浅谈斐波那契数列的真善美
斐波那契数列及其性质

裴波纳契数列及其性质在现实生活中,我们经常会遇到类似“数列”变化的一系列经济问题,裴波纳契数列出现在我们生活中的方方面面,一些问题不仅可以用裴波纳契数列表示,而且本质上就是裴波纳契数列,可见裴波纳契数列在很多数学分支都有很广泛的应用,因此研究裴波纳契数列非常必要。
本文通过探讨裴波纳契数列的性质,进一步掌握数列的数字排列、增减变化、波动趋势等数项之间的变化规律,继而给出一系列与裴波纳契数列相关问题的解决方案,特别是对中学数学教育中,如何让学生巧妙解题具有启发作用。
1. 裴波纳契数列的由来斐波那契,公元13世纪意大利数学家,在他的著作《算盘书》中记载着这样一个“兔子繁殖问题”:假定有一对大兔子,每一个月可生下一对小兔子,并且生下的这一对小兔子两个月后就具有繁殖能力。
假如一年内没有发生死亡,那么,从一对小兔子开始,一年后共有多少对兔子?问题的解答思路:将每个月的兔子总对数列出来即可(需考虑到每个月具有生殖能力的兔子的对数),如下:月份 1 2 3 4 5 6 7 8 9 10 11 12 13 小兔子数(对) 1 0 1 1 2 3 5 8 13 21 34 55 89大兔子数(对)0 1 1 2 3 5 8 13 21 34 55 89 144兔子总数(对) 1 1 2 3 5 8 13 21 34 55 89 144 233所以一年后(即第13个月初),繁殖的兔子共有233对。
仔细观察,可以看出上面列出的兔子对数呈现出一个有趣的变化规律:即从第3个月起,每个月的兔子对数都是前两个月的兔子对数之和,把这些数字按照相同的规律推算到无穷多项,就构成了一列数列{}n F:1、1、2、3、5、8、13、21、34、55……,人们就把它称为裴波纳契数列,而将这个数列中的每一项称为“裴波纳契数”。
2. 生活中常见的裴波纳契数列数学模型:假如我们把{}n F 设为裴波纳契数列,不难发现数列{}n F 是由递推关系式:21F F =,213F F F +=,……,21--+=n n n F F F ()3≥n ()* 所给出的一个数列。
斐波那契数列及其性质

裴波纳契数列及其性质在现实生活中,我们经常会遇到类似“数列”变化的一系列经济问题,裴波纳契数列出现在我们生活中的方方面面,一些问题不仅可以用裴波纳契数列表示,而且本质上就是裴波纳契数列,可见裴波纳契数列在很多数学分支都有很广泛的应用,因此研究裴波纳契数列非常必要。
本文通过探讨裴波纳契数列的性质,进一步掌握数列的数字排列、增减变化、波动趋势等数项之间的变化规律,继而给出一系列与裴波纳契数列相关问题的解决方案,特别是对中学数学教育中,如何让学生巧妙解题具有启发作用。
1. 裴波纳契数列的由来斐波那契,公元13世纪意大利数学家,在他的著作《算盘书》中记载着这样一个“兔子繁殖问题”:假定有一对大兔子,每一个月可生下一对小兔子,并且生下的这一对小兔子两个月后就具有繁殖能力。
假如一年内没有发生死亡,那么,从一对小兔子开始,一年后共有多少对兔子?问题的解答思路:将每个月的兔子总对数列出来即可(需考虑到每个月具有生殖能力的兔子的对数),如下:月份 1 2 3 4 5 6 7 8 9 10 111213小兔子数(对) 1 0 1 1 2 3 5 8 13 21345589大兔子数(对)0 1 1 2 3 5 8 13 21345589144兔子总数(对) 1 1 2 3 5 8 13 21345589144233所以一年后(即第13个月初),繁殖的兔子共有233对。
仔细观察,可以看出上面列出的兔子对数呈现出一个有趣的变化规律:即从第3个月起,每个月的兔子对数都是前两个月的兔子对数之和,把这些数字按照相同的规律推算到无穷多项,就构成了一列数列:1、1、2、3、5、8、13、21、34、55……,人们就把它称为裴波纳契数列,而将这个数列中的每一项称为“裴波纳契数”。
2. 生活中常见的裴波纳契数列数学模型:假如我们把设为裴波纳契数列,不难发现数列是由递推关系式:,,……,所给出的一个数列。
从而,我们就可以轻而易举地算出两年,三年……以后的兔子数。
