2020届安徽省淮南市高三第一次模拟考试数学文科试题(解析版)
2020年安徽省淮南市高考数学一模试卷(文科)

2020年安徽省淮南市高考数学一模试卷(文科)一、选择题1.(3分)若集合{||2|1}A x x =-…,|2B x y x ⎧==⎨⎬-⎩⎭,则(A B =I )A .[1-,2]B .(2,3]C .[1,2)D .[1,3)2.(3分)已知a R ∈,i 为虚数单位,若复数1a iz i+=-纯虚数,则(a = ) A .0B .1C .2D .1±3.(3分)已知a ,b 都是实数,那么“lga lgb >”是“a b >”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.(3分)函数1()3()2x f x x =-+零点的个数是( )A .0B .1C .2D .35.(3分)根据如表的数据,用最小二乘法计算出变量x ,y 的线性回归方程为( )x1 2 3 4 5 y0.5111.52A .ˆ0.350.15yx =+ B .ˆ0.350.25yx =-+C .ˆ0.350.15yx =-+ D .ˆ0.350.25yx =+ 6.(3分)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知ABC ∆的顶点(4,0)A ,(0,2)B ,且AC BC =,则ABC ∆的欧拉线方程为( ) A .230x y +-= B .230x y --=C .230x y -+=D .230x y --=7.(3分)函数21()||12f x x ln x =--的大致图象为( ) A . B .C .D .8.(3分)在ABC ∆中,4AB =,6AC =,点O 为ABC ∆的外心,则AO BC u u u r u u u rg 的值为( )A .26B .13C .523D .109.(3分)已知数列{}n a 满足11a =,且1x =是函数321()1()3n n a f x x a x n N ++=-+∈的极值点,设22log n n b a +=,记[]x 表示不超过x 的最大整数,则122320182019201820182018[](b b b b b b ++⋯+= )A .2019B .2018C .1009D .100810.(3分)如图,一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为5cm ,如果不计容器的厚度,则球的表面积为( )A .25003cm πB .26259cm πC .262536cm πD .215625162cm π11.(3分)已知双曲线2221(0)4x y b b -=>的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒,则1ABF ∆的周长为( ) A 1638+ B .4(21) C 438+ D .2(32)12.(3分)若函数2()x f x ax lnx x lnx=+--有三个不同的零点,则实数a 的取值范围是()A .1(1,)1e e e-- B .[1,1]1e e e -- C .1(1ee e --,1)- D .1[1e e e --,1]-二.填空题13.(3分)若实数x ,y 满足0,20,20,x y x y x y -⎧⎪-⎨⎪+-⎩„…„则2z x y =+的最大值为 . 14.(3分)已知4sin()65πα+=,5(,)36ππα∈,则cos α的值为15.(3分)已知函数()ex f x lne x =-,满足220181009()()()()(2019201920192e e ef f f a b a ++⋯+=+,b 均为正实数),则ab 的最大值为 . 16.(3分)设抛物线22y x =的焦点为F ,过点F 的直线l 与抛物线交于A ,B 两点,且||4||AF BF =,则弦长||AB = .三.解答题17.在ABC ∆中,角A ,B ,C 的对边分别为a ,bccos sin C c A =. (Ⅰ)求角C 的大小;(Ⅱ)已知点P 在边BC 上,60PAC ∠=︒,3PB =,AB ABC ∆的面积. 18.高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图. (Ⅰ)求图中a 的值;(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率;(Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下22⨯列联表:完成上述22⨯列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?附:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k …0.15 0.10 0.05 0.025 0.010 0k2.0722.7063.8415.0246.63519.(12分)如图在梯形ABCD 中,//AD BC ,AD DC ⊥,E 为AD 的中点224AD BC CD ===,以BE 为折痕把ABE ∆折起,使点A 到达点P 的位置,且PB BC ⊥. (Ⅰ)求证:PE ⊥平面BCDE ;(Ⅱ)设F ,F 分别为PD ,PB 的中点,求三棱锥G BCF -的体积.20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为13,1F ,2F 分别是椭圆的左右焦点,过点F 的直线交椭圆于M ,N 两点,且2MNF ∆的周长为12. (Ⅰ)求椭圆C 的方程(Ⅱ)过点(0,2)P 作斜率为(0)k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆是以AB 为底边的等腰三角形若存在,求点D 横坐标的取值范围,若不存在,请说明理由.21.(12分)设函数()xa e f x blnx e =-,且f (1)1=(其中e 是自然对数的底数).(Ⅰ)若1b =,求()f x 的单调区间;(Ⅱ)若0b e 剟,求证:()0f x >. 四.选考题22.在直角坐标系xOy 中,直线1:2C x =-,圆222:(1)(2)1C x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△2C MN 的面积.23.已知函数()|||2|f x x a x =++-. (Ⅰ)当3a =-时,求不等式()3f x …的解集;(Ⅱ)若()|4|f x x -„的解集包含[1,2],求a 的取值范围.2020年安徽省淮南市高考数学一模试卷(文科)参考答案与试题解析一、选择题1.(3分)若集合{||2|1}A x x =-„,|B x y ⎧==⎨⎩,则(A B =I )A .[1-,2]B .(2,3]C .[1,2)D .[1,3)【解答】解:Q 集合{||2|1}{|13}A x x x x =-=剟?,|{|2}B x y x x ⎧===<⎨⎩,{|12}[1A B x x ∴=<=I „,2).故选:C .2.(3分)已知a R ∈,i 为虚数单位,若复数1a iz i+=-纯虚数,则(a = ) A .0B .1C .2D .1±【解答】解:()(1)1(1)1(1)(1)2a i a i i a a iz i i i +++-++===--+Q 是纯虚数, ∴1010a a -=⎧⎨+≠⎩,即1a =.故选:B .3.(3分)已知a ,b 都是实数,那么“lga lgb >”是“a b >”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件【解答】解:0lga lgb a b a b >⇒>>⇒>, 反之由“a b >”无法得出lga lgb >.∴ “lga lgb >”是“a b >”的充分不必要条件.故选:B .4.(3分)函数1()3()2x f x x =-+零点的个数是( )A .0B .1C .2D .3【解答】解:由于函数1()3()2x f x x =-+是R 上的单调减函数,。
2022年安徽省淮南市高考数学一模试卷(文科)+答案解析(附后)

2022年安徽省淮南市高考数学一模试卷(文科)1. 已知集合,,若,则a 的取值范围为( )A.B.C. D.2. 设复数z 满足,则( )A. 0B. 1C. D. 23. 已知命题p :“且”是“”的充要条件;命题q :,曲线在点处的切线斜率为,则下列命题为真命题的是( )A. B.C.D.4. 在区间上随机取一个数x ,则的值介于0到之间的概率为( )A.B.C.D.5. 若实数x ,y 满足约束条件,若的最大值等于3,则实数a的值为( )A.B. 1C. 2D. 36. 已知函数,则下列说法正确的是( )A. 为奇函数B. 为奇函数C. 为偶函数D.为偶函数7. 在中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数无极值点,则角B 的最大值是( )A. B. C. D.8. .某三棱锥的三视图如图所示,该三棱锥的体积是( )A. B. 4 C. 2 D.9. 已知,,若,则的最小值为( )A. 6B. 9C. 16D. 1810. 已知是定义在R上的奇函数,若为偶函数且,则( )A. B. C. 3 D. 611. 若直线l:与曲线有公共点,则实数m的范围是( )A. B. C. D.12. 已知函数,有三个不同的零点,,,且,则的范围为( )A. B. C. D.13. 在等比数列中,,,则______.14. 已知函数,则的值是______.15. 已知双曲线的渐近线方程为,则E的焦距等于______.16. 已知函数满足:当时,,当时,,当时,且若函数的图像上关于原点对称的点至少有3对,有如下四个命题:①的值域为R;②为周期函数;③实数a的取值范围为;④在区间上单调递减.其中所有真命题的序号是______.17. 为进一步完善公共出行方式,倡导“绿色出行”和“低碳生活”,淮南市建立了公共自行车服务系统.为了了解市民使用公共自行车情况,现统计了甲、乙两人五个星期使用公共自行车的次数,统计如下:第一周第二周第三周第四周第五周甲的次数111291112乙的次数9691415分别求出甲乙两人这五个星期使用公共自行车次数的众数和极差;根据有关概率知识,解答下面问题:从甲、乙两人这五个星期使用公共自行车的次数中各随机抽取一个,设抽到甲的使用次数记为x,抽到乙的使用次数记为y,用A表示满足条件的事件,求事件A的概率.18. 如图,在三棱锥中,是边长为的正三角形,O,E分别是BD,BC的中点,,求证:平面BCD;求点E到平面ACD的距离.19. 已知数列满足,求的值,并证明数列是等差数列;求数列的通项公式并证明:20. 在平面直角坐标系xOy中,已知椭圆C:的离心率,椭圆的右焦点到直线的距离是求椭圆C的方程;设过椭圆的上顶点A的直线l与该椭圆交于另一点B,当弦AB的长度最大时,求直线l的方程.21. 已知函数判断函数的单调性;已知,若存在时使不等式成立,求的取值范围.22. 在直角坐标系xOy中,曲线C的参数方程为为参数,以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程为求曲线C的普通方程;若直线l与曲线C交于A,B两点,求以AB为直径的圆的极坐标方程.23. 已知函数的最小值为求m的值;若实数a,b满足,求的最小值.答案和解析1.【答案】D【解析】【分析】本题考查集合的运算,考查并集定义、不等式性质等基础知识,考查运算求解能力,属于基础题.利用并集定义、不等式性质直接求解.【解答】解:集合,,,的取值范围是故选:2.【答案】B【解析】【分析】由题意可得,求出结果.本题主要考查复数代数形式的运算,求复数的模的方法,属于基础题.【解答】解:复数z满足,,,故选3.【答案】D【解析】解:对于p,当且时,可得出,充分性成立,当时,不能得出且,必要性不成立,是充分不必要条件,p为假命题;对于q,,,由曲线在点处的切线的斜率为1,得,,即,曲线在点处的切线斜率为,q为真命题;所以为真命题,故选:根据充分必要条件的定义对p,q进行判断,再利用真值表判断真假即可.本题考查了充分必要条件的判断,复合命题的真假判断,属于基础题.4.【答案】A【解析】解:当时,,则,由几何概型中的线段型可得:在区间上随机取一个数x,则的值介于0到之间的概率为,故选:先求出的解集,再结合几何概型中的线段型求解即可.本题考查了几何概型中的线段型,属基础题.5.【答案】B【解析】解:由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为,即故选:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数,即可求解a值.本题考查简单的线性规划,考查数形结合思想,是基础题.6.【答案】C【解析】解:,,为偶函数,故A错误;,为偶函数,故C正确;,为非奇非偶函数,故B错误;,为非奇非偶函数,故D错误.故选:利用倍角公式降幂,再由辅助角公式化积,然后逐一分析四个选项得答案.本题考查二倍角的余弦的应用,考查型函数的图象与性质,是基础题.7.【答案】A【解析】解:由题意可知,,则无解或有两个相等的实数解,所以,因此,由余弦定理可得,因为,所以,所以B的最大值为,故选:求导,根据导数与函数极值的关系,求得,结合余弦定理即可求得B的最大值.本题考查导数的应用,导数与函数极值的关系,余弦定理的应用,考查转化思想,计算能力,属于中档题.8.【答案】B【解析】【分析】本题考查三视图的还原,由三视图可知:该三棱锥的侧面底面ABC,交线BC,,且,,,,据此即可计算出其体积.由三视图正确恢复原几何体是解题的关键.【解答】解:由三视图可知:该三棱锥的侧面底面ABC,交线BC,,且,,,,故选9.【答案】C【解析】解:由,,又,则,即,则,当且仅当,即,时取等号,故选:由平面向量共线的坐标运算求出x,y的关系,再结合均值不等式求最小值即可.本题考查了平面向量共线的坐标运算,重点考查了均值不等式,属基础题.10.【答案】A【解析】解:根据题意,为偶函数,函数的图象关于直线对称,则有,是定义在R上的奇函数,则,综合可得:,函数是周期为3的周期函数,是定义在R上的奇函数,则,则,,故;故选:根据题意,由为偶函数分析的对称性,进而可得是周期为3的周期函数,由此求出和的值,计算可得答案.本题考查函数奇偶性和周期性的性质以及应用,关键是分析函数的周期,属于基础题.11.【答案】C【解析】解:直线方程即,联立直线方程可得直线过定点,曲线C的方程即,表示圆心为,半径为2的上半圆,当时,直线l为y轴,与曲线C显然有公共点,当时,直线l的斜率为,易知当直线过点时斜率最小,如图所示,所以,解得,综上,实数m的范围是,故选:首先确定直线所过的定点,然后考查C的特征,据此即可确定直线斜率最小时点的坐标,然后利用斜率公式即可求得直线的斜率.本题主要考查直线与圆的位置关系,等价转化的数学思想等知识,属于基础题.12.【答案】D【解析】解:令,当时,的图象如图所示,由对称性可知,,所以,又,,由图象可知,所以所以故选:令,将函数的零点问题,转化为函数的图象与直线的交点横坐标问题进行研究根据正弦函数的图象的对称性质得到,进而得到,结合图象和正弦函数的最大值,得到m的取值范围,进而得到的取值范围.本题考查了函数的零点与方程的根的关系,用到了数形结合的思想,属于中档题.13.【答案】4【解析】解:设等比数列的公比为q,由,得,所以故答案为:设等比数列的公比为q,由可得,从而利用即可求解.本题考查等比数列的通项公式,考查学生基本的运算能力,属于基础题.14.【答案】0【解析】解:根据题意,函数,则,则,故答案为:根据题意,由函数的解析式计算可得答案.本题考查函数值的计算,涉及分段函数的解析式,属于基础题.15.【答案】【解析】解:因为双曲线,所以,渐近线方程为,所以,所以,所以焦距,故答案为:由双曲线E的方程,得,由渐近线方程,得b的值,再计算c,即可得出答案.本题考查双曲线的性质,解题中需要理清思路,属于基础题.16.【答案】①③【解析】解:根据题意,依次分析4个命题:对于①,当时,且,这部分函数的值域为R,则的值域为R,①正确;对于②,当时,,不具有周期性,不是周期函数,②错误;对于③,当时,,且当时,,作出函数在上的部分图象关于原点对称的图象,如图所示,若函数的图象上关于原点对称的点至少有3对,即函数的图象与所作的图象至少有三个交点,必有,解得,a的取值范围为,③正确;对于④,当时,,即,,则,,在区间上单调递增,④错误;其中正确的是①③;故答案为:①③.根据题意,依次分析题目4个命题的真假,即可得答案.本题考查命题真假的判断,涉及函数的奇偶性和对称性,属于中档题.17.