 107449110210741931622⨯=-⨯⨯⨯=-=⨯⨯⨯------.e .e c E .T c b λλλ最大辐射能对应波长m λ:31092-⨯=.T m λ,m 109331150010921092633---⨯=⨯=⨯=..T .m λ【习题8-6】 一人工黑体腔上的辐射小孔是一个直径为0mm 2的圆。

辐射力25m W 1072.3⨯=b E 。

一个辐射热流计置于该黑体小孔的正前方m 5.0=l 处,该热流计吸收热量的面积为25m 106.1-⨯。

问该热流计所得到的黑体投入辐射是多少?解:2422m 10141634020141634d -⨯=⨯==...d A π sr 1046501061d d 5252--⨯=⨯==...l S Ω ()()545104610141631416310723d d d d d --⨯⨯⨯⨯⨯=⎪⎭⎫⎝⎛==....A E A I b ΩπΩθθΦW 103823-⨯=.【习题8-17】 一漫射表面在某一温度下的光谱辐射强度与波长的关系可以近似地用附图表示,试:(1)计算此时的辐射力;(2)计算此时法线方向的定向辐射强度,及与法向成o 60角处的定向辐射强度。

传热学第八章辐射换热的计算

传热学第八章辐射换热的计算

02
辐射换热的计算方法
辐射换热的基本公式
斯蒂芬-玻尔兹曼方程
描述了物体在任意温度下的辐射功率,是辐射换热的基本公式。
辐射力方程
表示物体发射和吸收的辐射能与物体表面温度和周围环境温度之间 的关系。
辐射传递方程
表示在给定温度和光谱发射率下,物体表面发射和吸收的辐射能与 物体表面温度之间的关系。
辐射换热的角系数法
表面传热系数的计算方法
通过实验测定或经验公式计算表面传热系数, 需要考虑表面粗糙度和涂层的影响。
表面传热系数的应用
适用于简化模型或近似计算中的辐射换热计算。
辐射换热的积分方程法
积分方程的建立
根据斯蒂芬-玻尔兹曼方程和边界条件建立积分方程。
积分方程的求解方法
采用数值方法求解积分方程,如有限元法、有限差分 法等。
太阳能利用
通过优化太阳能集热器的设计,提高太阳能辐射的吸收和 转换效率,降低太阳能利用成本,有助于减少化石能源的 消耗和碳排放。
05
辐射换热的发展趋势与展 望
新型材料的辐射换热特性研究
总结词
随着科技的发展,新型材料不断涌现,对新型材料的辐射换热特性研究成为当 前热点。
详细描述
新型材料如碳纳米管、石墨烯等具有独特的物理和化学性质,其辐射换热特性 与传统材料有所不同。研究这些新型材料的辐射换热特性有助于发现新的传热 机制,提高传热效率。
感谢观看
THANKS
传热学第八章辐射 换热的计算
目 录
• 辐射换热的基本概念 • 辐射换热的计算方法 • 辐射换热的实际应用 • 辐射换热的优化与控制 • 辐射换热的发展趋势与展望
01
辐射换热的基本概念
定义与特性
定义

