分子生物学发展历程
分子生物学的发展历程与应用

分子生物学的发展历程与应用分子生物学是研究生命分子组成和功能的科学,它的出现和发展开启了生命科学的新时代。
从20世纪初的生物化学研究到现在的基因编辑技术,分子生物学在生命科学和医学领域中取得了一系列重大的成就。
本文将介绍分子生物学的发展历程及其应用。
1. 分子生物学的起源和发展分子生物学的起源可以追溯到二十世纪初期,当时生物学家开始将化学概念应用到生物学中。
生物化学家森林·吉布斯提出了一个概念,即“生命是一系列复杂的化学反应的产物”。
吉布斯的这个概念为分子生物学的出现奠定了基础。
到了20世纪40年代,分子遗传学家威廉·欧文和加利·科恩等人通过研究细菌的遗传物质发现了一种新的物质——核酸。
核酸不仅可以遗传信息,而且具有极高的化学适应性,这使得研究生命分子组成和功能变得更加容易。
进入20世纪50年代,随着生化技术的发展,分子生物学得以扩展到更多领域。
时间轴为生命科学的爆炸性进展提供了平台。
罗斯福研究所的詹姆斯·沃森和弗朗西斯·克里克在1953年解读了DNA的结构,这使得人们开始真正了解DNA遗传信息传递路径。
随后,研究者开始探索DNA序列的特点和意义,同时也发现RNA在细胞内具有关键的作用。
在20世纪60年代,生物物理学家马克斯·佛希等人提出了蛋白质折叠和结构形成的理论,更进一步加深了生命分子的研究。
到了20世纪70年代和80年代,DNA修饰和基因表达的分子机制研究得到了进一步发展。
研究者开始使用克隆技术制备DNA 重组体并进一步研究一个基因的结构和功能。
同时,也出现了更多用于研究分子生物学的实验技术,如蛋白质电泳、PCR、基因芯片等。
这些技术的出现使得分子生物学研究更加深入、精细和有效。
2. 分子生物学的应用分子生物学的发展催生了一系列生物工程和医药领域的技术和应用。
以下是一些重要的应用:(1)克隆技术克隆技术是人类首次成功分离和扩增DNA片段的重要技术之一。
分子生物学技术的发展与应用前沿

分子生物学技术的发展与应用前沿分子生物学技术是指基于DNA、RNA、蛋白质等分子的结构和功能,研究生命活动及其调控的技术。
在生命科学领域中,分子生物学技术一直是一项非常重要的研究方向。
它主要涉及基因克隆、蛋白质分离和鉴定、基因工程、蛋白质工程、基因表达、基因组学等方面,可应用于医学、药学、农业、环境保护、食品工业等领域。
一、现代分子生物学的发展分子生物学的研究从20世纪50年代开始,当时研究人员通过X-射线照片的分析和化学方法探索DNA的化学结构及其在遗传信息传递中的作用。
20世纪60年代到70年代,DNA重组技术的出现,催生了基因工程、DNA选择性切割酶、基因克隆等技术的问世,人们实现了在体外复制DNA,比较准确地描述了基因组序列,并通过转基因技术将外源基因导入了真核生物或原核生物体内在新世纪初期,人们提出了“基因组学”这一专门研究全基因组结构和功能的领域,这项技术已成为分子生物学研究的重要分支。
例如,利用基因芯片技术可以分析数万条基因信息,可广泛用于肿瘤、心血管疾病等领域的疾病标记和诊断。
此外,高通量测序技术的发展,使得基因组和转录组的研究变得更加便捷、精准。
而深度挖掘、多组织比对、功能注释等分析手段,也使得分子生物学领域的关键问题获得了更加准确、全面的解答。
二、分子生物学技术在癌症研究中的应用前沿基于分子生物学技术的研究有着广泛的应用,其中包括了癌症的基因检测和治疗研究。
一些先进的研究手段如单细胞测序技术,局部治疗手法,肠道菌群治疗等均源于分子生物学技术。
例如,应用基因芯片技术和测序技术,人们已经发现了很多肿瘤相关的基因变异,在肿瘤诊断、分层治疗、个体化治疗等方面有着重要的应用前景。
癌症的治疗是分子生物学技术的前沿领域,利用产生特异性效应的药物靶向癌细胞,可以实现更为有效的癌症治疗。
近年来,CART-T细胞疗法也在癌症治疗中得到了广泛的应用,CART-T这一技术应用T细胞特异性受体基因工程技术,获得了生物学的变革性成功,并在临床应用中获得了一系列的成功。
简述分子生物学发展史

