智能控制技术在机电一体化系统中的应用

合集下载

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用1. 引言1.1 智能控制技术的概念智能控制技术是指利用现代信息技术、传感器技术、通信技术、计算机技术等先进技术,对系统内部和外部环境进行智能感知、分析、决策和控制的一种技术。

通过智能控制技术,系统可以实现自动调节、智能化运行,提高系统的效率和性能。

智能控制技术可以根据不同的需求和情况,通过控制算法的优化和升级,实现对系统的智能化控制,使其能够适应不同的工作环境和任务。

智能控制技术的核心是利用先进的传感器技术获取系统内外部的信息,通过处理这些信息实时调节系统的工作状态,使系统能够更加智能化和自动化。

智能控制技术可以应用于各种领域,如工业自动化、智能家居、智能交通等,为各种系统提供智能化的控制和管理。

智能控制技术的发展将极大地改变传统机电系统的运行方式,使系统更加智能化、高效化和便捷化。

通过不断的创新和改进,智能控制技术将为机电一体化系统的发展带来更多的可能性和机遇,推动机电一体化系统向着更加智能化和先进化的方向发展。

1.2 机电一体化系统的特点机电一体化系统是以机械、电子、控制、信息等多学科知识为基础,将机械系统和电气控制系统进行整合,达到自动化、智能化运行的一种系统。

它具有以下几个特点:1. 系统集成性强:机电一体化系统整合了机械部件和电气控制部件,实现了机械和电气系统的有机结合,提高了系统的整体性能和效率。

2. 功能多样性:机电一体化系统可以实现各种不同功能的自动化控制,适用于不同场景和需求的自动化生产系统。

3. 系统灵活性高:机电一体化系统可以根据不同需求进行灵活的调整和改变,实现快速响应和适应性强。

4. 节能环保:通过智能控制技术的应用,机电一体化系统可以实现能源的有效利用和节约,减少能源消耗和减排。

5. 提高生产效率:机电一体化系统的自动化控制和智能化技术的应用可以大大提高生产效率,减少人力成本和提升生产质量。

2. 正文2.1 智能控制技术在机电一体化系统中的应用案例1. 智能家居系统:智能控制技术被广泛应用于家庭机电一体化系统中,实现智能照明、温控、安防等功能。

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用【摘要】智能控制技术在机电一体化系统中的应用越来越广泛。