【答案】解:甲的众数是11和12,极差是,乙的众数是9,极差是从甲乙二人的次数中各随机抽一个,设甲抽到的次数为x ,乙抽到的次数为y ,则所有的为:,,,,,,,,,,,,,,,,,,,,,,,,,共有25个其中满足条件的有:,,,,,,,,共有8个事件A 的概率为【解析】利用众数,极差的定义直接求解.从甲乙二人的次数中各随机抽一个,设甲抽到的次数为x ,乙抽到的次数为y ,利用列举法能求出事件A 的概率.本题考查众数、极差、概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.18.【答案】证明:连接OC ,OA ,,,,,,在中,由已知可得,,,而,,则,即,,平面BCD ,平面BCD ,平面BCD ;解:设点E 到平面ACD 的距离为h ,,,在中,,,,又,,点E到平面ACD的距离为【解析】连接OC,OA,由题意可得,,求解三角形证明,再由直线与平面垂直的判定可得平面BCD;设点E到平面ACD的距离为h,由,即可求得点E到平面ACD的距离.本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等体积法求点到平面的距离,是中档题.19.【答案】解:当时,,,当时,;相除得,整理为:,即,为等差数列,公差;证明:由得,整理得:,,又单调递增,所以【解析】根据数列通项与前n项积的关系结合等差数列的定义即可得出答案;求出数列的通项,即可求出数列的通项公式,再根据数列的单调性即可得证.本题考查数列的递推式,考查学生的运算能力,属于中档题.20.【答案】解:因为椭圆的右焦点到直线的距离是4,,,又因为离心率,所以,,椭圆方程为:;解法一:由知,设,则,,当时,有最大值,此时或,当时直线l的斜率,直线l的方程为;当时直线l的斜率,直线l的方程为直线l的方程为或解法二:由知,当直线l的斜率不存在时;当直线l的斜率存在时:设直线l的方程为:,联立,得,,,,令,,时即时最大为18,最大为,直线l的方程为或【解析】根据椭圆的右焦点到直线的距离是4,可求出c,再根据离心率求出a,即可求得椭圆方程;解法一:知,设,则有,即可求解;解法二:考虑斜率不存在和存在两种情况,设出直线方程,和椭圆方程联立,从而表示出弦长,进而求弦长最大时斜率的值,求得答案.本题考查了椭圆的有关性质及直线与椭圆相交时弦长问题,解法一利用了两点间的距离公式,解法二用了分类讨论思想,属于中档题.21.【答案】解:因为,所以,令,则,,所以函数在区间单减,又因为,所以当时,,所以函数在区间上单调递减.当时,所求不等式可化为,即,易知,由知,在单调递减,故只需在上能成立.两边同取自然对数,得,即在上能成立.令,则,当时,,函数单调递增,当时,,函数单调递减,,所以,又故的取值范围是【解析】求出导函数,令,利用导函数判断函数的单调性,推出结果即可.不等式可化为,即,只需在推出在上能成立.令,则,判断函数的单调性,求解函数的最大值,即可得到结果.本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力,是难题.22.【答案】解:由为参数,得为参数,消去t得曲线C的普通方程为由,得,联立得,,所以AB中点坐标为,,故以AB为直径的圆的直角坐标方程为,即,将,,代入得【解析】直接利用转换关系,在参数方程,极坐标方程和直角坐标方程之间进行转换;利用方程组的解法求出结果.本题考查的知识要点:参数方程,极坐标方程和直角坐标方程之间的转换,方程组的解法,主要考查学生的运算能力和数学思维能力,属于基础题.23.【答案】解:,故,,由可知,所以,当且仅当,即,时等号成立,故的最小值为【解析】利用绝对值的几何意义,求解函数的值域,利用最小值求解m即可.利用的结果,通过配凑法,结合基本不等式求解表达式的最小值即可.本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力,是中档题.。
2021届安徽省淮南市高三第一次模拟考试数学文科试题(解析版)参照模板

淮南市2020届高三第一次模拟考试数学试题(文科)一、选择题1.若集合{}21A x x =-≤,B x y ⎧⎫==⎨⎩,则A B = ( ) A. []1,2- B. (]2,3 C. [)1,2D. [)1,3【答案】C 【解析】 【分析】先求出集合,A B ,然后再求交集.【详解】由{}21A x x =-≤得,[1,3]A = ,(),2B x y ⎧⎫===-∞⎨⎩则[1,2)A B ⋂= 故选:C【点睛】本题考查集合求交集,属于基础题. 2.已知R a ∈,i 为虚数单位,若复数1a iz i+=+是纯虚数,则a 的值为( ) A. 1- B. 0C. 1D. 2【答案】A 【解析】 【分析】利用复数的运算法则、纯虚数的定义即可得出.【详解】()()()()()()111=1112a i i a a ia i z i i i +-++-+==++-为纯虚数. 则110,022a a +-=≠ 所以1a =- 故选:A【点睛】本题考查了复数的运算法则、纯虚数的定义,属于基础题. 3.已知a ,b 都是实数,那么“lg lg a b >”是“a b >”的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】利用对数函数的单调性、不等式的性质即可判断出结论.【详解】,a b 都是实数,由“lg lg a b >”有a b >成立,反之不成立,例如2,0a b ==. 所以“lg lg a b >”是“a b >”的充分不必要条件. 故选:B【点睛】本题考查了对数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.4.函数()132xf x x ⎛⎫=-+ ⎪⎝⎭零点的个数是( ) A. 0 B. 1C. 2D. 3【答案】B 【解析】 【分析】求函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点的个数,数形结合可得结论. 【详解】函数()132xf x x ⎛⎫=-+ ⎪⎝⎭零点的个数, 即方程132xx ⎛⎫=- ⎪⎝⎭的根的个数, 所以只需求函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点的个数 在同一坐标系中分别作出函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭的图像.如图所示,函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点有1个. 故选:B【点睛】本题主要考查函数的图象的交点问题,函数的零点个数的判断,体现了数形结合、转化的数学思想,属于中档题.5.由下表可计算出变量,x y 的线性回归方程为( )x5 4 3 2 1 y21.5110.5A. ˆ0.350.15yx =+ B. ˆ0.350.25yx =-+ C. ˆ0.350.15yx =-+ D. ˆ0.350.25yx =+ 【答案】A 【解析】试题分析:由题意,543212 1.5110.53, 1.255x y ++++++++====∴样本中心点为(3,1.2)代入选择支,检验可知A 满足.故答案选A . 考点:线性回归方程.6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.己知ABC ∆的顶点()4,0A ,()0,2B ,且AC BC =,则ABC ∆的欧拉线方程为( ) A. 230x y -+= B. 230x y +-=C. 230x y --=D. 230x y --=【答案】D 【解析】 【分析】由于AC BC =,可得:ABC ∆的外心、重心、垂心都位于线段AB 的垂直平分线上,求出线段AB 的垂直平分线,即可得出ABC ∆的欧拉线的方程.【详解】因为AC BC =,可得:ABC ∆的外心、重心、垂心都位于线段AB 的垂直平分线上()4,0A ,()0,2B ,则,A B 的中点为(2,1)201042AB k -==--, 所以AB 的垂直平分线的方程为:12(2)y x -=-,即23y x =-. 故选:D【点睛】本题考查等腰三角形的性质、三角形的外心重心垂心性质,考查了对新知识的理解应用,属于中档题. 7.函数()21ln 12f x x x =--的大致图象为( ) A.B.C. D.【答案】C 【解析】 【分析】由()()f x f x -=得到()f x 为偶函数,所以当0x >时,()21ln 12f x x x =--,求导讨论其单调性,分析其极值就可以得到答案.【详解】因为()()()21ln 12f x x x f x -=----=, 所以()f x 为偶函数, 则当0x >时,()21ln 12f x x x =--.此时211()x f x x x x='-=-,当1x >时,()0f x '> 当01x <<时,()0f x '<. 所以()f x 在(0,1)上单调递减,在(1,)+∞上单调递增. 在0x >上,当1x =时函数()f x 有最小值11(1)1122f =-=->-.. 由()f x 为偶函数,根据选项的图像C 符合. 故选:C【点睛】本题考查根据函数表达式选择其图像的问题,这类问题主要是分析其定义域、值域、奇偶性、对称性、单调性和一些特殊点即可,属于中档题.8.在ABC ∆中,4AB =,6AC =,点O 为ABC ∆的外心,则AO BC ⋅的值为( ) A. 26 B. 13C.523D. 10【答案】D 【解析】 【分析】利用向量数量积的几何意义和三角形外心的性质即可得出.【详解】()AO BC AO AC AB AO AC AO AB ⋅=⋅-=⋅-⋅如图,设,AB AC 的中点分别为,E F ,则,OE AB OF AC ⊥⊥,||||cos ||||428AO AB AB AO OAB AB AE ⋅=⋅∠=⋅=⨯= ||||cos ||||6318AO AC AC AO OAC AC AF ⋅=⋅∠=⋅=⨯=所以18810AO BC ⋅=-= 故选:D【点睛】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题. 9.已知数列{}n a 满足11a =,且1x =是函数()32113n n a f x x a x +=-+()n N +∈的极值点,设22log n n b a +=,记[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤++⋅⋅⋅+=⎢⎥⎣⎦( )A. 2019B. 2018C. 1009D. 1008【答案】D 【解析】 【分析】求得()f x 的导数,可得1(1)20n n f a a +'=-=,数列{}n a 为等比数列,可得数列{}n a 的通项公式,利用对数的运算性质可得n b ,再由数列的求和方法:裂项相消求和,即可得到所求值.【详解】由21()2n n f x a x a x +'=-,1x =是函数()f x 的极值点,所以1(1)20n n f a a +'=-=,即12n n a a +=所以数列{}n a 是以11a =为首项,2为公比的等比数列, 则12n na .由1222log log 21n n n b a n ++===+120182018112018(1)(2)12n n b b n n n n +⎛⎫==- ⎪++++⎝⎭所以122320182019201820182018b b b b b b ++⋅⋅⋅+ 1223201820191111112018[]b b b b b b ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1201911111009=20182018=1009220201010b b ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭即1223201820192018201820181009[1009]10081010b b b b b b ⎡⎤++⋅⋅⋅+=-=⎢⎥⎣⎦ 故选:D【点睛】本题考查导数的运用:求极值点,考查数列恒等式的运用,以及等比数列的通项公式和求和公式,数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.10.如图,一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为5 cm ,如果不计容器的厚度,则球的表面积为( )A .2500cm 3πB.2625cm 9πC.2625cm 36πD.215625cm 162π【答案】B 【解析】 【分析】设正方体上底面所在平面截球得小圆M ,可得圆心M 为正方体上底面正方形的中心.设球的半径为R ,根据题意得球心到上底面的距离等于(3)R cm -,而圆M 的半径为4,由球的截面圆性质建立关于R 的方程并解出R 即可求出球的表面积.【详解】设正方体上底面所在平面截球得小圆M , 则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于(3)R cm -,而圆M 的半径为4,由球的截面圆性质,得222(3)4R R =-+,解得:25=6R . ∴球的表面积为2225625=4=4=369S R πππ⨯ . 故选:B .【点睛】此题主要考查了正方体的性质、垂径定理以及勾股定理等知识,将立体图转化为平面图形是解题关键.11.已知双曲线22214x y b -=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( )8 B. )41-8+ D. )22【答案】A 【解析】 【分析】利用双曲线的定义以及三角形结合正弦定理,转化求解三角形的周长即可. 【详解】双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF所以8)m =+,解得:123m -=, 所以1ABF ∆的周长为:11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A【点睛】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.12.若函数()2ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( )A. 1,11e e e ⎛⎫--⎪-⎝⎭B. 11,1ee e ⎡⎤-⎢⎥-⎣⎦C. 11,1ee e ⎛⎫- ⎪-⎝⎭D. 1,11e e e ⎡⎤--⎢⎥-⎣⎦【答案】C 【解析】【详解】函数()2ln ln x f x ax x x x=+--有三个不同的零点,即方程ln ln x xa x x x =--有三个不同实数根.设ln ()(0)ln x xg x x x x x=->-, 则22221ln 1ln ln (1ln )(2ln )()(ln )(ln )x x x x x x g x x x x x x x ----'=-=-- 由1212ln ,2x y x x y x x-'=-=-=, 当1(0,)2x ∈时,0y '<,2ln y x x =-单调递减, 当1()2,x ∈+∞时,0y '>,2ln y x x =-单调递增, 所以112ln 2ln 1ln 2022y x x =-≥⨯-=+> 所以在(0,)x ∈+∞恒有2ln 0y x x =-> 令()0g x '=,得1x =或x e =.当01x <<时,()0g x '<,当1x e <<时,()0g x '>,当e x <时,()0g x '< 所以()g x 在(0,1)上单调递减,在(1,)e 上单调递增,在(,)e +∞上单调递减.(1)1g =,1()1e g e e e=-- 0x →时,ln x x→-∞,1ln ln 1x x x x x=→-- x →+∞时,ln 0x x→,11ln ln 1x x x x x=→--所以0x →时,()+g x →∞,x →+∞时()1g x →所以()g x的大致图像如下:方程lnlnx xax x x=--有三个不同实数根.结合函数图像有:11,1eae e⎛⎫∈-⎪-⎝⎭故选:C【点睛】本题考查函数的零点、导数的综合应用,考查转化与化归能力,运算求解能力、数形结合思想,属于难题.二.填空题13.若实数x,y满足0,20,20,x yx yx y-≤⎧⎪-≥⎨⎪+-≤⎩则2z x y=+的最大值为______.【答案】3【解析】【分析】作出不等式组满足的平面区域,再将目标函数平移经过可行域,可得最值.【详解】由0,20,20,x yx yx y-≤⎧⎪-≥⎨⎪+-≤⎩作出可行域,如下目标函数2z x y =+可化为2y x z =-+. z 表示直线2y x z =-+在y 轴上的截距.