简述分子生物学发展史分子生物学的发展大致可以分为三个阶段,第一个是准备和酝酿阶段,第二个是现代分子生物学的建立和发展阶段,第三个是初步认识生命本质并改造生命的深入发展阶段。
下面将就这三个阶段的主要任务和功绩做简单的介绍。
第一阶段:在上世纪的后期,巴斯德由于发现了细菌而在自然科学史上留下丰功伟绩,但是他的“活力论”观点,即认为细菌的代谢活动必须依赖完整细胞的看法,却阻碍了生物化学的进一步发展。
直至1890~1900年问suchner兄弟证明酵母提出液可使糖发酵之后,科学家们才认识到细胞的活动原来可以再拆分为更细的成分加以研究。
此后相继结晶了许多酶,如腺酶(Sumner,1926)、胰蛋白酶(Northrop,1930)及胃蛋白酶(Northrop及Kunitz,1932)等,并且证实了这些物质都是蛋白质。
这些成果开辟了近代生物化学的新纪元。
事实上,分子生物学正是在科学家们打破了细胞界限之日诞生的。
在这以后的几十年间,科学界普遍认为,蛋白质是生命的主要物质基础,也是遗传的物质基础。
与此同时,被湮没达35年之久的孟德尔遗传定律(1865),又被重新发现,摩根等在这个定律基础上建立了染色体学说,使遗传学的研究引起了科学界的重视。
这个时期,尤其是在第一次世界大战之后,正是物理学空前发达的年代,量子理论和原子物理学的研究表明,尽管自然界的物质变化万千,但是组成物质的基本粒子相同,它们的运动都遵循共同的规律。
那么,是否可以应用物理学的基本定律来探讨和解释生命现象呢?不少科学家抱着这个信念投身到生命科学的研究中,从而开始了由物理学家、生化学家、遗传学家和微生物学家等协同作战的新时期,在这个时期里,科学家们各自沿着两条并行不悖的路线进行研究。
一派是以英国的Astbury等为代表的所谓结构学派(structurists),他们主要用x射线衍射技术研究蛋白质和核酸的空间结构,认为只有搞清生物大分子的三维结构,才能阐明生命活动的本质,分子生物学一词正是Astbury在1950年根据他的这一思想首先提出来的。
分子生物学发展史

分子生物学发展史分子生物学的发展可以追溯到19世纪末的细胞学和遗传学研究。
当时,科学家已经发现了细胞是生命的基本单位,并且遗传物质存在于细胞核中。
然而,对细胞和遗传物质的详细了解还只是个谜。
直到20世纪中叶,随着DNA的发现和结构解析,分子生物学迎来了重要的突破。
1953年,詹姆斯·沃森和弗朗西斯·克里克发表了关于DNA双螺旋结构的研究成果。
他们提出了由两条互补的链组成的DNA分子结构,其中碱基通过氢键相互配对。
这一发现揭示了DNA复制、转录和翻译的分子机制,奠定了分子生物学的基础。
在DNA结构解析之后,科学家开始探索DNA在遗传中的作用。
1958年,弗朗西斯科·雅各布和杰克·莫劳提出了第一个关于DNA复制的半保存性复制模型。
他们发现DNA分子能够通过分离原来的两条链,每一条链都能够作为模板合成一条新的互补链,从而实现DNA的复制。
同时期,研究人员开始使用DNA作为遗传信息的载体,利用DNA作为模板合成RNA分子的复制过程,这一过程被称为转录。
在20世纪60年代,科学家发现RNA能够将DNA的遗传信息转换为蛋白质。
这一发现揭示了生物体内蛋白质合成的分子机制,称为翻译。
到了20世纪70年代,分子生物学的研究领域进一步扩展。
科学家开始研究基因的表达调控机制,包括DNA甲基化、组蛋白修饰和转录因子等。
他们发现这些过程对于基因的转录和表达具有重要的调控作用,从而进一步解析了生物体内基因调控的分子机制。
此外,分子生物学的研究还涉及到RNA的结构和功能。
20世纪60年代,伍德·霍尔利提出了RNA的三级结构的假设,被后来的研究证实是正确的。
随后的研究发现,不同类型的RNA在细胞中具有不同的功能,其中包括信使RNA、核糖体RNA、转运RNA和微小RNA等。
进入21世纪,随着分子生物学技术的不断进步,研究人员能够更深入地研究生物分子的结构和功能。
例如,X射线晶体学技术可以解析生物大分子的高分辨率结构,核磁共振技术可以研究生物分子的动力学性质。
分子生物学与基因工程