本文从智能控制技术的背景与意义入手,介绍了智能控制技术在机电一体化系统中的具体应用案例,分析了其优势与挑战,探讨了发展趋势。

结合智能控制技术在改善机电一体化系统效率和效益方面的应用,提出了未来发展方向和对系统的推动作用。

文章指出,智能控制技术的应用对提升机电一体化系统的竞争力具有重要意义,为系统的发展提供了新的动力和方向。

智能控制技术的不断进步将进一步提高机电一体化系统的自动化程度和智能化水平,推动系统向着更高效、更智能的方向发展。

【关键词】智能控制技术,机电一体化系统,应用案例,优势,挑战,发展趋势,效率,效益,未来发展方向,推动作用,竞争力。

1. 引言1.1 智能控制技术在机电一体化系统中的应用随着科技的不断进步,智能控制技术在机电一体化系统中的应用越来越广泛。

机电一体化系统是指将机械、电气、电子等多种技术融合在一起,形成一个完整的自动化系统。

智能控制技术作为这一系统的重要组成部分,可以实现对整个系统的智能化管理和控制,提高系统的运行效率和生产效益。

在现代工业生产中,智能控制技术在机电一体化系统中的应用已经成为不可或缺的一部分。

通过使用传感器、控制器和执行器等智能设备,可以实现对整个系统的实时监测和控制,提高生产过程的精度和稳定性。

智能控制技术还可以实现系统的自动化调节和优化,提高生产效率和降低运行成本。

智能控制技术在机电一体化系统中的应用为工业生产带来了巨大的变革和提升。

未来随着技术的不断发展和创新,智能控制技术在机电一体化系统中的应用将会更加广泛和深入,为工业生产带来更多的便利和效益。

2. 正文2.1 智能控制技术的背景与意义智能控制技术是一种应用智能算法和技术来实现系统自主控制的技术。

随着科技的发展和进步,智能控制技术在机电一体化系统中的应用越来越广泛,其背景和意义也日益突出。

智能控制技术的背景在于现代社会对于智能化和自动化水平的要求不断提高。

智能控制及其在机电一体化系统中的应用

智能控制及其在机电一体化系统中的应用

智能控制及其在机电一体化系统中的应用随着科技的飞速发展,智能控制技术正日益成为各行各业的核心。

在机电一体化系统中,智能控制技术的应用不仅提高了系统的效率和性能,还为工业自动化带来了全新的发展方向。

1.智能控制技术概述:智能控制是指利用先进的传感器、计算机技术和人工智能算法,对系统进行实时监测、分析和控制的技术。

它能够根据系统的状态和外部环境变化,实现智能化的决策和控制操作。

2.智能控制在机电一体化系统中的应用:传感器技术:智能控制系统利用各类传感器实时采集机电系统的运行数据,如温度、压力、速度等。

这些传感器数据被用于系统状态监测和故障诊断。

自适应控制算法:智能控制系统采用自适应控制算法,根据系统反馈信息和设定目标,动态调整控制参数,以适应系统运行状态的变化,提高系统的稳定性和鲁棒性。

人机交互界面:通过人机交互界面,操作员可以直观地监控机电系统的运行状况,并进行实时的参数调整。

这种界面使得系统的管理和操作更加便捷。

远程监控与管理:利用互联网技术,智能控制系统实现了远程监控与管理。

操作员可以通过网络远程访问机电系统,进行实时监测、故障诊断和远程操作,提高了系统的可维护性和可管理性。

机器学习与人工智能:利用机器学习和人工智能技术,智能控制系统能够通过学习历史数据和经验,不断优化控制策略,提高系统的智能化水平,适应不同的工作环境和需求。

3.智能控制带来的优势:提高效率:智能控制系统能够对机电系统进行智能调度和优化,提高生产效率,降低能耗。

增强稳定性:自适应控制算法能够根据系统的动态变化进行实时调整,增强系统的稳定性和可靠性。

降低成本:通过智能化的监测和预测,可以提前发现潜在故障,减少停机时间,降低维护成本。

实现柔性制造:智能控制系统使机电一体化系统更加灵活,能够适应多品种、小批量、定制化的生产需求,实现柔性制造。

4.挑战与展望:数据安全:随着智能控制系统的广泛应用,数据安全成为一个重要的问题。

保护系统数据的安全性和隐私性是未来发展的重要方向。

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用1. 引言1.1 智能控制技术在机电一体化系统中的应用随着科技的不断发展,智能控制技术在机电一体化系统中的应用越来越广泛。

智能控制技术以其高效、精准、灵活等特点,为机电一体化系统的运行和管理带来了全新的可能性。

在智能控制技术的支持下,机电一体化系统可以实现自动化控制、智能监测和优化调度,大大提高了系统的效率和性能水平。

智能控制技术在机电一体化系统中的应用涵盖了智能仪器仪表的应用、智能传感器的应用、智能控制器的应用、智能调度系统的应用和智能监控系统的应用等方面。

通过这些技术手段的整合和运用,机电一体化系统可以更好地满足现代社会对于高效、安全、可靠的需求,推动机电一体化系统向着智能化、自动化的方向发展。

智能控制技术在机电一体化系统中的应用极大地拓展了系统的功能和应用领域,为未来的智能制造和智能工厂建设奠定了坚实的基础。

2. 正文2.1 智能仪器仪表的应用智能仪器仪表在机电一体化系统中扮演着至关重要的角色。

它们不仅可以实时监测各种参数数据,还可以通过内置的智能算法和控制功能对系统进行精准调节和控制。

智能仪器仪表的应用可以大大提高机电一体化系统的效率和性能,以下是一些智能仪器仪表的应用案例:1.智能压力传感器:智能压力传感器可以实时监测系统中的压力变化,并通过智能控制器对系统进行实时调节,从而确保系统在最佳工作状态下运行。