即求直线2y x z =-+在y 轴上的截距的最大值. 由可行域的图像,可知目标函数过点(1,1)B 时截距最大. 所以z 的最大值为:2113z =⨯+= 故答案为:3【点睛】本题考查简单的线性规划问题,注意简单线性规划中目标函数的几何意义,属于基础题. 14.已知4sin 65πα⎛⎫+= ⎪⎝⎭,5,36ππα⎛⎫∈ ⎪⎝⎭,则cos α的值为______. 433- 【解析】 【分析】根据角的范围,先求出cos 6πα⎛⎫+⎪⎝⎭的值,然后用角变换66ππαα⎛⎫=+- ⎪⎝⎭可求解. 【详解】由5,36ππα⎛⎫∈⎪⎝⎭,+,26ππαπ⎛⎫∈ ⎪⎝⎭ 所以2cos 1s 653in 6ππαα⎛⎫⎛⎫+=--+=-⎪ ⎪⎝⎭⎝⎭cos cos =cos cos +sin sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭341552=-+⨯=【点睛】本题考查同角三角函数的关系和利用角变换求解三角函数值,属于中档题. 15.已知函数()lnexf x e x =-,满足()2201810092019201920192e e e f f f a b ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(a ,b 均为正实数),则ab 的最大值为______. 【答案】4 【解析】 【分析】由()()()()lnln ln[]2()ex e e x ex e e x f x f e x e x e e x e x x--+-=+=⋅=----,然后配对(用倒序相加法)可求和,从而求出,a b 的关系,可得出答案. 【详解】由()()()()lnln ln[]2()ex e e x ex e e x f x f e x e x e e x e x x--+-=+=⋅=----. 22018201920192019e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20182201710091010[][[]201920192019201920192019e e e e e e f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10092=⨯()10092a b =+ 所以4a b +=,且a ,b 均为正实数.则242+⎛⎫≤= ⎪⎝⎭a b ab 当且仅当2a b == 时取等号. 故答案为:4.16.设抛物线22y x =的焦点为F ,过点F 的直线l 与抛物线交于A ,B 两点,且4AF BF =,则弦长AB =______.【答案】258【分析】求出抛物线的焦点坐标,由直线方程的点斜式写出直线l 的方程,和抛物线方程联立后利用弦长公式得答案. 【详解】抛物线焦点坐标为1(,0)2F , 设点1122(,),(,)A x y A x y 设直线l 方程为12x my =+, 由抛物线的定义有111||22p AF x x =+=+,221||22p BF x x =+=+ 由4AF BF =,得1211422x x ⎛⎫+=+ ⎪⎝⎭,即1214(1)my my +=+. 所以有12(4)3(1)m y y -=,又由2122x my y x⎧=+⎪⎨⎪=⎩ 得:2210y my --=,所以122y y m +=,121(2)y y ⋅=-由(1),(2)联立解得:2916m =. 又1212||||||12AB AF BF x x my my =+=++=++212925()22222168m y y m =++=+=⨯+=故答案为:258【点睛】本题考查了抛物线的标准方程及其几何性质,考查了直线与抛物线的位置关系,是中档题.三.解答题17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,ccos sin C c A =. (Ⅰ)求角C 的大小;(Ⅱ)已知点P 在边BC 上,60PAC ∠=︒,3PB =,AB =ABC ∆的面积.【答案】(Ⅰ)60C =︒;(Ⅱ)S = 【解析】(Ⅰ)由正弦定理可得3sin cos sin sin A C C A =,可得答案.|(Ⅱ)由条件APC ∆为等边三角形,则120APB ∠=︒,由余弦定理得,2222cos120AB AP BP PA PB =+-⋅︒,可得AP ,从而得到三角形的面积.【详解】(Ⅰ)∵3cos sin a C c A =,由正弦定理可得3sin cos sin sin A C C A =, 又A 是ABC ∆内角,∴sin 0A ≠,∴tan 3C = ∵0180C <<︒,∴60C =︒.(Ⅱ)根据题意,APC ∆为等边三角形,又120APB ∠=︒.在APB ∆中,由于余弦定理得,2222cos120AB AP BP PA PB =+-⋅︒, 解得,2AP =,∴5BC =,2AC =. ∴ABC ∆的面积153sin 6022S CA CB =⋅︒=. 【点睛】本题考查正弦和余弦定理以及求三角形的面积,属于中档题.18.高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图.(Ⅰ)求图中a 的值;(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率;(Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下2×2列联表:经常使用偶尔使用或不用合计完成上述2×2列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?附:()()()()()22n ad bc K a b c d a c b d -=++++【答案】(Ⅰ)0.030a =;(Ⅱ)37P =;(Ⅲ)表见解析,没有85%的把握认为淮南市使用永安共享单车的情况与性别有关. 【解析】 【分析】(Ⅰ)根据频率分布直方图中的面积之和为1,求参数a .(Ⅱ)由题意前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,利用列举的方法可求得概率.(Ⅲ)先计算填好2×2列联表,然后代入公式计算2K ,与给出的表格比较得出答案. 【详解】(Ⅰ)由题意()100.010.01520.0250.0051a ⨯+⨯+++=解得0.030a =.(Ⅱ)由频率分布直方图可知,前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,分别记为1A ,2A ,1B ,2B ,3B ,1C ,2C ,3C ,从中抽取2辆的结果有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()11,A C ,()12,A C ,()13,A C ; ()21,A B ,()22,A B ,()23,A B ,()21,A C ,()22,A C ,()23,A C ; ()12,B B ,()13,B B ,()11,B C ,()12,B C ,()13,B C ;()23,B B ,()21,B C ,()22,B C ,()23,B C ;()31,B C ,()32,B C ,()33,B C ;()12,C C ,()13,C C ,()23,C C ;共28个,恰有1辆的使用时间不低于50分钟的结果有12个, ∴所求的概率为123287P ==. (Ⅲ)2×2列联表如下:由上表及公式可知()2220050406050 2.0210010011090K ⨯⨯-⨯=≈⨯⨯⨯,因为2.02<2.072所以没有85%的把握认为淮南市使用永安共享单车的情况与性别有关.【点睛】本题考查根据频率分布直方图求参数,考查概率可独立性检验,属于中档题.19.如图在梯形ABCD 中,AD BC ∥,AD DC ⊥,E 为AD 的中点224AD BC CD ===,以BE 为折痕把ABE ∆折起,使点A 到达点P 的位置,且PB BC ⊥.(Ⅰ)求证:PE ⊥平面BCDE ;(Ⅱ)设F ,G 分别为PD ,PB 的中点,求三棱锥G BCF -的体积. 【答案】(Ⅰ)证明见解析;(Ⅱ)13G BCF V -= 【解析】 【分析】(Ⅰ)根据原图中的垂直关系,得到翻折后BE PE ⊥,PE BC ⊥,从而可证明. (Ⅱ)由F ,G 分别为PD ,PB 的中点111244G BCF G BGF C PBF C PBD P BCD V V V V V -----====,从而可求解体积.【详解】(Ⅰ)由题意可知BCDE 为正方形,∴BC BE ⊥,且BE AE ⊥,即BE PE ⊥ 又PE BC ⊥,且PB BE B =,∴BC ⊥平面PBE ,∵PE PB ⊂,E ,BC PE ⊥又BCBE B =,∴PE ⊥平面BCDE .(Ⅱ)∵G 为PB 的中点,∴PGF BGF S S ∆∆=,∴12C PGF C BGF C PBF V V V ---== 又F 为PD 的中点,∴PBF BDF S S ∆∆=,∴12C PBF C BDF C PBD V V V ---== ∴111244G BCF G BGF C PBF C PBD P BCD V V V V V -----==== 又1142P BCDP BCDE V V --=,∴11112228833G BCF P BCDE V V --==⨯⨯⨯⨯=. 【点睛】本题考查翻折问题,考查线面垂直的证明和求体积,属于中档题.20.已知椭圆2222:1x y C a b+=()0a b >>的离心率为13,1F ,2F 分别是椭圆的左右焦点,过点F 的直线交椭圆于M ,N 两点,且2MNF ∆的周长为12. (Ⅰ)求椭圆C 的方程(Ⅱ)过点()0,2P 作斜率为()0k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆是以AB 为底边的等腰三角形若存在,求点D 横坐标的取值范围,若不存在,请说明理由.【答案】(1)22198x y ;(2)存在,0m ≤<或0m <≤【解析】 【分析】(Ⅰ)由椭圆的离心率为13和2MNF ∆的周长为12可得13412c a a ⎧=⎪⎨⎪=⎩,可求椭圆方程.(Ⅱ)AB 的中点为()00,E x y ,由条件有DE AB ⊥,即1DE AB k k =-⋅,设(),0D m ,用直线AB 的斜率把m 表示出来,可求解其范围. 【详解】(1)由题意可得13412c a a ⎧=⎪⎨⎪=⎩,所以3a =,1c =,所以椭圆C 的方程为22198x y .(2)直线l 的解析式为2y kx =+,设()11,A x y ,()22,B x y ,AB 的中点为()00,E x y .假设存在点(),0D m ,使得ADB ∆为以AB 为底边的等腰三角形,则DE AB ⊥.由222,1,98y kx x y =+⎧⎪⎨+=⎪⎩得()228936360k x kx ++-=,故1223698kx x k +=-+,所以021898k x k -=+,00216298y kx k =+=+ 因为DE AB ⊥,所以1DE k k =-,即221601981898k k k m k -+=---+,所以2228989k m k k k --==++当0k >时,89k k +≥=012m -≤<; 当k 0<时,89k k +≤-012m <≤ 综上:m取值范围是012m -≤<或012m <≤. 【点睛】本题考查由椭圆的几何性质求方程,满足条件的动点的坐标的范围的探索,属于难题.21.设函数()ln xa e f xb x e=-,且()11f =(其中e 是自然对数底数).(Ⅰ)若1b =,求()f x 的单调区间; (Ⅱ)若0b e ≤≤,求证:()0f x >. 【答案】(Ⅰ)增区间为1,,减区间为0,1;(Ⅱ)见解析【解析】 【分析】(Ⅰ)当1b =时()11x xe f x x--'=,令()11x t x xe -=-,对()t x 求导分析出其单调性,从而分析出函数值的符号,得到()f x 的单调区间.(Ⅱ)对()f x 求导讨论其单调性,分析其最小值,证明其最小值大于0即可. 【详解】(Ⅰ)由()11f =可得,1a =,又1b =,∴()1ln x f x e x -=-,()11x xe f x x--'=,0x >,令()11x t x xe-=-,()()11x t x x e -'=+,当0x >时,()0t x '>,()t x 在0,单调增函数,又()10t =.∴当()0,1x ∈时,()0t x <,()‘0f x <,当()1,x ∈+∞时,()0t x >;()‘0f x >,∴()f x 的单调增区间为1,,减区间为0,1(Ⅱ)当0b =时,()0f x >,符合题意. 方法(一)当0b e <≤时,()11x x b xe bf x e x x---'=-=令()1x h x xeb -=-,又()00h b =-<,()220h e b =->∴()h x 在()0,2∃唯一的零点,设为0x ,有010x x eb -=且()00,x x ∈,()00f x '<,()f x 单调递减;()0,x x ∈+∞,()00f x '>,()f x 单调递增 ∴()()0100min ln x f x f x eb x -==-∵010x x eb -=,∴01x be x -=,两边取对数, 001ln ln x b x -=-∴()()000ln 1bf x b b x x =-+-00ln 2ln ln b bx b b b b b b b b b b x ⎛⎫=+--≥--=- ⎪⎝⎭(当且仅当01x =时到等号) 设()ln m b b b b =-,∴()ln m b b =-,当()0,1b ∈时,()0m b '>,当(]1,b e ∈时,()0m b '<; 又()0m e =,且,0b >,趋向0时,()0m e >; ∴当0b e <≤,()0m b ≥,当且仅当b e =时取等号由(1)可知,当1b =时,01x =,故当b e =时,01x ≠,()()00f x m b >≥,∴()00f x > 综上,当0b e ≤≤时,()0f x > 方法(二)当0b e <≤时,(i )当01x <≤时ln 0x ≤,ln 0b x ≤,()1ln 0x f x e b x -=->显然成立;(ii )当1x ≥时,构造函数()ln 1F x x x =-+()110F x x'=-≤,()F x 在[)1,+∞为减函数,∴()()10F x F ≤=,∴0ln 1x x <≤- ∴()()0ln 11b x b x e x <≤-≤-,∴()0ln 1b x e x <<- ∴()()11ln 1x x f x eb x e e x --=->--又由ln 1x x ≤-,可得21x e x -≥-,进而()()110x f x e e x -=--≥综上:当0b e ≤≤时,()0f x >【点睛】本题考查求函数单调区间和证明函数不等式,考查了导数的应用,应用了放缩与指对互化的技巧,属于难题.四.选考题22.在直角坐标系xOy 中,直线1;2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.【答案】(1)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)12. 【解析】试题分析:(1)将cos ,sin x y ρθρθ==代入12,C C 的直角坐标方程,化简得cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=得12ρρ==,所以MN =12. 试题解析:(1)因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=得240ρ-+=得12ρρ==所以MN =因为2C 的半径为1,则2C MN ∆的面积为111sin 4522⨯= 考点:坐标系与参数方程.【此处有视频,请去附件查看】23.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.【答案】(1) {x |x ≥4或x ≤1};(2) [-3,0].【解析】 试题分析:(1)解绝对值不等式首先分情况去掉绝对值不等式组,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于-2-x≤a≤2-x 在[1,2]上恒成立,由此求得求a 的取值范围试题解析:(1)当a =-3时,f(x)=25,2{1,2325,3x x x x x -+≤<<-≥当x≤2时,由f(x)≥3得-2x +5≥3,解得x≤1;当2<x <3时,f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.6分(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|. 当x∈[1,2]时,|x-4|-|x-2|≥|x+a|(4-x)-(2-x)≥|x+a|-2-a≤x≤2-a,由条件得-2-a≤1且2-a≥2,解得-3≤a≤0,故满足条件的实数a的取值范围为[-3,0].考点:绝对值不等式的解法;带绝对值的函数【此处有视频,请去附件查看】百度文库精品文档1、想想自己一路走来的心路历程,真的很颓废一事无成。