第八章热辐射的基本定律_传热学

第八章热辐射的基本定律_传热学
发射的一切波长的能量
d () I () dA cos d
单位:W/m2· sr
2) Lambert定律:
黑体表面具有漫辐射性质,在半球空间各个方向辐射强度相等
I 1 I 2 ...... I n
E I cos I n cos En cos
如果已知黑体温度,则可以求得最大单色辐射力 Eb, max 所对应的波长 max
25
讨论:黑体温度在3800K以下时,其峰值波长处在红外线区域。 因此,在一般工程中所遇到的辐射换热,基本上属于红外辐射。
思考:金属在加热过程中,随 着温度的升高,金属颜色呈暗 红、红、黄、白,请解释这一 现象。
Fb 0-T
T E c1 b d T d T f T 5 0 T C2 5 b b T exp 1 T
30
根据黑体辐射函数,可以计算出给定温度下λ1-λ2波段内的 黑体辐射力为:
Eb 1- 2 Eb Fb 0- 2T Fb 0-1T
f (T )
23
三、维恩位移定律
黑体的峰值波长 max 与热力学温度T之间的函数关系
Eb
c15 ec
2
( T )
1
根据普朗克定律,将Eb 对 波长求极值,可得: maxT 2897.6m.K
随着温度T的升高,最大单色辐射 力 Eb, 所对应的峰值波长 max max 逐渐向短波方向移动
• 实际物体的辐射力并不严格遵从四次方定律,怎么办? 认为E∝T4 由此引起的误差修正归入用实验方法确定的中 因此除了与物性有关,还与物体本身的温度有关
39
2 实际物体的光谱辐射力E
E Eb
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中:Ac—半球体表面被立体角切割的面积, r—球体的半径。
✓在工业上的一般高温范围内(2000K),λmax在红
外线区段。太阳辐射(5800k)λm则位于可见光区段。
✓实际物体的单色辐射力按波长分布的规律与普朗克
定律不同,但定性上是一致的。
✓如加热金属,500℃以下,金属发出的基本是红外线,没有
可见光,金属呈原色,600℃以上,金属相继呈现暗红、红、
黄,超过1300℃开始发白。
黑体模型
黑体在热辐射分析中的特殊重要性
➢在相同温度的物体中,黑体的辐射能力最大。 ➢在研究了黑体辐射的基础上,我们处理其他物 体辐射的思路是:把其他物体辐射与黑体辐射相 比较,从中找出其与黑体辐射的偏离,然后确定 必要的修正系数。
§8-2 黑体辐射的基本定律
1 辐射力及单色辐射力的定义
(1)辐射力E: ➢单位时间内物体的单位表面积向半球空间
例题8-2、8-3 P214
(3)兰贝特定律
➢辐射力(定义)没有指明在半球空间不同方向上的能量分 布。 ➢为了说明辐射能量在空间不同方向上的分布规律,引入定 向辐射强度的概念 ➢(1)定向辐射强度
➢① 先引入立体角的概念
平面角:θ=s/r [rad](弧度) 式中: 弧长s、半径r。 立体角:ω=Ac/r2
特例
➢α=1的物体叫做绝对黑体。 ➢ρ=1的物体叫做绝对白体。 ➢τ=1的物体叫做绝对透明体。 显然黑体、白体和透明体都是假定的理 想物体。
黑体模型
➢黑体的吸收比α=1,意味着黑体能全部吸收各种波长的辐射能。 ➢自然界中并不存在黑体,但可以用人工的方法制造。 ➢在空腔壁(温度均匀)上开一个小孔,由于空腔较大,投射的辐 射能经小孔射入孔腔后,经多次反射吸收后才会出去。反射的能量 与投入的能量相比很小,小孔面积越小,吸收比就越→1。若小孔 面积/孔腔面积小于0.6%,内壁吸收率为0.6时,小孔的吸收比可 大于0.996。 ➢就辐射特性而言,小孔具有黑体表面一样的性质。
✓当表面的不平整尺寸大于投入辐射的波长时,形成漫反射,这时
从某一方向投射到物体表面上的辐射向空间各个方向反射出去。 ✓一般工程材料的表面都形成漫反射。
镜反射
漫反射
➢辐射能投射到气体上时,气体对辐射能几乎没有反射能力, ρ=0 ,从而
α+τ=1
即吸收性大的气体,其穿透比就差。
➢对于固体和液体呈现的吸收和反射特性不涉及物体的 内部。因此物体表面状况对辐射特性的影响至关重要。 ➢对于气体,辐射和吸收在整个气体容积中进行,表面 状况则无关紧要。
➢揭示了黑体辐射能按照波长的分布规律,或者说它给 出了黑体单色辐射力与波长和温度的依变关系。
单色辐射力随着波长的增加,先增大,然后又减小。
维恩位移定律
➢最大单色辐射力所对应的波长λm与温度T之间存在着如下关系:
mT a x 28 .69 m K 7
✓随着温度的增高, 曲线的峰值向左移 动,即移向较短的 波长。
分数,记为Fb(λ1-λ2)。于是
Fb(12)
12Ebd 0Ebd
T14
12Ebd
T14 ( 02Ebd 01Ebd)Fb(02) Fb(01)
式中:Fb(0-λ2)、Fb(0-λ1)分别为波长从0至λ2和0至λ1的黑体辐
射占同温下黑体辐射力的百分数。
能量份额Fb(0-λ)可以表示为单一变量λT的函数,即
所有方向发射出去的全部波长的辐射能的总
量,[W/m2]。 ➢辐射力从总体上表征物体发射辐射能本领的大小。
➢(2)单色辐射力Eλ:在热辐射的整个波谱内,不同波长发射 出的辐射能是不同的。 ➢单位时间内物体的单位表面积向半球空间所有方向发射出去的 某一特定波长的辐射能。称为单色辐射力。[W/m3] ➢对特定波长λ来说:从λ到λ+dλ区间发射出的能量为dE。
为了计算高温辐射的方便,有时把上式改写成如下形式:
Eb C0(1T00)4
式中:C0—黑体辐射系数,5.67W/(m2.K4)。
②黑体辐射函数
➢在许多实际问题中,往往需要确定某一特定波长区段内的辐射
能量。黑体在[λ1,λ2]区段所发出的辐射能为
Eb() 2Ebd
12
1
➢把这一波段的辐射能表示成同温下黑体辐射力(0-∞)的百
例题8-1 P212
(2)斯蒂芬—玻尔兹曼定律(第二个定律): ① 在热辐射分析计算中,确定黑体的辐射力至关重要。 由普朗克定律知:
E b0 E b d0 ec2c (1 T )5 1dT4
式中,σ= 5.67×10-8 W/(m2K4),是Stefan-Boltzmann常数 。
2、物体的吸收比、反射比及穿透比
➢当热辐射的能量投射到物体表面上时,和可 见光一样,会发生吸收、反射和穿透现象。
辐射能的吸收、反射和投射
热能
高温 物体
辐射能流(热射线)
G
与中间介质无关 而由电磁波传输
反射
GR
吸收
GA 热