分子生物学与基因工程分子生物学与基因工程是现代生物科学领域中两个重要的研究方向。
分子生物学是研究生物体内基本生物分子如核酸、蛋白质等的结构、功能和相互作用的科学,而基因工程则是利用分子生物学的方法,对基因进行操作和改造的技术和方法。
一、分子生物学的发展分子生物学起源于20世纪的中期,随着DNA的发现和结构解析,科学家们对基因的了解有了重大的突破。
随后,人类基因组计划的启动将分子生物学推向了新的高度。
经过多年的努力,分子生物学的研究范围逐渐扩大,技术手段不断进步,如PCR、基因测序等技术的发展使得科学家们能够更加深入地研究生物分子的结构和功能。
二、基因工程的原理和应用基因工程是通过切割、插入、改造和转移DNA分子,实现对基因的改变和重组的技术。
它主要包括基因的克隆和表达、转基因技术、基因敲除和基因编辑等。
基因工程的应用广泛,可以用于农业、医学、环境保护等多个领域。
在农业方面,基因工程技术可以通过转基因作物的培育提高农作物的产量和抗性,有效解决粮食安全问题。
比如,通过转基因技术插入抗虫基因,使作物具备抗虫性,降低农药使用量,减少农药对环境的污染。
在医学领域,基因工程技术可以用于治疗遗传性疾病、癌症等疾病。
比如,基因编辑技术CRISPR-Cas9的出现,使得科学家们可以精准地修复人体基因,治疗一些遗传性疾病。
在环境保护方面,基因工程技术可以用于解决一些环境问题。
比如,通过转基因技术改造一些细菌,使其具备降解有毒物质的能力,用于处理工业废水和固体废物。
三、分子生物学与基因工程的关系分子生物学是基因工程的基础和核心科学。
分子生物学的研究成果为基因工程技术的发展提供了理论和实验依据。
分子生物学提供了基因工程技术所需的DNA分离、DNA序列分析等基本技术手段。
通过PCR技术,研究人员可以从大量的DNA样品中扩增目标片段,以便于后续的克隆和改造。
基于分子生物学的DNA测序技术,使得基因工程可以更加精确地进行基因编辑和改造。
分子生物学的研究及发展

分子生物学的研究及发展分子生物学的发展源于20世纪初期遗传学的突破和发展。
1909年,Johannsen首次提出了“基因”这个概念,奠定了分子生物学研究的基础。
20世纪50年代是分子生物学发展的黄金时期,许多重要的发现和突破在这个时期取得。
例如,Watson和Crick于1953年首次提出了DNA的双螺旋结构,解决了DNA的分子结构以及遗传信息传递的机制,揭示了遗传学的物质基础。
随后,研究人员还发现了RNA的作用和结构,特别是在转录和翻译过程中的重要作用。
这些基础研究的突破为分子生物学奠定了坚实的基础。
在此之后,分子生物学的研究逐渐深入,包括DNA和RNA的复制、修复和重组等方面的研究。
同时,分子生物学还探索了基因调控的机制和细胞信号传导的过程。
这些研究的突破为我们理解生物体内各种生命活动的调控机制提供了重要的线索。
分子生物学的应用领域也在不断扩展。
在医学领域,分子生物学的研究为疾病的诊断、预防和治疗提供了重要的理论和实践基础。
例如,通过检测特定的基因突变或表达水平,可以准确地诊断一些遗传病或癌症,并制定相应的治疗方案。
在农业领域,分子生物学的成果也推动了植物育种的进展,通过基因工程技术将特定基因导入作物中,使其具有特定的抗病性、耐旱性等优良性状。
此外,分子生物学还在环境保护、食品安全等领域起着重要的作用。
例如,通过基因测序技术可以追溯食品中的基因修改成分,保障食品安全。
在环境保护方面,利用分子生物学的方法可以检测环境中的有害物质和污染物,并评估其对生物体的影响。
总之,分子生物学作为现代生物学的重要学科,通过从分子角度研究生物的基本结构和功能,为我们对生命的理解提供了重要的线索和工具。
随着技术的不断发展和应用领域的不断扩展,分子生物学将在未来发挥越来越重要的作用。
分子生物学发展简史

分子生物学发展简史1.DNA的发现:19世纪末至20世纪初,生物学家们开始研究细胞核中的染色质,发现其中存在着一种未知的物质。
1909年,乌拉圭生物学家戈梅斯发现这种物质与遗传有关,他将其命名为染色质物质。