神奇的斐波那契数列

神奇的斐波那契数列一、斐波那契数列中世纪最有才华的数学家斐波那契(1175年~1259年)出生在意大利比萨市的一个商人家庭。
因父亲在阿尔及利亚经商,因此幼年在阿尔及利亚学习,学到不少时尚未流传到欧洲的阿拉伯数学。
成年以后,他继承父业从事商业,走遍了埃及、希腊、叙利亚、印度、法国和意大利的西西里岛。
斐波那契是一位很有才能的人,并且特别擅长于数学研究。
他发现当时阿拉伯数学要比欧洲大陆发达,因此有利于推动欧洲大数学的发展。
他在其他国家和地区经商的同时,特别注意搜集当地的算术、代数和几何的资料。
回国后,便将这些资料加以研究和整理,编成《算经》(1202年,或叫《算盘书》)。
《算经》的出版,使他成为一个闻名欧洲的数学家。
继《算经》之后,他又完成了《几何实习》(1220年)和《四艺经》(1225年)两部著作。
《算经》在当时的影响是相当巨大的。
这是一部由阿拉伯文和希腊文的材料编译成拉丁文的数学著作,当时被认为是欧洲人写的一部伟大的数学著作,在两个多世纪中一直被奉为经典著作。
在里面,记载着大量的代数问题及其解答,对于各种解法都进行了严格的证明。
斐波那契发现了一组对世界产生深远影响的神奇数字。
这组数字为0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,......这组数字存在着许多神奇而有趣的规律,其中的规律直到今天还在被源源不断地挖掘出来。
1、从第三个数字开始,后一个数字都等于前两个数字之和。
如2+3=5,3+5=8,34+55=89……2、随着数列项数的增加,每一个数字与后一个数字的比值无限接近于0.618。
如2/3=0.666,5/8=0.625,21/34=0.6176,34/55=0.6181,55/89=0.6179……二、黄金分割在各领域的广泛运用由斐波那契数列引发的0.618是个神奇的数字,它具有严格的比例性、艺术性、和谐性,蕴藏着很深的美学价值。
数学之美斐波那契数列

数学之美斐波那契数列数学之美:斐波那契数列斐波那契数列是一种奇妙而美丽的数学序列,它以其独特的规律和特性闻名于世。
从古至今,斐波那契数列一直是数学中备受研究和探索的重要对象。
本文将深入探讨斐波那契数列的定义、性质以及其在数学和实际生活中的应用。
一、斐波那契数列的定义斐波那契数列最初由13世纪的意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci)提出。
该数列以0和1开始,随后的每个数字都是前两个数字的和。
具体地,斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2) (n ≥ 2)通过这一简单的定义,我们可以得到斐波那契数列的前几个数:0、1、1、2、3、5、8、13、21、34、55... 以此类推。
二、斐波那契数列的性质斐波那契数列独特的性质使其成为了数学界一个备受关注的对象。
下面将介绍几个斐波那契数列的重要性质。
1. 黄金分割比例斐波那契数列中的相邻两个数之间,其比值逐渐趋近于一个固定的数值,即黄金分割比例(Golden Ratio),通常用希腊字母φ(phi)表示。
黄金分割比例约等于1.6180339887。
2. 黄金矩形与黄金螺旋基于黄金分割比例,可以构造出一系列特殊的矩形,即黄金矩形。
黄金矩形的长和宽之比等于黄金分割比例。
而当这些黄金矩形排列时,可以形成一种优美且对称的螺旋形态,即黄金螺旋。
3. 数学规律性与递推关系斐波那契数列所展现的数学规律性极其有趣。
每个数都可以由前两个数通过加法获得,这种递推关系使得数列中的个数无穷无尽。
三、斐波那契数列的应用除了在数学领域中引发了广泛的研究外,斐波那契数列还在现实生活中发现了一些有趣的应用。
1. 自然界中的斐波那契数列斐波那契数列的规律在自然界中也能找到许多身影。
例如,很多植物的花朵、树叶、果实等呈现出斐波那契数列的分布规律。
同样,许多动物的身体结构也符合斐波那契数列的比例。
认识斐波那契数列:什么是斐波那契数列?有何特点?