年高考真题+高考模拟题 专项版解析汇编 文科数学——02 函数的概念与基本初等函数I(教师

专题02 函数的概念与基本初等函数I1.【2020年高考全国Ⅰ卷文数】设3log 42a =,则4a -= A .116B .19C .18D .16【答案】B【解析】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=, 故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目. 2.【2020年高考天津】函数241xy x =+的图象大致为A BC D【答案】A【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.3.【2020年高考全国Ⅱ卷文数】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名 B .18名C .24名D .32名【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,设需要志愿者x 名,500.95900x≥,17.1x ≥,故需要志愿者18名. 故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.【2020年高考全国Ⅲ卷文数】Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .69【答案】C 【解析】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.【2020年高考全国Ⅲ卷文数】设a =log 32,b =log 53,c =23,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b【答案】A 【解析】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==, 所以a c b <<. 故选A .【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题. 6.【2020年高考全国Ⅱ卷文数】设函数f (x )=x 3-31x ,则f (x ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减【答案】A【解析】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-,所以函数()f x 为奇函数.又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题. 7.【2020年高考全国Ⅱ卷文数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想. 8.【2020年高考天津】设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为A .a b c <<B .b a c <<C .b c a <<D .c a b <<【答案】D【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<. 故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围. 比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:xy a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天 D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天, 则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =, 所以1ln 20.691.80.380.38t =≈≈天. 故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题. 10.【2020年新高考全国Ⅰ卷】若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ .1,0]3][[1,-【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.11.【2020年新高考全国Ⅰ卷】信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )【答案】AC【解析】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确.对于B 选项,若2n =,则1,2i =,211p p =-, 所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭, 当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,若()11,2,,i p i n n==,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()21j m j P Y j p p +-==+(1,2,,j m =).()2222111log log mmi i i i i iH X p p p p ===-⋅=⋅∑∑ 122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅. ()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++.由于()01,2,,2i p i m >=,所以2111i i m ip p p +->+, 所以222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+, 所以()()H X H Y >,所以D 选项错误. 故选:AC【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.13.【2020年高考北京】已知函数()21xf x x =--,则不等式()0f x >的解集是A. (1,1)-B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞【答案】D【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2xy =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【点睛】本题考查了图象法解不等式,属于基础题.14.【2020年高考浙江】函数y =x cos x +sin x 在区间[–π,π]上的图象可能是【答案】A【解析】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.15.【2020年高考浙江】已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x –a )(x –b )(x –2a –b )≥0,则 A .a <0 B .a >0 C .b <0 D .b >0【答案】C【解析】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 零点为123,,2x a x b x a b ===+ 当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <, 即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <. 故选:C【点晴】本题主要考查三次函数在给定区间上恒成立问题,考查学生分类讨论思想,是一道中档题.16.【2020年高考江苏】已知y =f (x )是奇函数,当x ≥0时,()23f x x =,则()8f -的值是 ▲ . 【答案】4-【解析】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=- 故答案为:4-【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题. 17.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________. 【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.1.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选B.【点睛】本题主要考查了根据函数性质求解函数值的问题,属于基础题.2.【2020·宜宾市叙州区第二中学校高三一模(文)】已知函数()32,0log ,0x x f x x x ⎧≤=⎨>⎩,则=3f f ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A.2B .12C .3log 2-D .3log 2【答案】A【解析】依题意12331log log 32f -===-⎝⎭,12122f f f -⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选A.【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.3.【安徽省2020届高三名校高考冲刺模拟卷数学(文科)试题】已知10.23121log 3,(),23a b c ===,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c【答案】A【解析】∵1122log 3log 10a =<=,0.20110()()133b <=<=,1131222c <=<=,∴a <b <c ,故选A .4.【2020·重庆巴蜀中学高三月考(文)】已知定义在R 上的函数()f x 满足()12f =,对任意的实数1x ,2x 且12x x <,()()1212f x f x x x -<-,则不等式()1f x x ->的解集为A .(),2-∞-B .2,C .()(),11,-∞-⋃+∞D .()(),22,-∞-⋃+∞【答案】B【解析】设()()1F x f x x =--,则()()11F x f x x -=--,()()11110F f =--=,对任意的1x ,2x 且12x x <,()()1212f x f x x x -<-, 得()()112211f x x f x x --<--, 即()()12F x F x <, 所以()F x 在R 上是增函数,不等式()1f x x ->即为()()11F x F ->, 所以11x ->,2x >. 故选B.【点睛】本题考查函数的单调性解不等式,属于中档题.5.【2020届广东省惠州市高三6月模拟数学(文)试题】已知函数||()e ||x f x x =+,则满足1(21)3f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是A .12,33⎛⎫⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫⎪⎝⎭D .12,23⎡⎫⎪⎢⎣⎭【答案】A【解析】由||()e ||()x f x x f x --=+-=,知()f x 是偶函数,∴不等式1(21)3f x f ⎛⎫-< ⎪⎝⎭等价为1(|21|)()3f x f -<,当0x >时,()e xf x x =+,()f x 在区间[0,)+∞上单调递增,1|21|,3x ∴-<解得1233x <<.故选A.【点睛】本题考查根据函数的奇偶性和单调性求解函数不等式的问题,关键是能够利用单调性将不等式转化为自变量大小关系,从而解出不等式,属于中档题. 6.【2020届广东省惠州市高三6月模拟数学(文)试题】函数πx x y x=的图象大致形状是A .B .C .D .【答案】B【解析】当0x <时,ππx xx y x -==-;当0x >时,ππx x x y x ==,πx y =为R 上的增函数,πx x y x∴=在(),0-∞上单调递减,在()0,+∞上单调递增,可知B 正确.故选B. 【点睛】本题考查函数图象的识别,解题关键是能够通过分类讨论的方式得到函数在不同区间内的解析式,进而根据指数函数单调性判断出结果.7.【2020·重庆市育才中学高三开学考试(文)】若函数()23,121,1x ax a x f x ax x ⎧--≥=⎨-<⎩是R 上的增函数,则实数a 的取值范围是A .103⎡⎫-⎪⎢⎣⎭,B .103⎛⎤ ⎥⎝⎦,C .1,3⎛⎤-∞- ⎥⎝⎦D .13⎡⎫+∞⎪⎢⎣⎭,【答案】B【解析】由函数()23,121,1x ax a x f x ax x ⎧--≥=⎨-<⎩是R 上的增函数,则1202113a a a a a⎧≤⎪⎪>⎨⎪-≤--⎪⎩,解得103a <≤,即实数a 的取值范围是103⎛⎤ ⎥⎝⎦,. 故选B.【点睛】本题考查了分段函数的性质,重点考查了运算能力,属基础题.8.【贵州省黔东南州2019-2020学年高三高考模拟考试卷数学(文科)试题】已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为 A .[4,)+∞ B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】C【解析】函数()f x 的图象关于点()1,0对称且在(,0)-∞上单调递增,所以()f x 在(2,)+∞上单调递增,所以对称轴22m≤,即4m ≤. 故选C.【点睛】本题考查函数的性质,涉及到单调性、对称性等知识,考查学生数形结合的思想,是一道容易题.9.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是 A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,1 03a≤≤.故选D.【点睛】本题考查含参数的函数的单调性,注意根据解析式的特点合理分类,比如解析式是二次三项式,则需讨论二次项系数的正负以及对称轴的位置,本题属于基础题.10.【2020·四川省成都外国语学校高三月考(文)】若函数,1()42,12xa xf x ax x⎧>⎪=⎨⎛⎫-+≤⎪⎪⎝⎭⎩是R上的单调递增函数,则实数a的取值范围是A.()1,+∞B.(1,8)C.(4,8)D.[4,8)【答案】D【解析】因为函数,1()42,12xa xf x ax x⎧>⎪=⎨⎛⎫-+≤⎪⎪⎝⎭⎩是R上的单调递增函数,所以140482422aaaaa⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选D.【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.11.【2020届山西省太原五中高三3月模拟数学(文)试题】函数ln||cos ()sinx xf xx x⋅=+在[π,0)(0,π]-的图像大致为A.B.C.D.【答案】D【解析】因为ln ||cos ()()sin x xf x f x x x⋅-=-=-+,所以()f x 为奇函数,关于原点对称,故排除A ,又因为()10f ±=,π()02f ±=,π()03f >,()0f π<,故排除B ,C.故选D.【点睛】本题考查函数图象的识别,根据函数的性质以及特殊值法灵活判断,属于基础题.12.【2020·宜宾市叙州区第二中学校高三一模(文)】已知()f x 是定义在R 上的偶函数,在区间[0,)+∞上为增函数,且1()03f =,则不等式18(log )0f x >的解集为A .1(,2)2B .