2.智能温度计:智能温度计可以精准地监测系统中的温度变化,并根据设定的温度范围进行自动控制,保证系统的稳定性和安全性。

3.智能流量计:智能流量计可以准确测量系统中的流体流量,并通过智能算法对流量进行实时调节,以满足系统对流量的需求。

4.智能液位仪:智能液位仪可以监测系统中液体的液位变化,并通过智能控制器对液位进行自动控制,确保系统的操作稳定和安全。

智能仪器仪表的应用可以大大提升机电一体化系统的智能化水平,提高系统的运行效率和稳定性,为机电一体化系统的发展和应用带来了巨大的推动力。

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用随着科技的发展和进步,智能控制技术在各个领域中的应用越来越广泛,其中机电一体化系统也不例外。

机电一体化系统是指通过将机械部分和电气部分有机地结合在一起,以实现高效、智能化的系统控制。

下面将详细介绍智能控制技术在机电一体化系统中的应用。

智能控制技术能够提高机电一体化系统的自动化程度。

传统的机电系统需要人工操作和监控,而智能控制技术可以实现系统的自动控制和自动监测,大大减少了人工操作的需求。

通过传感器、执行器等装置的配合,智能控制系统能够实现精确的控制和调节,提高系统的稳定性和效率。

智能控制技术能够提高机电一体化系统的智能化水平。

智能控制系统通过使用人工智能算法和机器学习算法,能够实现对系统的智能感知和决策。

在工业生产中,智能控制系统可以通过学习和分析大量的数据,预测设备的故障和维护周期,提前进行维护和排障,减少停机时间和维修成本。

智能控制技术能够提高机电一体化系统的安全性。

智能控制系统可以通过监测和分析系统运行时的各种参数,及时发现异常情况并采取相应的措施,保障系统的安全稳定运行。

在电力系统中,智能控制技术可以通过监测电流、电压等参数,及时发现电力设备的故障和异常情况,避免电力事故的发生。

智能控制技术还能够提高机电一体化系统的能源效率。

智能控制系统可以通过实时监测和控制系统的运行状态,根据需求对系统进行智能调整,提高能源利用效率。

在空调系统中,智能控制系统可以根据人员数量、室外温度等因素进行智能调整,减少能源的浪费。

智能控制技术还能够提高机电一体化系统的生产力。

智能控制系统可以通过优化系统的控制算法和参数,提高生产过程的精度和效率。

在自动化生产线上,智能控制系统可以实现对产品的自动化控制和优化,提高产品的质量和生产效率。

智能控制技术在机电一体化系统中的应用非常广泛,能够提高系统的自动化程度、智能化水平、安全性、能源效率和生产力等方面的性能。

随着智能控制技术的不断进步和发展,相信在未来的机电一体化系统中,智能控制技术将发挥更加重要的作用。

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用
智能控制技术是指利用计算机技术、传感器技术、网络通信技术等手段,对机电一体
化系统中的各个部件进行监测、控制和优化,以提高系统的智能化程度和自动化水平。


能控制技术在机电一体化系统中的应用有很多,从简单的家庭自动化系统到复杂的工业自
动化生产线都可以使用智能控制技术来实现。

智能控制技术可以提高机电一体化系统的安全性。

通过安装各种传感器,可以对系统
中的各个部件的状态进行实时监测和数据采集。

当系统中出现故障或异常时,智能控制系
统可以及时发出报警信号,提醒操作人员进行相应的处理,避免事故的发生。

智能控制系
统还可以对系统的运行数据进行分析和预测,发现潜在的安全隐患,并采取相应的措施来
避免事故的发生。

智能控制技术可以提高机电一体化系统的能效。

通过对系统中的各个部件进行智能控
制和优化,可以在保证系统正常运行的前提下,最大限度地降低能源的消耗。

在温度控制
系统中,可以根据室内外温度的变化自动调整空调的运行模式和温度设定,以达到节能的
效果。

智能控制系统还可以根据系统的工作负载和用电需求,智能调整电力的分配和使用,实现能源的合理利用。

智能控制技术在机电一体化系统中的应用可以提高系统的安全性、能效、生产效率和
可靠性,为用户提供更加智能化和便捷的生产和生活环境。

随着科技的不断进步和创新,
智能控制技术将在机电一体化系统中发挥越来越重要的作用。

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用随着科技的迅猛发展,智能控制技术在机电一体化系统中的应用越来越普遍。