低温物体
GD
穿透
QQ Q Q
Q Q Q 1 QQQ
1
式中:各能量的百分数分别称为该物体对投 入辐射的吸收比、反射比和穿透比,记为α、 ρ、τ。
(1)对固体或液体表面,投射到其上的辐射能在一个极短的距离
内就被吸收完了。金属导体只有1μm,大多数非导电材料为1mm。
则τ=0。于是,对于固体和液体,
α+ρ=1
善于吸收就不善于反射
➢镜面反射和漫反射 ✓当表面的不平整尺寸小于投入辐射的波长时,形成镜面反射。 (例如高度磨光的金属板)。
F b(0)0E T b4 d0 t E T b5d(T)f(T)
➢f(λT)称为黑体辐射函数。为计算方便,黑体辐射函数f(λT) 已制成表格供计算辐射能量份额时查用(表8-1P214)。 ➢已知能量份额后,在给定的波段区间,单位时间内黑体单 位面积所辐射的能量可方便地由下式算出:
Eb(12) Fb(12)Eb
E
dE
d
✓单色辐射力与辐射力之间的关系:
E
0
ቤተ መጻሕፍቲ ባይዱ
Ed
2 黑体辐射的基本定律及相关性质
可以归结为三个定律: ✓普朗克定律 ✓斯蒂芬—玻尔兹曼定律 ✓兰贝特定律
(1)普朗克定律
Eb
c15
ec2 (T) 1
式中,λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.742×10-16 Wm2; c2 — 第二辐射常数,1.4388×10-2 WK;
相关文档
最新文档