(2,)+∞C .1(0,)(2,)2+∞ D .1(,1)(2,)2+∞【答案】C【解析】∵118811(log )0()(log )()33f x f f x f >=⇔>,又()f x 在区间[0,)+∞上为增函数,∴181log 3x >,∴118811log log 33x x 或><-,∴1022x x <或,∴不等式18(log )0f x >的解集为1(0,)(2,)2+∞,故选C.13.【2020·宜宾市叙州区第一中学校高三一模(文)】已知函数()()()1f x x ax b =-+为偶函数,且在0,上单调递减,则()30f x -<的解集为A .()2,4 B .()(),24,-∞+∞C .()1,1-D .()(),11,-∞-⋃+∞【答案】B【解析】因为()()2f x ax b a x b =+--为偶函数,所以0b a -=,即b a =, ∴()2f x ax a =-,因为()f x 在()0,∞+上单调递减, 所以0a <,∴()()2330f x a x a -=--<,可化为()2310x -->, 即2680x x -+>,解得2x <或4x >. 故选B .【点睛】本题主要考查奇偶性与单调性的应用以及一元二次不等式的解法,还考查了运算求解的能力,属于中档题.14.【天津市十二区县重点学校2020届高三下学期毕业班联考(一)数学试题】已知函数(2)y f x =-的图象关于直线2x =对称,在(0,)x ∈+∞时,()f x 单调递增.若()ln34a f =,e (2)b f -=,1ln πc f ⎛⎫= ⎪⎝⎭(其中e 为自然对数的底数,π为圆周率),则,,a b c 的大小关系为 A .a c b >> B .a b c >> C .c a b >> D .c b a >>【答案】A【解析】因为函数(2)y f x =-的图象关于直线2x =对称,所以()f x 的图象关于y 轴对称,因为(0,)x ∈+∞时,()f x 单调递增,所以(,0)x ∈-∞时,()f x 单调递减; 因为ln3ln e e 01444,0221,lnln ln e 1->=<<==π>=π,所以a c b >>. 故选A.【点睛】本题主要考查函数的性质,根据条件判断出函数的单调性和奇偶性是求解的关键,侧重考查数学抽象的核心素养.15.【2020·山东省高三期末】函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =A .2x -B .2x -C .2x --D .2x【答案】C 【解析】0x <时,()2xf x =.当0x >时,0x -<,()2xf x --=,由于函数()y f x =是奇函数,()()2xf x f x -∴=--=-,因此,当0x >时,()2xf x -=-,故选C.【点睛】本题考查奇偶函数解析式的求解,一般利用对称转移法求解,即先求出()f x -的表达式,再利用奇偶性得出()f x 的表达式,考查分析问题和运算求解能力,属于中等题.16.【2020·山东省高三期末】函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是A .B .C .D .【答案】A【解析】由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D. 满足条件的只有A. 故选A.【点睛】本题考查函数图象的识别,意在考查函数的基本性质,属于基础题型. 17.【2020届广东省化州市高三第四次模拟数学(文)试题】已知函数()()2,0,ln 1,0,x x f x x x ⎧⎪=⎨+>⎪⎩若不等式()10f x kx k -++<的解集为空集,则实数k 的取值范围为A .(222,0⎤-⎦B .(232,0⎤-⎦C .222,0⎡⎤-⎣⎦D .[]1,0-【答案】C【解析】因为不等式()10f x kx k -++<的解集为空集, 所以不等式()10f x kx k -++恒成立.()10f x kx k -++可变形为()(1)1f x k x --.在同一坐标系中作出函数(),(1)1y f x y k x ==--的图象,如图:直线(1)1y k x =--过定点(1,1)A -,当直线(1)1y k x =--与2(0)y x x =相切时,方程()10f x kx k -++=有一个实数解,可得2(1)1x k x =--,即210x kx k -++=,由24(1)0k k ∆=-+=,可得2k =-2k =+(舍去), 故由函数图象可知使不等式恒成立的实数k的取值范围为2⎡⎤-⎣⎦.故选C.【点睛】本题考查了函数图象、根据函数的图象求参数的取值范围,考查了数形结合思想,属于中档题.18.【2020·山东省青岛第五十八中学高三一模】已知函数229,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的值可以是A .1B .2C .3D .4【答案】BCD 【解析】当1x >,4()4f x x a a x=++≥+, 当且仅当2x =时,等号成立;当1x ≤时,2()29f x x ax =-+为二次函数,要想在1x =处取最小,则对称轴要满足1x a =≥,且(1)4f a ≤+,即1294a a -+≤+,解得2a ≥,故选BCD.【点睛】本题考查分段函数的最值问题,处理时应对每段函数进行分类讨论,找到每段的最小值.19.【2020·山东省高三零模】已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则A .函数()y f x =是周期函数B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数 【答案】ABC【解析】因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即4T=,故A 正确;因为函数()1y f x =-为奇函数,所以函数()1y f x =-的图像关于原点成中心对称,所以B 正确;又函数()1y f x =-为奇函数,所以()()11f x f x --=--,根据()()2f x f x +=-,令1x -代x 有()()11f x f x +=--,所以()()11f x f x +=--,令1x -代x 有()()f x f x -=,即函数()f x 为R 上的偶函数,C 正确;因为函数()1y f x =-为奇函数,所以()10f -=,又函数()f x 为R 上的偶函数,()10f =,所以函数不单调,D 不正确.故选ABC.【点睛】本题考查了函数的周期性和奇偶性以及对称性,属于基础题.20.【2020届上海市高三高考压轴卷数学试题】已知函数()223f x x ax =-++在区间(),4-∞上是增函数,则实数a 的取值范围是______.【答案】[)4,+∞【解析】()223f x x ax =-++对称轴方程为x a =, ()f x 在区间(),4-∞上是增函数,所以4a ≥.故答案为[)4,+∞.【点睛】本题考查函数的单调性求参数,熟练掌握初等简单函数的性质是解题的关键,属于基础题.21.【福建省厦门外国语学校2020届高三下学期高考最后一次模拟数学(文)试题】已知函数2,0()(2),0x x f x f x x ⎧>=⎨+≤⎩,则(1)f -=_____________【答案】2【解析】函数2,0()(2),0x x f x f x x ⎧>=⎨+≤⎩,则()1(1)122f f -===. 故答案为:2【点睛】本题考查了分段函数求值,考查了基本运算求解能力,属于基础题.22.【2020·陕西省交大附中高三三模(文)】设函数23(0)()(2)(0)x x x f x f x x ⎧+≥=⎨+<⎩,则()–3f =_____【答案】4【解析】函数23(0)()(2)(0)x x x f x f x x ⎧+≥=⎨+<⎩,2(3)(1)(1)1314f f f -=-==+⨯=.【点睛】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题. 23.【2020·宜宾市叙州区第二中学校高三一模(文)】奇函数()f x 满足()()11f x f x +=-,当01x <≤时,()()2log 4f x x a =+,若1522f ⎛⎫=-⎪⎝⎭,则()a f a +=___________. 【答案】2【解析】由于函数()y f x =为奇函数,且()()()111f x f x f x +=-=--,即()()2f x f x +=-,()()()42f x f x f x ∴+=-+=,所以,函数()y f x =是以4为周期的奇函数,()21511log 22222f f f a ⎛⎫⎛⎫⎛⎫∴=-=-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 解得2a =. ()()()222f f f =-=-,()20f ∴=.因此,()()222a f a f +=+=.故答案为2.【点睛】本题考查函数值的计算,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.24.【2020届上海市高三高考压轴卷数学试题】函数()lg 2cos 21y x =-的定义域是______. 【答案】5πππ5π3,,,36666⎡⎫⎛⎫⎛⎤---⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦【解析】因为()lg 2cos 21y x =-,所以2902cos 210x x ⎧-≥⎨->⎩,所以331cos 22x x -≤≤⎧⎪⎨>⎪⎩, 所以33ππππ,66x k x k k -≤≤⎧⎪⎨-<<+∈⎪⎩Z , 解得5π36x -≤<-或ππ66x -<<或5π36x <≤. 故答案为5πππ5π3,,,36666⎡⎫⎛⎫⎛⎤---⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦. 【点睛】本题主要考查函数定义域的求法以及一元二次不等式,三角不等式的解法,还考查了运算求解的能力,属于中档题.25.【江苏省南京市金陵中学、南通市海安高级中学、南京市外国语学校2020届高三下学期第四次模拟数学试题】已知函数()02,2,2x f x f x x ≤<=-≥⎪⎩若对于正数()*n k n ∈N ,直线n y k x =与函数()y f x =的图象恰有21n 个不同的交点,则数列{}2nk 的前n 项和为________. 【答案】()41n n + 【解析】当02x ≤<时,()y f x ==()2211x y -+=,0y ≥; 当2x ≥时()()2f x f x =-,函数周期为2,画出函数图象,如图所示:n y k x =与函数恰有21n 个不同的交点,根据图象知,直线n y k x =与第1n +个半圆相切,故()2244211n k n n n ==++-,故2211114441n k n n n n ⎛⎫==- ⎪++⎝⎭, 数列{}2n k 的前n 项和为()11111114223141n n n n ⎛⎫-+-+⋅⋅⋅+-= ⎪++⎝⎭. 故答案为:()41n n +. 【点睛】本题考查了数列求和,直线和圆的位置关系,意在考查学生的计算能力和转化能力,综合应用能力,画出图象是解题的关键.。
2020年安徽省淮南市大兴中学高三数学文摸底试卷含解析

2020年安徽省淮南市大兴中学高三数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若R,为虚数单位,且,则()A.,B.,C.,D.,参考答案:2. 已知,,,(且),在同一坐标系中画出其中两个函数在第Ⅰ象限的图象,正确的是()A B CD参考答案:B略3. 若函数y=f(x)(x∈R)满足f(x+1)=f(x﹣1),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为()A.6 B.7 C.8 D.9参考答案:C【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】根据条件可得f(x)是周期函数,T=2,h(x)=f(x)﹣g(x)=0,则f(x)=g(x),在同一坐标系中作y=f(x)和y=g(x)图象,由图象可得结论.【解答】解:由题意f(1+x)=f(x﹣1)?f(x+2)=f(x),故f(x)是周期函数,T=2,令h(x)=f(x)﹣g(x)=0,则f(x)=g(x),在同一坐标系中作y=f(x)和y=g (x)图象,如图所示:故在区间[﹣5,5]内,函数y=f(x)和y=g(x)图象的交点有8个,则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为8.故选C.【点评】本题考查函数零点的定义,体现了数形结合的数学思想,在同一坐标系中作y=f (x)和y=g(x)图象,是解题的关键.4. 设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(﹣2),f(π),f(﹣3)的大小关系是()A.f(﹣2)<f(π)<f(﹣3)B.f(π)<f(﹣2)<f(﹣3)C.f(﹣2)<f(﹣3)<f(π)D.f(﹣3)<f(﹣2)<f(π)参考答案:C【考点】奇偶性与单调性的综合.【分析】先利用偶函数的性质,将函数值转化到单调区间[0,+∞)上,然后利用函数的单调性比较大小关系.【解答】解:∵f(x)是定义域为R的偶函数,∴f(﹣3)=f(3),f(﹣2)=f(2).∵函数f(x)在[0,+∞)上是增函数,∴f(π)>f(3)>f(2),即f(π)>f(﹣3)>f(﹣2),故选C.【点评】本题考查了偶函数的性质,以及函数的单调性的应用,一般将函数值转化到同一单调区间上再比较大小.5. 函数为奇函数,且在上为减函数的值可以是A. B. C. D.参考答案:D6. 下列判断正确的是()A.函数是奇函数; B.函数是偶函数C.函数是非奇非偶函数 D.函数既是奇函数又是偶函数参考答案:C7. 某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A.B.6πC.D.参考答案:C【考点】由三视图求面积、体积.【专题】计算题.【分析】由三视图可知,几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高2.的圆锥的一半,分别计算两部分的体积,即可.【解答】解:由三视图可知,几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为V1=×22×π×1=2π,上部半圆锥的体积为V2=×π×22×2=.故几何体的体积为V=V1+V2==.故选C.【点评】本题考查三视图求几何体的表面积,考查计算能力,空间想象能力,三视图复原几何体是解题的关键.8. 已知a,b是实数,则“a>2且b>2”是“a+b>4且ab>4”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的关系结合充分条件和必要条件的定义即可得到结论.【解答】解:若“a>2且b>2”则“a+b>4且ab>4”成立,即充分性成立,当a=1,b=5时,满足a+b>4且ab>4,但a>2且b>2不成立,即必要性不成立,故“a>2且b>2”是“a+b>4且ab>4”的充分不必要条件,故选:B9. 已知集合,则A∩B的元素有() A.1个B.2个C.3个D.4个参考答案:B10. 若,则()A.B.C.D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 在平面直接坐标系中,角的始边与轴的正半轴重合,终边在直线上,且,则.参考答案:12. 正项数列的前项和为,且,若,则__________.参考答案:13. (几何证明选讲)如图,以为直径的圆与的两边分别交于两点,,则.参考答案:略14. 已知曲线与直线交于点,若设曲线在点处的切线与轴交点的横坐标为,则的值为___________.参考答案:略15. 设双曲线的右顶点为,右焦点为.过点且与双曲线的一条渐近线平行的直线与另一条渐近线交于点,则的面积为.参考答案:双曲线的右顶点为,右焦点,双曲线的渐近线为,过点且与平行的直线为,则,即,由,解得,即,所以的面积为.16. 若实数x,y满足不等式组目标函数z=2x+y的最大值为.参考答案:16【考点】简单线性规划.【分析】画出约束条件表示的可行域,判断目标函数z=2x+y的位置,求出最大值.【解答】解:作出约束条件不等式组的可行域如图:目标函数z=2x+y在的交点A(5,6)处取最大值为z=2×5+6=16.故答案为:16.17. 在平面直角坐标系中,定义d(P,Q)=为两点之间的“折线距离”,则坐标原点O与直线上任意一点的“折线距离”的最小值是_________.参考答案:略三、解答题:本大题共5小题,共72分。