机电一体化系统是指将机械、电子、控制等多种技术集成在一起,实现对各种设备和系统的检测、控制、调节和管理。

智能控制技术将自动化、计算机、控制、通讯等多种技术进行了有机结合,能够使机电一体化系统更加高效、便捷、安全和可靠。

1、智能化控制系统以PLC、DCS、SCADA等为代表的智能化控制系统是机电一体化系统中的核心。

这些系统通过采集和处理传感器、执行器和各种设备的信号,实现对系统状态的监测和控制。

在智能化控制系统中,通过编排控制程序和参数,可以实现设备的自动化操作,提高系统的稳定性、精度和可靠性。

同时,智能化控制系统还可以实现远程监控、数据采集和管理等功能,方便了系统的运行和维护。

2、智能传感器与执行器智能传感器和执行器是机电一体化系统中非常重要的组成部分。

它们能够对周围环境进行感应和响应,将物理量转换成电信号,并将信号传递给控制系统,实现对设备的自动化控制。

智能传感器和执行器具有反馈控制和自适应能力,能够根据系统的状态进行实时调整和优化。

智能传感器和执行器的应用,使机电一体化系统更加灵活、高效、智能化。

3、网络通信技术网络通信技术是机电一体化系统中不可或缺的组成部分。

通过局域网、无线网络、互联网等多种通信方式,实现设备之间的互联互通,方便设备间的数据共享和信息传递。

网络通信技术还可以实现对跨地域设备的远程监控和操控,为设备的运行和管理提供了方便。

4、人机界面技术人机界面技术是指人与机械设备之间的交互界面,通过图像、声音、触觉等方式,实现人机之间的信息交流和指令传输。

采用人机界面技术,可以为操作人员提供更加友好、直观、方便的操作环境,提高操作的安全性和效率。

常见的人机界面技术包括触摸屏、语音识别、手写输入等。

智能控制技术的广泛应用,使机电一体化系统在效率、精度、安全和可靠性等方面有了极大的提升。

未来,随着科技的不断进步,智能控制技术的应用将越来越广泛,为机电一体化系统的发展带来更多的创新和发展。

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用

智能控制技术在机电一体化系统中的应用随着科技的不断发展,智能控制技术在各个领域都得到了广泛的应用。

在机电一体化系统中,智能控制技术的应用更是起到了关键性的作用。

本文将从理论和实践两个方面,对智能控制技术在机电一体化系统中的应用进行详细的阐述。

一、理论基础1.1 机电一体化系统的概念机电一体化系统是指将机械工程、电子工程和计算机科学等多个领域的知识与技术相结合,实现机械与电气、电子的有机结合,形成具有一定功能的系统。