斐波那契数列,又被称为黄金分割数列或兔子数列,是一种在数学上极为著名且有趣的数列。
它由意大利数学家莱昂纳多·斐波那契在《计算之书》(Liber Abaci)中首次提出。
斐波那契数列不仅是数学领域的研究对象,更在日常生活中、自然界以及科学研究中展现出其独特魅力和重要性。
下面,我们将深入探讨斐波那契数列的定义、特点、以及其广泛的应用。
一、斐波那契数列的定义斐波那契数列是这样一组数列:1,1,2,3,5,8,13,21,34,……,其中每一个数字都是前两个数字的和。
具体来说,斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2),其中n≥2二、斐波那契数列的特点1. 递推公式:斐波那契数列的每一项都是其前两项的和,这是其最显著的特点。
这一特点使得斐波那契数列可以通过递推的方式轻松地计算出来。
2. 黄金分割率:斐波那契数列与黄金分割率(φ = (√5 - 1) / 2 ≈ 0.618)有着密切的联系。
当斐波那契数列的项数趋于无穷大时,相邻两项的比值会趋近于黄金分割率。
这一性质使得斐波那契数列在美学、建筑、艺术等领域具有广泛的应用。
3. 对称性:斐波那契数列具有一种神奇的对称性。
具体来说,对于任意正整数n,都有F(n) = F(n-1) + F(n-2) = F(n+1) - F(n-1)。
这种对称性使得斐波那契数列在数学上具有独特的美感。
4. 递归性质:斐波那契数列是一种递归数列,这意味着每一项都可以通过递归的方式来表示。
例如,F(5) = F(4) + F(3) = (F(3) + F(2)) + F(3) = 2F(3) + F(2) = 2(F(2) + F(1)) + F(2) = 3F(2) + 2F(1) = 3×1 + 2×1 = 5。
这种递归性质使得斐波那契数列在计算上具有较大的灵活性。
三、斐波那契数列的应用斐波那契数列作为一种重要的数学概念,其在各个领域都有着广泛的应用。
斐波那契数列的神奇之处

斐波那契数列的神奇之处斐波那契数列(Fibonacci sequence)起源于20世纪初期,由意大利数学家列奥纳多·斐波那契(L.Fibonacci)发现,并以他的名字来命名。
这个数列由数列中的前两个数0和1开始,后面的每个数都等于前面两个数之和。
数列的前几个数字为0、1、1、2、3、5、8、13、21、34、55、89、144……下面就让我们来探讨一下斐波那契数列的神奇之处。
1. 出现在自然界和人工制品中斐波那契数列不仅仅在数学上有意义,它还出现在自然界和人工制品中。
例如,一些植物的花序和果枝排列,他们的叶子数量、蜂房中蜂窝的排列等等,都符合斐波那契数列的规律。
同样,一些人工制品中也出现过斐波那契数列,比如乐器中的管长或键盘数目等等。
2. 黄金比例与斐波那契数列的关系斐波那契数列与黄金比例有着密切的关系。
所谓黄金比例就是两个数数量之和与较大的数之比等于较大的数之比与较小的数之比相等,这个比例约为1:1.618。
这种比例出现在各个领域,包括艺术、建筑、金融等等。
而斐波那契数列中相邻数之比很接近黄金比例,随着数列长度的增加,这个比例会越来越接近黄金比例。
3. 应用于投资和财务领域斐波那契数列在投资和财务领域有着广泛的应用。
投资者们往往利用这个数列来预测股票市场的走势,以及判断股票是否被高估或低估。
此外,在财务领域中,斐波那契数列也被用来解决各种问题,比如预测银行借贷期限、计算贷款等。
4. 数学问题的研究斐波那契数列一直是数学研究的重点之一。
从初中的数列和级数开始,到高中的函数、极限和导数等等,都与斐波那契数列有关。
这个数列也是数论和组合数学领域中一些基础问题的研究对象,如偏序关系、数的表示问题等等。
5. 算法和计算机编程斐波那契数列在算法和计算机编程中也发挥了重要的作用。
它是许多算法问题的基础,比如欧几里德算法、矩阵求幂算法等等。
此外,在计算机编程中,斐波那契数列也被用来解决一些实际的问题,比如优化代码性能、加密算法等等。
神奇的数列——斐波那契数列

神奇的数列——斐波那契数列斐波那契数列之美斐波那契是一位数学家,生于公元1170年,籍贯大概是比萨,卒于1240年后。
1202年,他撰写了《珠算原理》(Liber Abaci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
斐波那契数列因他解决兔子繁殖的应用题而引入,故又称为“兔子数列”。
除此之外,他对欧洲数学的另一大贡献就是引进阿拉伯数字,从而取代了复杂的罗马计数法。
有这样一个数列:1、1、2、3、5、8、13、21、34……前两个元素为1,其他元素均为前两个元素和。
在数学上以如下递归的方法定义:这就是斐波那契数列的数学定义。