安徽省淮南市寿县第二中学2020届高三一模考试数学(文)试卷

绝密★启用前数学试题(文)注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上第I 卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一 项是符合题目的要求的。
1.已知集合U ={1,2,3,4,5,6,7},集合A ={1,2,3,4},B ={3,4,5,6}则A ∩C U B =A 、{1,2,3,4}B 、{1,2,7}C 、{1,2}D 、{1,2,3}2.下列各式的运算结果虚部为1的是 A 、(1)i i - B 、21i+ C 、2+2i D 、2(1)i i +-3、从甲、 乙、 丙、 丁 4 名同学中, 任意安排 2 名同学早上到校门口值日, 另外 2 名同学下午到校门口值日, 则甲和丁不在一起值日的概率为 A 、13 B 、12 C 、23 D 、564.若实数x ,y 满足的最大值是A 、9B 、12 C.3 D 、65.近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国 到“一带一路”沿线国家的游客人也越来越多,如图是2013-2018年中国到“一带一路” 沿线国家的游客人次情况,则下列说法正确的是①2013-2018年中国到“一带一路”沿线国家的游客人次逐年增加②2013-2018年这6年中,2014年中国到“一带一路”沿线国家的游客人次增幅最小③2016-2018年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平A 、①②③B 、②③C 、①②D 、③6.已知椭圆C :22221(0)x y a b a b+=>>的长轴长是短轴长的 2 倍, 焦距等于 23, 则椭圆 C 的方程为7.已知函数的图象与直线y =a (0<a <A )的三个相邻交点的横坐标分别为2、4、8,则f (x )的单调递减区间为8、已知数列{}的前n 项和为Sn ,若9.已知四边形ABCD 为平行四边形,||2AB =u u u r ||3AD =u u u rM 为CD 中点,2BN NC =u u u r u u u r , 则AN MN u u u r u u u u r g =A 、13 B 、23 C 、1 D 、4310、已知函数 f (x ) 是定义在 R 上的奇函数,当 x ∈(-∞,0] 时, f (x ) = x 2 + 2ax ,若曲线 y = f (x )在点(1, f (1)) 处的切线过点 (2,0) , 则 a = A .-34 B . 1 C . 2 D . 3411.“今有城,下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。
2020届淮南市一模文科数学答案

2020届淮南一模文科参考答案一.选择题题号123456789101112答案CABBADCDDBAC二.填空题13.314.43310-15.416.258三.解答题17.解:(I )cos sin ,C c A =由正弦定理可得cos sin sin ,A C C A =.......................................3分又A 是ABC ∆内角,sin 0,tan A C ∴≠∴=.......................................5分0180,60.C C ︒︒<<∴= .......................................6分(II)根据题意,120.APC APB ︒∆∠=为等边三角形,又...............................8分在APB ∆中,由于余弦定理得,2222cos120,AB AP BP PA PB =+-︒ 解得,2AP =,5, 2.BC AC ∴==...............................10分153sin 6022ABC CA CB ︒∴∆== 的面积S ...............................12分18.10(0.010.01520.0250.005)10.030 ............................2I a a ⨯+⨯+++==解()由题意解得分(II )由频率分布直方图可知,前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,...................................4分分别记为A1,A2,B1,B2,B3,C1,C2,C3,从中抽取2辆的结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A1,C2),(A1,C3);(A2,B1),(A2,B2),(A2,B3),(A2,C1),(A2,C2),(A2,C3);(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B1,C3);(B2,B3),(B2,C1),(B2,C2),(B2,C3);(B3,C1),(B3,C2),(B3,C3);(C1,C2),(C1,C3),(C2,C3);...............................................................7分共28个,恰有1辆的使用时间不低于50分钟的结果有12个,123P 287∴==所求的概率为....................................8分(II) 1 (82)PGF BGFC PGF C BGF C PBF PBF BDF G PB S S V V V F PD S S ∆∆---∆∆∴=∴==∴= 为的中点,分又为的中点,12111 (10244)C PBF C BDF C PBDG BCF G BGF C PBF C PBD P BCD V V V V V V V --------∴==∴====分121111222 (128833)P BCD P BCDEG BCF P BCDE V V V V ----=∴==⨯⨯⨯⨯=又分(III)2×2列联表如下:由上表及公式可知,2220050406050 2.02.10010011090K ⨯⨯-⨯=≈⨯⨯⨯().................10分因为2.02<2.072所以没有85%的把握认为淮南市使用永安共享单车的情况与性别有关..................12分19.I BCDE BC BE BE AE,BE PE.......................................2PE BC,PB BE B,BC PBEPE PB,E,BC PE...............................................................4BC BE B,PE ∴⊥⊥⊥⊥⋂=∴⊥⊂⊥⋂=∴ 解:()由题意可知为正方形,,且即分又且平面分又BCDE...........................................6⊥平面分20.【解析】(1)由题意可得13412c a a ⎧=⎪⎨⎪=⎩,…………………………2分所以3,1a c ==,…………………………4分所以椭圆C 的方程为22198x y +=…………………………5分经常使用偶尔使用或不用合计男性5050100女性6040100合计11090200(2)直线l 的解析式为2y kx =+,设1122(,),(,)A x y B x y ,AB 的中点为00(,)E x y .假设存在点(,0)D m ,使得ADB ∆为以AB 为底边的等腰三角形,则DE AB ⊥.由222,1,98y kx x y =+⎧⎪⎨+=⎪⎩得22(89)36360k x kx ++-=,故1223698k x x k +=-+,所以021898kx k -=+,00216298y kx k =+=+………………………………7分因为DE AB ⊥,所以1DE k k =-,即221601981898k k k m k -+=---+,所以2228989k m k k k --==++…………9分当0k >时,89k k +≥=2012m -≤<;当0k <时,89k k +≤-分所以2012m <≤…………………11分综上:m取值范围是001212m m -≤<<≤或……………………………12分11'21.(I)a 1,1()ln 1(),0...................................................................................2x x b f x e xxe f x x x--==∴=--=>解:由条件可得,分1'1'()1,()(1)0()0,()0(1)0.................4(0,1)()0,()0 (1,)()0;()0()(1,)(0,1).................................x x t x xe t x x e x t x t x t x t x f x x t x f x f x --=-=+>>+∞=∴∈<<∈+∞>>∴+∞‘‘令当时,在(,)单调增函数,又分当时,当时,的单调增区间为,减区间为..........6分1'111(II) 0()0, (),,b<0,20(0,2) x x x x b f x b xe b b e f x e x xx xe b e b x x x e b︒----︒︒=>-<≤=-=-->∴∃=当时,符合题意方法(一)当0时,令h()=又h(0)=-h(2)=h()在唯一的零点,设为,有.......................8分''111min (0,)()0,();(,)()0();()()ln 1ln ln ()(ln 1)x x x x x f x f x x x f x f x bf x f x e b x x e b e x bx b x f x b b x x ︒︒︒︒︒︒︒---︒︒︒︒︒︒︒︒︒∈<∈+∞>∴==-=∴=-=-∴=-+- 且,单调递减,,单调递增,...........9分''' ()ln 2ln ln (1()ln ,()ln 01()0;1,()0;()0,0,0()0;0()0b bx b b b b b b b b b b x x m b b b b m b bb m b b e m b m e b m e b e m b b e ︒︒︒=+--≥--=-==-∴=-∈>∈<=>>∴<≤≥=当且仅当时到等号)设当(,)时,当(]时,又且,趋向时,当时,,当且仅当时取等号.............11分11 1()()0,()00 ()0b x b e x f x m b f x b e f x ︒︒︒︒===≠>≥∴>≤≤>由(1)可知,当时,,故当时,综上,当时,.............12分方法(二)10) 01ln 0,ln 0,()ln 0.....................................8x b e i x x b x f x e b x -<≤<≤≤≤=->当时,(当时显然成立;分') 1()ln 11()10,()[1ii x F x x x F x F x x≥=-+=-≤+∞(当时,构造函数在,)为减函数1121()(1)00ln 10ln (1)(1)0ln (1)()ln (1...............................................................10ln 11()(100x x x x F x F x x b x b x e x b x e x f x e b x e e x x x e x f x e e x b ----∴≤=∴<≤-∴<≤-≤-∴<<-∴=->--≤-≥-=--≥≤≤,)分又由,可得,进而)综上:当()0.....................................................................12e f x >时,分22【解析】(Ⅰ)因为cos ,sin x y ρθρθ==,……………1分∴1C 的极坐标方程为cos 2ρθ=-,……………2分2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……………5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ,……………7分|MN|=1ρ-2ρ,……………9分因为2C 的半径为1,则2C MN的面积o 11sin 452⨯=12.……………10分23.【解析】(Ⅰ)当3a =-时,()f x =25,21, 2325,3x x x x x -+≤⎧⎪<<⎨⎪-≥⎩,当x ≤2时,由()f x ≥3得253x -+≥,解得x ≤1;……………2分当2<x <3时,()1f x =≥3,无解;当x ≥3时,由()f x ≥3得25x -≥3,解得x ≥4,…………4分∴()f x ≥3的解集为{x |x ≤1或x ≥4};……………5分(Ⅱ)()f x ≤|4|x -⇔|4||2|||x x x a ---≥+,……………7分当x ∈[1,2]时,|||4||2|x a x x +≤---=42x x -+-=2,……………9分∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的a 的取值范围为[-3,0]……………10分。
安徽省淮南市2020届高三第一次模拟考试文科数学试题

淮南市2017届高三第一次模拟考试数学文科试卷 第 I 卷一、选择题(共12题,每题5分,共60分) 1.已知集合A={x|x 2≤1),B={x|x<a ),若A B=B ,则实数a 的取值范围是 A. (1,+∞) B. [1,+∞) C .(一∞,-1] D .(一∞,1) 2.若复数z 满足i ·z=12(1+i),则z 的虚部是 A .12i B .一12i C .一12 D .123.从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为偶数的概率是 A .15 B .25 C .35 D .454.一个几何体的三视图如右图所示,其中正视图和侧视图都是腰长为2的等腰直角三角形,俯视图是圆心角为2π的扇形,则该几何体的侧面积为 A .2 B .4+ πC .4+2πD .4+ π+2π5.已知函数f(x)=sin(x ω+ϕ)(ω>0,0<ϕ<π),直线x=6π是它的一条 对称轴,且(23π,0)是离该轴最近的一个对称中心,则ϕ= A .4π B .3π C .2πD .34π6.下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框 图,若输入的a,b 分别为8,12,则输出的a= A .2 B .0 C. 4 D .167.函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶 函数,则下列结论成立的是A. f(1)<f(52)<f(72) B. f(52)<f(1)<f(72) C .f(72)<f(52)<f(1) D .f(72)<f(1)<f(52)8.已知三棱锥A-BCD 的四个顶点A ,B ,C ,D 都在球O 的表面 上,AC ⊥平面BCD ,BC ⊥CD ,且AC=3,BC=2,CD=5, 则球O 的表面积为A .12πB .7πC .9πD .8π9.设e 是自然对数的底,a>0且a ≠1,b>0且b ≠1,则“log a 2>log b e ”是“0<a<b<l ”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.已知函数f(x)是定义在R 上的单调函数,且对任意的x ,y R 都有f(x+y )=f(x )+f(y),若动点P(x ,y)满足等式f(x 2+2x+2)+f(y 2+8y+3)=0,则x+y 的最大值为 A. 26 -5 B. -5 C. 26+5 D. 5 11.已知点F 1、F 2是双曲线C :=1(a>0,b>0)的左、右焦点,O 为坐标原点,点P在双曲线C 的右支上,且满足 |F 1F 2|=2|OP|,|PF 1|≥3|PF 2|,则双曲线C 的离心率的取值范围为A .(1,+∞)B .[102,+∞) C .(1, 102] D .(1, 52] 12.