机电一体化系统具有结构紧凑、功能完善、性能优越等特点,广泛应用于工业生产、交通运输、医疗保健等领域。

1.2 智能控制技术的基本原理智能控制技术是一门研究如何实现对复杂系统的自动控制的学科。

其基本原理是通过建立系统的模型,分析系统的动态特性,设计合适的控制器,使系统能够按照期望的方式运行。

智能控制技术主要包括模糊控制、神经网络控制、自适应控制等方法。

二、实践应用2.1 智能控制系统的设计在机电一体化系统中,智能控制系统的设计是非常重要的环节。

设计合理的智能控制系统,可以提高系统的性能,降低系统的故障率,延长系统的使用寿命。

智能控制系统的设计主要包括以下几个步骤:(1)确定系统的输入输出参数:根据机电一体化系统的实际需求,确定系统的输入输出参数。

输入参数主要包括传感器的测量值,输出参数主要包括执行器的控制指令。

(2)建立系统的数学模型:根据输入输出参数,建立系统的数学模型。

数学模型是智能控制系统的基础,对于系统的性能评价和优化具有重要意义。

(3)选择合适的控制器:根据系统的数学模型,选择合适的智能控制器。

常用的智能控制器有模糊控制器、神经网络控制器、自适应控制器等。

(4)设计控制器的算法:根据所选的智能控制器,设计控制器的算法。

算法需要满足系统的动态特性要求,以实现对系统的精确控制。

2.2 智能控制系统的调试与优化智能控制系统的设计完成后,需要进行调试与优化。

调试的目的是检查系统的性能是否满足预期的要求,优化的目的是进一步提高系统的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014 年秋季学期本科生课程考核(读书报告、研究报告)考核科目:机电一体化系统设计学生所在院(系):机电工程学院学生所在专业:机械设计制造及自动化****:***学号:1110810710考核结果阅卷人智能控制技术在机电一体化系统中的应用1108107 汪珈右摘要:不同于传统机械系统,在机电一体化系统中,特别重视对智能控制技术的应用。

智能控制与机电一体化系统的完美结合,有效改善了机电一体化系统存在的各种缺陷。

本文综述了智能控制技术的相关知识,并论述了其在机电一体化系统中的应用。

关键字:机电一体化;机械电子;智能控制;系统前言机电一体化系统主要是指由动力与驱动部分、机械本体、传感测试部分、执行机构、控制及信息处理部分所组成,并利用电子计算机的信息处理技术、控制功能、以及可控驱动元件特性来运行的一种现代化机械系统。

所谓智能控制系统,就是指利用集合了人工智能理论、自动控制理论以及信息理论等诸多技术理论,用以实现优化调控机的新技术系统。

这是一种当前最为先进的自动化控制技术,一般包括两个方面,即外部环境和控制器。

在实际的应用中,通过外部环境提供信息以供控制器做出控制决策,因此无需使用模型,具有很大的环境适应协调能力,在诸多机械设备生产中都具有很大的应用价值,因而成为促进机电一体化的重要技术系统[1]。

为了满足人们生产生活中的各种需要,将智能控制技术融入到机电一体化系统中,也就成为的必然的趋势。

1智能控制技术概述1.1智能控制技术概念智能控制是指通过计算机模拟人类的思想,通过计算机程序实现对复杂多样的操作进行模拟,从而实现在无人控制的情况下完成机械控制并实现机械的自动化生产。

通过智能控制能够帮助人类解决很多复杂的问题和实现很多复杂的操作,同时极大的提高操作的精度,使得机械制造业能够制造出更加精密的设备。

智能控制系统与传统控制系统相比较具有更加方便快捷、更加精确、更加安全的优势,通过智能控制系统能够最大限度地精简参与生产的人员,在人类肉眼不可能达到的精密层级进行操作,使机械设备在一些人类不能到达的空间进行工作。

随着科学技术的快速发展,智能控制系统已经在工业中大放异彩,随着其与其他技术的完美结合,已经为人类做出了极大的贡献[2]。

1.2智能控制与传统控制的区别(1)智能控制是对传统控制理论的延伸和发展,智能控制在传统控制的基础上发展出更高效的控制技术。

智能控制系统运用分布式及开放式结构综合、系统地进行信息处理,并不只是达到对系统某些方面高度自治的要求,而是让系统做到统筹全局的整体优化。

(2)智能控制综合了很多有关调控方式理论知识的学科,与传统控制理论将反馈控制理论作为核心的理论体系相比,智能控制理论以自动控制理论、人工智能理论、运筹学、信息论的交叉为基础。

(3)传统控制只是解决单一的、线性的控制问题,与之相比,智能控制解决了传统控制无法解决的问题,通常是将多层次的、有不确定性的模型、时变性、非线性等复杂任务作为主要控制对象。

(4)传统控制通过运动学方程、动力学方程及传递函数等数学模型来进行系统描述。

相较而言,智能控制系统把对数学模型的描述、对符号和环境的识别以及数据库和推力器的设计等方面设为重点。

(5)传统控制由不同的定理和定律获取所需知识,而智能控制则通过学习专家经验来获取所需的知识。

智能控制系统可以较好的运用相关被控对象和人的控制策略以及被控环境的知识,因此智能控制系统可以模拟或模仿人的智能[3]。

1.3智能控制系统的类别1.3.1专家控制系统专家控制系统是在把人的知识、经验和技能汇集在计算机系统中后按照相应的指令程序来操作运行的控制系统,其所涵盖的诸多理论知识在智能控制实行实际任务时发挥了很大作用,提高了控制系统的应用性能。