奇妙的属性随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。
(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-1[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1f(m+n-1)=f(m-1)·f(n-1)+f(m)·f(n)利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。
浅谈菲波纳契数列的内涵和应用价值

欢迎共阅浅谈菲波纳契数列的内涵和应用价值99数学本四班莫少勇指导教师孙丽英摘要本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。
关键词Fibonacci 数列黄金数优选法数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。
古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。
神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。
一. Fibonacci 数列的由来Fibonacci 数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。
这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对?对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n =A n +B n根据题设,有这串数列的特点是:其中任一个数都是前两数之和。
这个兔子问题是意大利数学家梁拿多(Leomardo )在他所着的《算盘全集》中提出的,而梁拿多又名菲波纳契(Fibonacci ),所以这个数列称作菲波纳契数列,其中每一项称作Fibonacci 数。
它的通项是F n =51[(251+)n+1-(251-)n+1],由法国数学家比内(Binet )求出的。
二.Fibonacci 数列的内涵(1)Fibonacci 数列的通项的证明我们可以通过求解常系数线性齐次递推关系或者利用生成函数法来实现。
证法一:∵菲波纳契数列是一个2阶的线性齐次递推关系,它的递推方程是x 2-x-1=0, 特征根是251±∴通解是F n =C 1(251+)n +C 2(251-)n代入初值来确定C 1、C 2,得方程组 解这个方程组得 C 1=51251+,C 2=51-251- ∴原递推关系的解是 F n =51[(251+)n+1-(251-)n+1]证法二:设F n 的生成函数为F(x),则有 F(x)=F 0+F 1x+F 2x 2+……+F n x n +……x(F(x)-F 0)=F 1x 2+F 2x 3+…F n-1x n +……x 2F(x)=F 0x 2+F 1x 3+……把以上式子的两边由上而下作差得F(x)(1-x-x 2)+x=F 0+F 1x+(F 2-F 1-F 0)x 2+(F 3-F 2-F 1)x 3+…… =1+x+0+0+…… ∴F(x)=211xx --=)2511)(2511(1x x --+-=x A2511+-+x B2511--由⎪⎩⎪⎨⎧=++-=+0)251()251(1B A B A 解得A=5251+,B=5215- ∴F(x)=5251+k k k x )251(0∑∞=+-5215-kk k x )251(0∑∞=- ∴取x=1,k=n ,则F n =51[(251+)n+1-(251-)n+1](2)在Fibonacci 数列中,前后两项的比值1+n nF F 是以黄金数0.618为极限的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈斐波那契数列的真善美
小七怪小组
摘要自斐波那契数列产生至今,人们对其研究的热情经久不衰。
本文探究斐波那契数列的真、善、美,简单介绍斐波那契数列到底真在何处、善在何处、美在何处,并且得出斐波那契数列真、善、美三者之间的联系。
关键词斐波那契数列真善美
一、斐波那契数列的由来
13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道著名的兔子繁殖问题。
问题是这样的:如果每对兔子(一雄一雌) 每月能生殖一对小兔子( 也是一雄一雌,下同)每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12个月以后会有多少对兔子呢?