如果定义在R 上的函数f(x)满足:对于任意x 1≠x 2,都有x 1f(x 1)+x 2f(x 2)≥x 1f(x 2)+x 2f(x 1),则称f(x)为“H 函数”.给出下列函数: ①y=-x 3+x+l ;②y=3x-2(sinx-cosx);③y=l-ex ;④f(x)= ,其中“H 函数”的个数有:A .3个B .2个C .1个D .0个第 Ⅱ 卷二、填空题(共4小题,每小题5分,共20分)13.已知两个单位向量a ,b 的夹角为60°,则|a +2b |=____.14.实数x ,y 满足,则yx的取值范围是 . 15.已知数列{a n }满足递推关系式a n+1=2a n +2n -1(n ∈N*),且{2n na λ+}为等差数列,则λ的值为____. 16.已知函数f(x)=, 其中m>0.若存在实数b ,使得关于x 的方程f(x)=b有三个不同的根,则m 的取值范围是 . 三、解答题 17.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 33c)cosA . (1)求角A 的大小; (2)求cos(52π-B)一2sin 22C的取值范围. 18.(本小题满分12分)为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.( I)求a,b的值及随机抽取一考生恰为优秀生的概率;(Ⅱ)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;(Ⅲ)在第(Ⅱ)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在[90,100]的概率.19.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA,,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若BE=3EC,求证:DE∥平面A1MC1;(2)若AA1=l,求三棱锥A-MA1C1的体积.20.(本小题满分12分)已知椭圆E :=1(a>b>o)的左、右焦点分别为F1(一2,F2(2,0),直线x+2y=0与椭圆E的一个交点为(一2,1),点A是椭圆E上的任意一点,延长AF1交椭圆E于点B,连接BF2,AF2.(1)求椭圆E的方程;.(2)求△ABF2的内切圆的最大周长.21.(本小题满分12分)已知函数f(x)=xlnx-a(x-l)2_x+l(a∈R).(1)当a=0时,求f(x)的极值;(2)若f(x)<0对x∈(1,+∞)恒成立,求a的取值范围.请考生在22,23两题中任选一题作答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮南市2020届高三第一次模拟考试数学试题(文科)一、选择题1.若集合{}21A x x =-≤,B x y ⎧⎫==⎨⎩,则A B =I ( ) A. []1,2- B. (]2,3 C. [)1,2D. [)1,3【答案】C 【解析】 【分析】先求出集合,A B ,然后再求交集.【详解】由{}21A x x =-≤得,[1,3]A = ,(),2B x y ⎧⎫===-∞⎨⎩则[1,2)A B ⋂= 故选:C【点睛】本题考查集合求交集,属于基础题. 2.已知R a ∈,i 为虚数单位,若复数1a iz i+=+是纯虚数,则a 的值为( ) A. 1- B. 0C. 1D. 2【答案】A 【解析】 【分析】利用复数的运算法则、纯虚数的定义即可得出.【详解】()()()()()()111=1112a i i a a ia i z i i i +-++-+==++-为纯虚数. 则110,022a a +-=≠ 所以1a =- 故选:A【点睛】本题考查了复数的运算法则、纯虚数的定义,属于基础题. 3.已知a ,b 都是实数,那么“lg lg a b >”是“a b >”的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】利用对数函数的单调性、不等式的性质即可判断出结论.【详解】,a b 都是实数,由“lg lg a b >”有a b >成立,反之不成立,例如2,0a b ==. 所以“lg lg a b >”是“a b >”的充分不必要条件. 故选:B【点睛】本题考查了对数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.4.函数()132xf x x ⎛⎫=-+ ⎪⎝⎭零点的个数是( ) A. 0 B. 1C. 2D. 3【答案】B 【解析】 【分析】求函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点的个数,数形结合可得结论. 【详解】函数()132xf x x ⎛⎫=-+ ⎪⎝⎭零点的个数, 即方程132xx ⎛⎫=- ⎪⎝⎭的根的个数, 所以只需求函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点的个数 在同一坐标系中分别作出函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭的图像.如图所示,函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点有1个. 故选:B【点睛】本题主要考查函数的图象的交点问题,函数的零点个数的判断,体现了数形结合、转化的数学思想,属于中档题.5.由下表可计算出变量,x y 的线性回归方程为( )x5 4 3 2 1 y21.5110.5A. ˆ0.350.15yx =+ B. ˆ0.350.25yx =-+ C. ˆ0.350.15yx =-+ D. ˆ0.350.25yx =+ 【答案】A 【解析】试题分析:由题意,543212 1.5110.53, 1.255x y ++++++++====∴样本中心点为(3,1.2)代入选择支,检验可知A 满足.故答案选A . 考点:线性回归方程.6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.己知ABC ∆的顶点()4,0A ,()0,2B ,且AC BC =,则ABC ∆的欧拉线方程为( ) A. 230x y -+= B. 230x y +-=C. 230x y --=D. 230x y --=【答案】D 【解析】 【分析】由于AC BC =,可得:ABC ∆的外心、重心、垂心都位于线段AB 的垂直平分线上,求出线段AB 的垂直平分线,即可得出ABC ∆的欧拉线的方程.【详解】因为AC BC =,可得:ABC ∆的外心、重心、垂心都位于线段AB 的垂直平分线上()4,0A ,()0,2B ,则,A B 的中点为(2,1)201042AB k -==--, 所以AB 的垂直平分线的方程为:12(2)y x -=-,即23y x =-. 故选:D【点睛】本题考查等腰三角形的性质、三角形的外心重心垂心性质,考查了对新知识的理解应用,属于中档题. 7.函数()21ln 12f x x x =--的大致图象为( ) A.B.C. D.【答案】C 【解析】 【分析】由()()f x f x -=得到()f x 为偶函数,所以当0x >时,()21ln 12f x x x =--,求导讨论其单调性,分析其极值就可以得到答案.【详解】因为()()()21ln 12f x x x f x -=----=, 所以()f x 为偶函数, 则当0x >时,()21ln 12f x x x =--.此时211()x f x x x x='-=-,当1x >时,()0f x '> 当01x <<时,()0f x '<. 所以()f x 在(0,1)上单调递减,在(1,)+∞上单调递增. 在0x >上,当1x =时函数()f x 有最小值11(1)1122f =-=->-.. 由()f x 为偶函数,根据选项的图像C 符合. 故选:C【点睛】本题考查根据函数表达式选择其图像的问题,这类问题主要是分析其定义域、值域、奇偶性、对称性、单调性和一些特殊点即可,属于中档题.8.在ABC ∆中,4AB =,6AC =,点O 为ABC ∆的外心,则AO BC ⋅u u u r u u u r的值为( )A. 26B. 13C.523D. 10【答案】D 【解析】 【分析】利用向量数量积的几何意义和三角形外心的性质即可得出.【详解】()AO BC AO AC AB AO AC AO AB ⋅=⋅-=⋅-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r如图,设,AB AC 的中点分别为,E F ,则,OE AB OF AC ⊥⊥,||||cos ||||428AO AB AB AO OAB AB AE ⋅=⋅∠=⋅=⨯=u u u r u u u r u u u r u u u r u u u r u u u r||||cos ||||6318AO AC AC AO OAC AC AF ⋅=⋅∠=⋅=⨯=u u u r u u u r u u u r u u u r u u u r u u u r所以18810AO BC ⋅=-=u u u r u u u r故选:D【点睛】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题. 9.已知数列{}n a 满足11a =,且1x =是函数()32113n n a f x x a x +=-+()n N +∈的极值点,设22log n n b a +=,记[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤++⋅⋅⋅+=⎢⎥⎣⎦( )A. 2019B. 2018C. 1009D. 1008【答案】D 【解析】 【分析】求得()f x 的导数,可得1(1)20n n f a a +'=-=,数列{}n a 为等比数列,可得数列{}n a 的通项公式,利用对数的运算性质可得n b ,再由数列的求和方法:裂项相消求和,即可得到所求值.【详解】由21()2n n f x a x a x +'=-,1x =是函数()f x 的极值点,所以1(1)20n n f a a +'=-=,即12n n a a +=所以数列{}n a 是以11a =为首项,2为公比的等比数列,则12n n a -=.由1222log log 21n n n b a n ++===+120182018112018(1)(2)12n n b b n n n n +⎛⎫==- ⎪++++⎝⎭所以122320182019201820182018b b b b b b ++⋅⋅⋅+ 1223201820191111112018[]b b b b b b ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L1201911111009=20182018=1009220201010b b ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭即1223201820192018201820181009[1009]10081010b b b b b b ⎡⎤++⋅⋅⋅+=-=⎢⎥⎣⎦ 故选:D【点睛】本题考查导数的运用:求极值点,考查数列恒等式的运用,以及等比数列的通项公式和求和公式,数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.10.如图,一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为5 cm ,如果不计容器的厚度,则球的表面积为( )A .2500cm 3πB.2625cm 9πC.2625cm 36πD.215625cm 162π【答案】B 【解析】 【分析】设正方体上底面所在平面截球得小圆M ,可得圆心M 为正方体上底面正方形的中心.设球的半径为R ,根据题意得球心到上底面的距离等于(3)R cm -,而圆M 的半径为4,由球的截面圆性质建立关于R 的方程并解出R 即可求出球的表面积.【详解】设正方体上底面所在平面截球得小圆M , 则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于(3)R cm -,而圆M 的半径为4,由球的截面圆性质,得222(3)4R R =-+,解得:25=6R . ∴球的表面积为2225625=4=4=369S R πππ⨯ . 故选:B .【点睛】此题主要考查了正方体的性质、垂径定理以及勾股定理等知识,将立体图转化为平面图形是解题关键.11.已知双曲线22214x y b -=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( )8 B. )41-8+ D. )22【答案】A 【解析】 【分析】利用双曲线的定义以及三角形结合正弦定理,转化求解三角形的周长即可. 【详解】双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF V 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF所以8)m =+,解得:123m -=, 所以1ABF ∆的周长为:11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A【点睛】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.12.若函数()2ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( )A. 1,11e e e ⎛⎫--⎪-⎝⎭B. 11,1ee e ⎡⎤-⎢⎥-⎣⎦C. 11,1ee e ⎛⎫- ⎪-⎝⎭D. 1,11e e e ⎡⎤--⎢⎥-⎣⎦【答案】C 【解析】【详解】函数()2ln ln x f x ax x x x=+--有三个不同的零点,即方程ln ln x xa x x x =--有三个不同实数根.设ln ()(0)ln x xg x x x x x=->-, 则22221ln 1ln ln (1ln )(2ln )()(ln )(ln )x x x x x x g x x x x x x x ----'=-=-- 由1212ln ,2x y x x y x x-'=-=-=, 当1(0,)2x ∈时,0y '<,2ln y x x =-单调递减, 当1()2,x ∈+∞时,0y '>,2ln y x x =-单调递增, 所以112ln 2ln 1ln 2022y x x =-≥⨯-=+> 所以在(0,)x ∈+∞恒有2ln 0y x x =-> 令()0g x '=,得1x =或x e =.当01x <<时,()0g x '<,当1x e <<时,()0g x '>,当e x <时,()0g x '< 所以()g x 在(0,1)上单调递减,在(1,)e 上单调递增,在(,)e +∞上单调递减.(1)1g =,1()1e g e e e=-- 0x →时,ln x x→-∞,1ln ln 1x x x x x=→-- x →+∞时,ln 0x x→,11ln ln 1x x x x x=→--所以0x →时,()+g x →∞,x →+∞时()1g x →所以()g x的大致图像如下:方程lnlnx xax x x=--有三个不同实数根.结合函数图像有:11,1eae e⎛⎫∈-⎪-⎝⎭故选:C【点睛】本题考查函数的零点、导数的综合应用,考查转化与化归能力,运算求解能力、数形结合思想,属于难题.二.填空题13.若实数x,y满足0,20,20,x yx yx y-≤⎧⎪-≥⎨⎪+-≤⎩则2z x y=+的最大值为______.【答案】3【解析】【分析】作出不等式组满足的平面区域,再将目标函数平移经过可行域,可得最值.【详解】由0,20,20,x yx yx y-≤⎧⎪-≥⎨⎪+-≤⎩作出可行域,如下目标函数2z x y =+可化为2y x z =-+. z 表示直线2y x z =-+在y 轴上的截距.即求直线2y x z =-+在y 轴上的截距的最大值. 由可行域的图像,可知目标函数过点(1,1)B 时截距最大. 所以z 的最大值为:2113z =⨯+= 故答案为:3【点睛】本题考查简单的线性规划问题,注意简单线性规划中目标函数的几何意义,属于基础题. 14.已知4sin 65πα⎛⎫+= ⎪⎝⎭,5,36ππα⎛⎫∈ ⎪⎝⎭,则cos α的值为______. 433- 【解析】 【分析】根据角的范围,先求出cos 6πα⎛⎫+⎪⎝⎭的值,然后用角变换66ππαα⎛⎫=+- ⎪⎝⎭可求解. 