之后的几十年中,科学家们陆续发现了DNA(脱氧核糖核酸)和RNA(核糖核酸)的存在,并确定了它们在遗传信息传递和蛋白质合成中的重要作用。
2.DNA的结构解析:1953年,詹姆斯·沃森和弗朗西斯·克里克成功解析出DNA的双螺旋结构,并提出了DNA的复制和遗传信息传递的模型。
这一发现为现代分子生物学的发展奠定了基础。
3.重组和转化:1960年代,赫尔曼·莫拉和塞西尔·赫尔希等科学家们发现了重组DNA技术,使得科学家们能够将来自不同生物体的基因片段组合成新的DNA分子。
这一技术的发展不仅推动了基因工程的发展,也为分子生物学的研究提供了重要的工具。
4.基因调控的研究:20世纪60年代后期,弗朗西斯·克里克和詹姆斯·怀森伯格提出了“中心法则”,即DNA决定RNA,RNA决定蛋白质,从而启发了对基因调控的研究。
科学家们开始研究基因的表达调控机制,发现在基因启动子和转录因子之间存在特定的结构和相互作用关系。
5.基因组学的兴起:1990年,国际人类基因组计划正式启动,旨在测序和研究人类基因组,为人类疾病的研究提供基础。
随后,基因组学的发展迅速,细菌、动植物和其他生物的基因组也相继被测序,为生物学研究提供了更多的资源。
6.RNA干扰和基因沉默研究:1998年,安德鲁·赛克雷和克雷格·梅罗发现RNA干扰现象,即通过寡核苷酸对RNA进行特异性沉默。
这一发现引起了巨大的轰动,并为基因沉默研究提供了新的方法和概念。
7.蛋白质组学的发展:随着基因组学的成熟,科学家们开始关注生物体内的蛋白质组成和功能,开展了蛋白质组学的研究。
通过高通量的蛋白质质谱技术,科学家们可以更全面地研究蛋白质的结构和功能。
分子生物学发展历程

分子生物学发展历程1. 哎呀,说起分子生物学的发展历程,那可真是一段精彩纷呈的故事!就像是破案侦探一样,科学家们一步步揭开了生命的神秘面纱。
2. 要从1860年代说起,那时候孟德尔在修道院里种豌豆玩,谁知道这一玩就玩出了遗传学的基础。
这就像是在玩积木游戏,却不小心发现了积木的排列规律。
3. 到了1900年代初,科学家们发现了染色体。
这些小东西在显微镜下扭来扭去的,就像是跳舞的面条。
大家都很好奇,这些"面条"究竟是用来干嘛的。
4. 1944年,艾弗里做了个超厉害的实验,证明遗传信息是储存在脱氧核糖核酸里的。
这个发现就像是找到了生命密码本的钥匙,让所有人都兴奋不已。
5. 1953年可是个大年份!沃森和克里克发现了脱氧核糖核酸的双螺旋结构。
这就像是发现了生命的蓝图,原来它长得像个扭扭梯子。
这个发现让他们高兴得睡不着觉,在酒吧里又蹦又跳。
6. 1958年,科学家们发现了中心法则,就是脱氧核糖核酸到核糖核酸,再到蛋白质的过程。
这就像是发现了生命信息传递的高速公路,信息就沿着这条路跑来跑去。
7. 1960年代,遗传密码被破译啦!原来生命的语言是用三个碱基一组来编写的。
这就像是破解了外星人的密码本,让科学家们兴奋得手舞足蹈。
8. 1970年代,基因工程技术开始发展。
科学家们学会了剪切和粘贴基因,就像是玩剪贴画一样。
这下可好,想要什么基因就能造什么基因,简直像是变魔术。
9. 1980年代,聚合酶链式反应技术被发明出来啦!这个技术能把很少的脱氧核糖核酸复制成很多份,就像是给基因装上了复印机。
这个发明让做实验方便多啦!10. 1990年代开始搞人类基因组计划,要把人体里所有的基因都找出来。
这工程可真不小,就像是要数清楚天上有多少颗星星。
整整花了13年时间才完成!11. 进入21世纪,基因编辑技术又有了新突破。
现在可以像改错别字一样修改基因,这技术厉害得简直像科幻电影里演的那样。
不过这也让大家担心,万一改错了可咋办?12. 现在的分子生物学还在飞速发展,每天都有新发现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
King’s Lab. London University UK
1962
James Watson (34y)
Francis Crick (46y) Maurice Wilkins (46y) DNA Double Helix model 1953
1.3.5.