1.3.2分级递阶智能控制系统分级递阶智能控制系统简称为分级控制系统,它是在自组织控制及自适应控制的基础上通过所关联的组织级、执行级以及协调级发挥的作用实行运行的。

1.3.3神经网络系统人工神经网络控制系统是神经网络系统在机电一体化系统中应用最为广泛的,它通过运用人工神经元、神经细胞等构成的模式来实行其非线性映射、分布处理、模仿人的智能等主要功能的发挥,具有自适应控制、自组织控制以及大幅度并行处理等优势。

1.3.4模糊控制系统模糊控制系统主要包括专家模糊控制以及以神经网络为基础的模糊控制。

专家模糊控制能够充分表达并利用实行控制所需的多层次知识,提高了控制技术的智能。

而以神经网络为基础的模糊控制利用神经网络来实行模糊控制的规则或推理以实现模糊逻辑控制的功能[3]。

2智能控制技术在机电一体化系统、产品中的应用和分析2.1智能控制在机电一体化系统中的应用2.1.1智能控制在机床中的应用智能控制应用于机电一体化系统中时,其最主要的表现形式便是在数控机床中的智能化应用。

传统的数据机床设备中,由于不具备先进、科学的智能化理念,所以使得所加工的产品不够精细与完美。

而将智能控制技术应用于机床加工中时,该技术通过CPU 控制系统、RISC芯片等先进、智能的控制系统,可大幅度地提高机床的精度。

智能控制机床的应用,可以对制造过程做出准确、果断的决定,其智能化系统对机床的整个制造过程均是十分了解,并可利用监控、诊断以及修正措施,来规避机床生产过程中容易出现的各种偏差。

除此之外,将智能控制应用在机床中时,该智能化系统还能够精准地计算出机床所使用的切削刀具、轴承、主轴、导轨等部件的磨损程度及剩余寿命,从而让人们在使用机床时更加清楚该机床剩余的使用时间以及替换时间。

从目前智能机床的实际应用情况来看,机床的智能化主要体现在四个方面:⑴智能安全屏障。

机床的智能安全屏障是指通过智能化的设计,以防止机床各部件在作业过程出现碰撞;⑵智能热屏障。

智能热屏障主要是指热位移控制,因为机床各部件的运动或动作下所产生的热量以及室内温度的变化,会使机床生产发生定位误差,而此种智能热屏障就是针对定位误差进行自动补偿,使误差值降低到最小。

⑶主动振动控制。

通过智能化主动振动控制,可将机床作业时产生的振动降至最小,由于进行切削等加工时,振动过大会影响加工的精度,而有效控制振动频率有幅度后,对机床加工精度与效率也有着十分积极的意义。

⑷语音信息系统。

语音信息系统又被称作马扎克语音提示,当操作人员对机床进行手动操作或调整时,其智能系统中的语音信息提示,可动态地提示操作人员操作的流程及正确性,从而避免失误的产生。

2.1.2智能控制在交流伺服系统中的应用交流伺服系统作为机电一体化系统中的一个重要组成部分,将智能控制技术应用于其中实属必然。

交流伺服系统主要是指一种转换装置,其是通过对电信号的转换来进行机械操作的一种系统。

但是,从实际的应用情况来看,由于交流伺服系统结构的复杂性,使得其也存在参数时变、负载扰动、强耦合等诸多的不确定因素,导致建立精确的数学模型十分困难,只能建立起与实际相似的模型,但所建立的这种模型有时却难以达到系统高性能的要求。

在这种情况下,将智能控制技术应用进去时,使交流伺服系统无需再建立精确的数学模型,也不再需要精准的控制器参数,便可实时、动态地掌握交流伺服系统的各种数据指标,进而保证交流伺服系统的高性能指标,满足相关厂家的要求。