【详解】由5,36ππα⎛⎫∈⎪⎝⎭,+,26ππαπ⎛⎫∈ ⎪⎝⎭ 所以2cos 1s 653in 6ππαα⎛⎫⎛⎫+=--+=-⎪ ⎪⎝⎭⎝⎭cos cos =cos cos +sin sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭341552=-+⨯=【点睛】本题考查同角三角函数的关系和利用角变换求解三角函数值,属于中档题. 15.已知函数()lnexf x e x =-,满足()2201810092019201920192e e e f f f a b ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(a ,b 均为正实数),则ab 的最大值为______. 【答案】4 【解析】 【分析】由()()()()lnln ln[]2()ex e e x ex e e x f x f e x e x e e x e x x--+-=+=⋅=----,然后配对(用倒序相加法)可求和,从而求出,a b 的关系,可得出答案. 【详解】由()()()()lnln ln[]2()ex e e x ex e e x f x f e x e x e e x e x x--+-=+=⋅=----. 22018201920192019e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20182201710091010[][[]201920192019201920192019e e e e e e f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10092=⨯()10092a b =+ 所以4a b +=,且a ,b 均为正实数.则242+⎛⎫≤= ⎪⎝⎭a b ab 当且仅当2a b == 时取等号. 故答案为:4.16.设抛物线22y x =的焦点为F ,过点F 的直线l 与抛物线交于A ,B 两点,且4AF BF =,则弦长AB =______.【答案】258【分析】求出抛物线的焦点坐标,由直线方程的点斜式写出直线l 的方程,和抛物线方程联立后利用弦长公式得答案. 【详解】抛物线焦点坐标为1(,0)2F , 设点1122(,),(,)A x y A x y 设直线l 方程为12x my =+, 由抛物线的定义有111||22p AF x x =+=+,221||22p BF x x =+=+ 由4AF BF =,得1211422x x ⎛⎫+=+ ⎪⎝⎭,即1214(1)my my +=+. 所以有12(4)3(1)m y y -=L L ,又由2122x my y x⎧=+⎪⎨⎪=⎩ 得:2210y my --=,所以122y y m +=,121(2)y y ⋅=-L L 由(1),(2)联立解得:2916m =. 又1212||||||12AB AF BF x x my my =+=++=++212925()22222168m y y m =++=+=⨯+=故答案为:258【点睛】本题考查了抛物线的标准方程及其几何性质,考查了直线与抛物线的位置关系,是中档题.三.解答题17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,ccos sin C c A =. (Ⅰ)求角C 的大小;(Ⅱ)已知点P 在边BC 上,60PAC ∠=︒,3PB =,AB =ABC ∆的面积.【答案】(Ⅰ)60C =︒;(Ⅱ)S = 【解析】(Ⅰ)由正弦定理可得3sin cos sin sin A C C A =,可得答案.|(Ⅱ)由条件APC ∆为等边三角形,则120APB ∠=︒,由余弦定理得,2222cos120AB AP BP PA PB =+-⋅︒,可得AP ,从而得到三角形的面积.【详解】(Ⅰ)∵3cos sin a C c A =,由正弦定理可得3sin cos sin sin A C C A =, 又A 是ABC ∆内角,∴sin 0A ≠,∴tan 3C = ∵0180C <<︒,∴60C =︒.(Ⅱ)根据题意,APC ∆为等边三角形,又120APB ∠=︒.在APB ∆中,由于余弦定理得,2222cos120AB AP BP PA PB =+-⋅︒, 解得,2AP =,∴5BC =,2AC =. ∴ABC ∆的面积153sin 6022S CA CB =⋅︒=. 【点睛】本题考查正弦和余弦定理以及求三角形的面积,属于中档题.18.高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图.(Ⅰ)求图中a 的值;(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率;(Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下2×2列联表:经常使用偶尔使用或不用合计完成上述2×2列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?附:()()()()()22n ad bc K a b c d a c b d -=++++【答案】(Ⅰ)0.030a =;(Ⅱ)37P =;(Ⅲ)表见解析,没有85%的把握认为淮南市使用永安共享单车的情况与性别有关. 【解析】 【分析】(Ⅰ)根据频率分布直方图中的面积之和为1,求参数a .(Ⅱ)由题意前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,利用列举的方法可求得概率.(Ⅲ)先计算填好2×2列联表,然后代入公式计算2K ,与给出的表格比较得出答案. 【详解】(Ⅰ)由题意()100.010.01520.0250.0051a ⨯+⨯+++=解得0.030a =.(Ⅱ)由频率分布直方图可知,前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,分别记为1A ,2A ,1B ,2B ,3B ,1C ,2C ,3C ,从中抽取2辆的结果有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()11,A C ,()12,A C ,()13,A C ; ()21,A B ,()22,A B ,()23,A B ,()21,A C ,()22,A C ,()23,A C ; ()12,B B ,()13,B B ,()11,B C ,()12,B C ,()13,B C ;()23,B B ,()21,B C ,()22,B C ,()23,B C ;()31,B C ,()32,B C ,()33,B C ;()12,C C ,()13,C C ,()23,C C ;共28个,恰有1辆的使用时间不低于50分钟的结果有12个, ∴所求的概率为123287P ==. (Ⅲ)2×2列联表如下:由上表及公式可知()2220050406050 2.0210010011090K ⨯⨯-⨯=≈⨯⨯⨯,因为2.02<2.072所以没有85%的把握认为淮南市使用永安共享单车的情况与性别有关.【点睛】本题考查根据频率分布直方图求参数,考查概率可独立性检验,属于中档题.19.如图在梯形ABCD 中,AD BC ∥,AD DC ⊥,E 为AD 的中点224AD BC CD ===,以BE 为折痕把ABE ∆折起,使点A 到达点P 的位置,且PB BC ⊥.(Ⅰ)求证:PE ⊥平面BCDE ;(Ⅱ)设F ,G 分别为PD ,PB 的中点,求三棱锥G BCF -的体积. 【答案】(Ⅰ)证明见解析;(Ⅱ)13G BCF V -= 【解析】 【分析】(Ⅰ)根据原图中的垂直关系,得到翻折后BE PE ⊥,PE BC ⊥,从而可证明. (Ⅱ)由F ,G 分别为PD ,PB 的中点111244G BCF G BGF C PBF C PBD P BCD V V V V V -----====,从而可求解体积.【详解】(Ⅰ)由题意可知BCDE 为正方形,∴BC BE ⊥,且BE AE ⊥,即BE PE ⊥ 又PE BC ⊥,且PB BE B =I ,∴BC ⊥平面PBE ,∵PE PB ⊂,E ,BC PE ⊥ 又BC BE B =I ,∴PE ⊥平面BCDE .(Ⅱ)∵G 为PB 的中点,∴PGF BGF S S ∆∆=,∴12C PGF C BGF C PBF V V V ---== 又F 为PD 的中点,∴PBF BDF S S ∆∆=,∴12C PBF C BDF C PBD V V V ---== ∴111244G BCF G BGF C PBF C PBD P BCD V V V V V -----==== 又1142P BCDP BCDE V V --=,∴11112228833G BCF P BCDE V V --==⨯⨯⨯⨯=. 【点睛】本题考查翻折问题,考查线面垂直的证明和求体积,属于中档题.20.已知椭圆2222:1x y C a b+=()0a b >>的离心率为13,1F ,2F 分别是椭圆的左右焦点,过点F 的直线交椭圆于M ,N 两点,且2MNF ∆的周长为12. (Ⅰ)求椭圆C 的方程(Ⅱ)过点()0,2P 作斜率为()0k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆是以AB 为底边的等腰三角形若存在,求点D 横坐标的取值范围,若不存在,请说明理由.【答案】(1)22198x y +=;(2)存在,0m ≤<或0m <≤【解析】 【分析】(Ⅰ)由椭圆的离心率为13和2MNF ∆的周长为12可得13412c a a ⎧=⎪⎨⎪=⎩,可求椭圆方程.(Ⅱ)AB 的中点为()00,E x y ,由条件有DE AB ⊥,即1DE AB k k =-⋅,设(),0D m ,用直线AB 的斜率把m 表示出来,可求解其范围. 【详解】(1)由题意可得13412c a a ⎧=⎪⎨⎪=⎩,所以3a =,1c =,所以椭圆C 的方程为22198x y +=.(2)直线l 的解析式为2y kx =+,设()11,A x y ,()22,B x y ,AB 的中点为()00,E x y .假设存在点(),0D m ,使得ADB ∆为以AB 为底边的等腰三角形,则DE AB ⊥.由222,1,98y kx x y =+⎧⎪⎨+=⎪⎩得()228936360k x kx ++-=,故1223698kx x k +=-+,所以021898k x k -=+,00216298y kx k =+=+ 因为DE AB ⊥,所以1DE k k =-,即221601981898k k k m k -+=---+,所以2228989k m k k k --==++当0k >时,89k k +≥=012m -≤<; 当k 0<时,89k k +≤-012m <≤ 综上:m取值范围是012m -≤<或012m <≤. 【点睛】本题考查由椭圆的几何性质求方程,满足条件的动点的坐标的范围的探索,属于难题.21.设函数()ln xa e f xb x e=-,且()11f =(其中e 是自然对数底数).(Ⅰ)若1b =,求()f x 的单调区间; (Ⅱ)若0b e ≤≤,求证:()0f x >. 【答案】(Ⅰ)增区间为()1,+?,减区间为()0,1;(Ⅱ)见解析【解析】 【分析】(Ⅰ)当1b =时()11x xe f x x--'=,令()11x t x xe -=-,对()t x 求导分析出其单调性,从而分析出函数值的符号,得到()f x 的单调区间.(Ⅱ)对()f x 求导讨论其单调性,分析其最小值,证明其最小值大于0即可. 【详解】(Ⅰ)由()11f =可得,1a =,又1b =,∴()1ln x f x e x -=-,()11x xe f x x--'=,0x >,令()11x t x xe-=-,()()11x t x x e -'=+,当0x >时,()0t x '>,()t x 在()0,+?单调增函数,又()10t =.∴当()0,1x ∈时,()0t x <,()‘0f x <,当()1,x ∈+∞时,()0t x >;()‘0f x >,∴()f x 的单调增区间为()1,+?,减区间为()0,1(Ⅱ)当0b =时,()0f x >,符合题意. 方法(一)当0b e <≤时,()11x x b xe bf x e x x---'=-=令()1x h x xeb -=-,又()00h b =-<,()220h e b =->∴()h x 在()0,2∃唯一的零点,设为0x ,有010x x eb -=且()00,x x ∈,()00f x '<,()f x 单调递减;()0,x x ∈+∞,()00f x '>,()f x 单调递增 ∴()()0100min ln x f x f x eb x -==-∵010x x eb -=,∴01x be x -=,两边取对数, 001ln ln x b x -=-∴()()000ln 1bf x b b x x =-+-00ln 2ln ln b bx b b b b b b b b b b x ⎛⎫=+--≥--=- ⎪⎝⎭(当且仅当01x =时到等号) 设()ln m b b b b =-,∴()ln m b b =-,当()0,1b ∈时,()0m b '>,当(]1,b e ∈时,()0m b '<; 又()0m e =,且,0b >,趋向0时,()0m e >; ∴当0b e <≤,()0m b ≥,当且仅当b e =时取等号由(1)可知,当1b =时,01x =,故当b e =时,01x ≠,()()00f x m b >≥,∴()00f x > 综上,当0b e ≤≤时,()0f x > 方法(二)当0b e <≤时,(i )当01x <≤时ln 0x ≤,ln 0b x ≤,()1ln 0x f x e b x -=->显然成立;(ii )当1x ≥时,构造函数()ln 1F x x x =-+()110F x x'=-≤,()F x 在[)1,+∞为减函数,∴()()10F x F ≤=,∴0ln 1x x <≤- ∴()()0ln 11b x b x e x <≤-≤-,∴()0ln 1b x e x <<- ∴()()11ln 1x x f x eb x e e x --=->--又由ln 1x x ≤-,可得21x e x -≥-,进而()()110x f x e e x -=--≥综上:当0b e ≤≤时,()0f x >【点睛】本题考查求函数单调区间和证明函数不等式,考查了导数的应用,应用了放缩与指对互化的技巧,属于难题.四.选考题22.在直角坐标系xOy 中,直线1;2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.【答案】(1)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)12. 【解析】试题分析:(1)将cos ,sin x y ρθρθ==代入12,C C 的直角坐标方程,化简得cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=得12ρρ==,所以MN =12. 试题解析:(1)因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=得240ρ-+=得12ρρ==所以MN =因为2C 的半径为1,则2C MN ∆的面积为111sin 4522⨯=o 考点:坐标系与参数方程.【此处有视频,请去附件查看】23.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.【答案】(1) {x |x ≥4或x ≤1};(2) [-3,0].【解析】 试题分析:(1)解绝对值不等式首先分情况去掉绝对值不等式组,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于-2-x≤a≤2-x 在[1,2]上恒成立,由此求得求a 的取值范围试题解析:(1)当a =-3时,f(x)=25,2{1,2325,3x x x x x -+≤<<-≥当x≤2时,由f(x)≥3得-2x +5≥3,解得x≤1;当2<x <3时,f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.6分(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|. 当x∈[1,2]时,|x-4|-|x-2|≥|x+a|(4-x)-(2-x)≥|x+a|-2-a≤x≤2-a,由条件得-2-a≤1且2-a≥2,解得-3≤a≤0,故满足条件的实数a的取值范围为[-3,0].考点:绝对值不等式的解法;带绝对值的函数【此处有视频,请去附件查看】。