遗传密码的破译
破解遗传密码
DNA双螺旋结构揭示之后的又一研究热点 遗传学家:根据DNA的结构和基因在细胞中的 作用进行推断
8年后,科学界 才确信“中心 法则”被“逆 转”了 1970年 David Baltimore 分离到Reverse Transcriptase
Biochemistry的双重使命:
分析细胞的组成成分(静态生化)
研究物质的代谢规律(动态生化)
十九世纪末到二十世纪初 生物化学的重要发展时期
• 组成蛋白质的20种基本氨基酸被揭示 • 蛋白质中连接氨基酸的“肽键”被证实 • 糖酵解途径、尿素循环、三羧酸循环的发现 • “pH” 概念,“缓冲”系统,“胶体”理论 • 大分子之间以氢键和离子键互作重要性的揭示
1928-1944 进行16年的肺炎链球菌遗传转化研究 证明DNA是转化因子 The lifelong pity was due to…..
科学家对核酸的了解还知之甚少
DNA分子的功能也就更不为人知 蛋白质可能是遗传专一性的决定分子 DNase失活实验中未能完全排除对蛋白酶的失活
第一个动摇了“蛋白质是基因”的理 念奠定了“DNA是遗传物质”的理论 基础
Frederick Sanger
"for his work on the structure of proteins, especially that of insulin"
1958 J. Lederberg (33y)
Phage transduction
The Nobel Prize 1959
S. OchBiblioteka a (54y)Wendell Meredith Stanley Rockefeller Institute USA
"for their preparation of enzymes and virus proteins in a pure form"
The Nobel Prize in Chemistry 1958
A. Kornberg (41y)
Rich phosphate bonds of ATP --- Energy
Isolation of
DNA polymerase I
进 入
研究遗传物质-基因的本质 理解基因调控生化代谢过程 遗传学和生物化学是
分子生物学发展的根基
分子生物学是遗传学和
生物化学融合的结果
1.3.2.
分子生物学史的
第一个重要发现
One gene - One enzyme
1941年,George Beadle和Edward Tatum Neurospora crassa (粉色面包霉菌) 提出的“ one gene ─ one enzyme”的假说
(获得1958年Nobel奖)
说明了基因的生化作用本质是控制酶的合成
优秀女科学家
在双螺旋结构发现几年后,因癌症而病逝,
核糖与磷酸连接成的扭曲绳子,每 对揭示 DNA双螺旋结构作出过重要贡献,但却受到
歧视和不公待遇
一节上都有配对的碱基
助手!待遇!
背景!交流!
X~ray photograph of DNA with high quality
Rosalind Franklin
tRNAphe cloverleaf structure
How to synthesize triplet RNA Genetic coden
1.3.6. mRNA的发现 operon的提出
直到1960年: DNA-RNA-蛋白质之间的关系 仍未获得有力的实验证据 仍未提出明确的科学阐明
关键: 证明“遗传密码的携带者-mRNA的存在”
F. Jacob (44y) J. Monod (55y) A. Lwoff (63y)
暗示了“三联体遗传密码”
以外的“空间调控密码” 的存在,为分子生物学 的发展奠定了基础
NP 1965
central dogma
1.3.7
中心法则的发展
1975 NP
1962年 Howard Temin 发现了Reverse Transcription
1.3.4.
DNA双螺旋结构的揭示
分子生物学的重要里程碑
1951. James Watson
(Luria的第一个研究生 23y) 丹麦 哥本哈根 Kalckar Lab.