2.1.3智能控制在机器人领域中的应用在当今社会的高速发展下,智能机器人的广泛应用已是必然的趋势,机器人在动力系统方面主要具备有时变性、强耦合性、非线性等特征,而针对这种特征,将智能控制技术应用其中很有必要。

从目前形势来看,将智能控制技术应用于机器人领域中时,其主要智能控制体现在如下几个方面:⑴行走方面的智能控制。

采用智能化技术,对机器人的行走路径以及行走轨迹跟踪等方面进行智能控制,从而实时、动态地了解机器人的行走情况,并给机器人下达行走的命令。

⑵多传感器及视觉处理方面的智能控制。

对机器人的多传感器信息融合方面,视觉处理方面进行智能化控制,使机器人能够利用多传感器等,准确、迅速地接收所传达过来的信息与命令。

⑶动作姿态方面的智能控制。

采用智能控制技术,对机器人的手臂姿态以及动作进行控制,使其动作姿态协调、有规律。

⑷运动环境方面的智能控制。

还可利用智能控制技术中的专家控制系统和模糊控制系统,对机器人的运动环境进行定位、监测、建模以及规划控制等。

2.1.4智能控制在设备装置中的应用将智能控制应用于设备装置当中,让设备装置的元件转变化智能化元件,从而使设备装置在石油化工、生物科技、节能环保、精密仪器制造、生活等各行各业,各个领域中均能发挥最大的应用优势。

⑴家庭家居中的智能设备装置。

家庭家居中的智能设备装置主要包括有家居控制器、总线连接器与智能家电,而这三大类型的设备装置之所以能起到智能的作用,与装置中所应用的智能元件有着极为密切的关系。

通过家庭家居设备装置中的智能元件,再经由蓝牙信号接收、传输接口等媒介,主动将自身状态息信传送给相应的控制器,同时在控制器发出指令之后,自动执行动作。

例如,家庭家居较常用的洗衣机、空调、电动窗帘、热水器、洗碗机、智能照明系统、智能安防系统等,均是在智能控制技术的应用下才得以实现的。

⑵企业中的智能设备装置。

随着我国大中小型企业的不断发展,企业在运营中所使用的设备装置朝着智能控制的方向发展也就成了必然的趋势。

例如在企业的数据管理方面,可根据企业的实际的运行情况,配备智能化与自动化元件、硬件及软件设施,构建出商务智能系统,进而利用联机分析处理技术、数据仓库技术以及数据挖掘技术,大幅地提高企业数据管理的效率,减少人力、财务、物力的大量耗费[4]。

2.2智能控制在机电一体化系统中的应用优势2.2.1帮助机电一体化系统完善性能相较于传统的自动化控制系统说来,智能控制系统作为机械工业与微电子工业未来发展的主要方向,智能控制在机电一体化系统中的应用优势首先体现在其可以帮助完善机电一体化系统的性能。

智能控制在机电一体化系统中的应用可以帮助省去中间模型分析的环节,准确的根据外部环境的变化趋势来确定调控方最终直接形成控制指令。

最终在在外部环境和控制器的作用下实现控制作业的情况下,帮助机电一体化系统高效、快捷、精度更高的去完成一项工作。

2.2.2帮助机电一体化提高工作效率由于采用智能控制技术能够实现机械设备依据操作人员所发出的命令编码自动进入工作状态能够采用智能控制系统可以避免由于人为操作做得等不利因素造成的失误而最终可能引起的不必要的损失,最终影响工作效率。

在智能控制系统的帮助下只需要人力完成第一步指令输入即可其余全部由系统根据指令按照流程顺序完成系统运行,能够在最大限度上极大的提高了系统的运行效率进而提高工作效率。

2.2.3帮助机电一体化系统增大安全可靠性在智能控制系统的帮助下只需要人力完成第一步指令输入即可,其余全部由系统根据指令按照流程顺序完成系统运行,智能控制系统可以合理地调控设备中的结构或运行程,最终实现对于运作系统的有效的智能控制工作,能够最大限度地保证机电一体化系统的安全可靠性[5]。

相关文档
最新文档