这个问题的解释如下:第一个月只有一对兔子;第二个月仍然只有一对兔子;第三个月这对兔子生了一对小兔子,共有1+l =2 对兔子;第四个月最初的一对兔子又生一对兔子,共有2+l =3对兔子;则由第一个月到第十二个月兔子的对数分别是: l , l , 2 , 3 , 5 , 8 ,13 , 21 , 34 , 55 ,89,144 , …… , 后人为了纪念提出兔子繁殖问题的斐波那契,将这个兔子数列称为斐波那契数列,学术界又称为黄金分割数列。
二、斐波那契数列与真
何为真?“真有两个含义, 一是指客观世界存在的客观物质, 二是指客观世界的本质规律。
”[1]在自然界中,许多事物本身蕴含的规律都跟斐波那契数列有关。
例如树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,之后才萌发新枝。
因此,一株树苗在一
段时间间隔后,例如一年,会长出一条新枝;
第二年新枝“休息”,老枝依旧萌发;此后,
老枝与“休息”过一年的枝同时萌发,当年生
的新枝则次年“休息”。
这样,一株树木各个
年份的枝桠数,便构成斐波那契数列。
这就是
图1 树木生长与斐波那契数列
生物学上著名的“鲁德维格定律”。
或许有人会说树木生长符合斐波那契数列的规律是一个巧合,其实不仅仅是树木的生长问题,植物的花瓣、叶子、花蕊的数目都和这斐波那契数列有关。
像梅花有5片花瓣,李树也是5片花瓣,鸢尾花、百合花(看上去是6片,实际上是两套3片)是3片花瓣,许多翠雀属植物的花瓣是8片,万寿菊的花瓣有1 3片,紫菀属植物的花有21瓣,大多数雏菊有34、55、89片花瓣。
这些数字的花瓣在植物界很常见,而其他数字的就相对很少。
这些数字按其大小排列起来,就是3、5、8、13、21、34、55、89……,也就是我们所说的斐波那契数列。
据生物学知识我们知道,植物的生长规律是其环境因素决定,如阳光、水、季节等,其生长过程遵循斐波那契数列的规律,是客观事物相互作用的结果。
除此之外,人类生理结构的发育也是符合斐波那契数列的规律。
这些都是客观世界存在的规律,因此斐波那契数列是客观世界形成的一种本质规律,这就说明了斐波那契数列是“真”的。
三、斐波那契数列与善
列宁曾说:“‘善’是对外部现实性的要求”。
[2]简单地说,善就是对外部现实事物的有用性。
自斐波那契数列产生至今,人们对其研究为何经久不衰?一大原因就是对其研究有极大的益处。
1.斐波那契数列在数学中的应用
关于斐波那契数列在数学中的应用,最经典的例子就是爬楼梯问题。
一个人要爬十级台阶的楼梯,规定每一步只能跨一级或者两级台阶,则一共有多少种方法爬上这个十级台阶的楼梯?分析过程是:爬上一级台阶只有一种方法,二级台阶有两种方法,三级台阶有三种方法,四级台阶有五种方法,五级台阶有八种方法,六级台阶有十三种……即1,2,3,5,8,13,……,所以爬上十级台阶的楼梯共有88种方法。
如果要爬n阶台阶呢?则有
①
种解法。
除了爬楼梯问题,还有许多数学问题可以通过斐波那契数列解决,读者感兴趣可深入去了解。
2.斐波那契数列在股市中的应用
利用斐波那契数列我们可以预测股市价格的变动,比如斐波那契数字在日循环周期中最大上升天数为55天,34天,21天,斐波那契数字在周循环周期中最大上升周数为34周,21周,13周,斐波那契数字在月循环周期中最大上升月数为13月,8月,5月,3月。
可以推测出,变盘日期如果与周的日期重叠,应视为重要的时间之窗,再与月的相吻合市场就会发生重大转折!