Post-Do
访问意大利的那不勒斯动物研究所时
King’s Lab. London Univ. Maurice Wilkins
35y Francis Crick 23y James Watson
1951 Cavendish Lab. Cambridge University UK
性格不同,专业互补 紧密合作,锁定目标
开创了一种研究风格
“对文章和实验进行讨 论交流是重中之重, 理论和讨论比实验和 观察更为重要”。
在确定DNA分子结构的研究 中,没有用DNA分子做任何 一个实验!
1933
Thomas Hunt Morgan
早期的遗传学家们研究基因
Forward Genetics 在不知基因化学本质的前提下
分析突变体在世代间的传递规律 研究基因的特性和染色体的定位 描述基因突变和染色体变异效应
遗传学是依靠逻辑分析 的推理性科学
二十世纪中叶的遗传学家们不再 满足于基因的抽象观念! 将研究的前沿聚焦到揭示基因的 本质和它们的作用机制!
等着瞧吧, 我的时代总有一天会来临
Mendel临终前说;
Gregor Mendel 1822-1884
"for his discoveries concerning the role played by the Chromosome in heredity , demonstrated that genes are on the chromosome"
Jacques Monod
Francois Jacob
Arthur Pardee Francois Jacob Jacques Monod 通过 (Pa-Ja-Mo) 大量实验最终证明
基因通过RNA严格地控制着蛋白质的合成 Naming as “messenger RNA”
Lac. Operon Concept of mRNA
1.3. 分子生物学 发展的历程
MILESTONE
Nobel medal
Half a pound of 23-karal gold. 2.5 inches across
近半个世 纪以来
近半个世 纪以来
1.3.1. 分子生物学支 撑学科的崛起
进化论
”物种起源” 物竟天择 自然选择 适者生存 生存斗争
生物化学家:建立体外的蛋白质合成系统
生物化学家在破解遗传密码中所作出的贡 献成为分子生物学中最卓越的发现之一
Marshall Nirenberg 1968 NP
约翰· 马太(Johann Heinrich Matthaei) 和马歇尔· 尼伦伯格 (Marshall Nirenberg)的成功完
全是靠运气!
Ser-C14….
Leu-C14 ….
Lys-C14 ….
Gly-C14 ….
体外蛋白质合成系统方法进行改进 利用不同polyNt指导蛋白质的合成
Aug/1961 , Nov/1961 (3个月内)
Marshall Nirenberg
两篇文章投稿 <美国国家科学院进展 PNAS>
遗传密码的破译找到了突破口
“研究与讨论,分析与 推论是建立在大量实 验数据和科学论文的 基础上的”
性格不同,专业互补 紧密合作,锁定目标
海阔天空的想 脚踏实地的干 Imagination is more important than knowledge
在确定DNA分子结构的研 究中,没有用DNA分子做 任何一个实验!
“DNA双螺旋结构”故事如果缺少了对 Rosalind Franklin悲剧命运的描述 那么这个故事将是不完整的!
而且也得益于机遇和对机遇的把握
• 与会者被震惊,并成为大会的学术焦点
Gobind Khorana 建立了合成具有特定碱基序列的oligo dNt的有效方法 简便快速……..促进了在随后内5年所有密码的破译
R. Holley H.G. Khorana M. Nirenberg
1968
NP
Robert Holley(46y) H. Gobind Khorana(46y) Marshall Nirenberg(41y)
同在美国华盛顿国家关节炎和 代谢疾病研究所工作的两位名 不见经传的德国生物学家
22/May/1961,Mon J. Matthaei: 细菌提取物、可溶性RNA组分 (tRNA)、20种(其中16种被标记) ATP、缓冲液、polyU
混合,35℃下,1hr,
结果表明:polyU存在时,被标记的aa进入到蛋白质中 27/May/1961,Sat 答 案: polyU存在时, 合成了Phe-Phe-Phe….肽链 1周时间内: J. Matthaei 破译了第一个遗传密码
在文章发表之前,两人有幸参加
• Nirenberg 分钟的分组报告 196115 年 8月第五届国际生物化学大会 • 到会者寥寥无几,但内容被传向 Crick 他们的成功不仅在于他们的努力和才智
• Crick意识到Nirenberg和Matthaei工作的重要价值