四、斐波那契数列与美
要想探寻斐波那契数列与美的关系,首先得了解什么是数学美。
什么是数学美?数学美是人的本质力量通过思维结构的呈现。
数学美有许多特性, 归纳起来主要有六个基本特点: 简单性、统一性、对称性、奇异性、整齐性和思辨性。
[3]自然界植物的生长规律,股市价格变动的规律等等,这些都是由各种复杂的因素相互作用形成的结果,而斐波那契数列用一个简单的数列就能反映它们的共同规律,因此可以说斐波那契数列具有简洁的美。
黄金分割率与斐波那契数列的联系最能体现斐波那契数列所具有的美学意义。
我们知道,黄金分割率被广泛于应用在绘画、雕塑、音乐等艺术领域中,其美学意义不可估量。
而令人惊叹的是,斐波那契数列中每一项与其后一项的比构成数列的极限恰好是黄金分割率,即
当时,
刚好是黄金分割率。
因此斐波那契数列也同样被广泛应用于各种美学灵感和创造当中。
在雕塑、音乐等艺术领域,斐波那契数列给予灵感的贡是巨大的,比如说巴赫的《赋格的艺术》,其旋律就是斐波那契数列这种螺旋式的优美曲线,有人说,斐波那契数列影响艺术800年,甚至,为了纪念斐波那契数列对艺术的贡献,一支乐队就叫做“斐波那契数列”。
斐波那契数列与影视剧也有不解之缘,如《达芬奇密码》、《度法玩具城》、《考试之神》中都曾出现过斐波那契数列的身影。
美剧《危机边缘》中更是无数次引用甚至还登上了该剧的海报。
[4]
五、斐波那契数列真、善、美三者之间的联系
斐波那契数列的真,也就是它的客观性,引起了斐波那契对其规律的发现和总结,从而引起人们对它研究的热情,人们在研究当中发现了它的美学意义,进而应用于各个领域当中,也就是发挥了它的善。
斐波那契数列的真是其善和美的前提,因为如果不符合客观规律,人们就会觉得没有研究它的意义,更别谈善和美了。
也是因为有了它的善和美,它的真才具有更大的意义。
①这个通项公式的推导过程读者感兴趣可阅读凌晓牧. 有趣的斐波那契数列[J]. 江苏教育学院学报(自
然科学版),2011,05:31-33.
参考文献:
[1]张雄,刘萍. 数学与真善美[J]. 大自然探索,1999,02:113-115+128.
[2](苏)列宁著;中共中央马克思、恩格斯、列宁、斯大林著作编译局译.哲学笔记[M].北京:人民出版社.1993.
[3]张清利,张国艳. 由斐波那契数列谈数学美[J]. 北京广播电视大学学报,2004,04:46-49.
[4]谢晶晶. 斐波那契数列的溯源与应用[J]. 语数外学习(数学教育),2013,09:26.
[5]于海杰. 奇妙的斐波那契数列[J]. 赤峰学院学报(自然科学版),2014,16:1-2.。