现代材料分析方法
现代材料分析方法

现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。
下面将针对常用的材料分析技术进行详细介绍。
一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。
通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。
2. 热分析:如热重分析、差示扫描量热仪等。
利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。
3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。
4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。
二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。
通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。
2. 质谱分析:如质子质谱、电喷雾质谱等。
通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。
3. 电化学分析:包括电化学阻抗谱、循环伏安法等。
通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。
4. 色谱分析:如气相色谱、高效液相色谱等。
利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。
三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。
2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。
3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。
通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。
四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。
2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。
材料现代分析方法

材料现代分析方法现代分析方法是指在化学、物理、生物等科学领域中广泛应用的一种分析技术。
它通过使用先进的仪器设备和相关的算法,能够快速、准确地对物质的成分、结构以及性质进行分析和表征。
本文将介绍几种常见的材料现代分析方法。
一、质谱分析法质谱分析法是一种非常重要的现代分析方法,广泛应用于有机化学、生物化学和环境科学等领域。
它通过将物质分子离子化,并在一个磁场中进行偏转,最后将其质量进行测定,从而确定物质的分子组成和结构。
质谱分析法具有高灵敏度、高分辨率、多组分分析的能力,可以用于确定物质的组成、确认化合物的结构、鉴定杂质等。
二、红外光谱分析法红外光谱分析法是一种基于不同分子振动产生的红外吸收谱谱图,进行物质分析和表征的方法。
该方法的原理是物质在特定波长的红外光照射下,吸收特定的波长,产生特定的振动谱带。
通过对红外光谱的测定和比对,可以确定物质的功能基团、官能团以及化学键的类型和位置,从而研究物质的组成、结构和化学性质。
三、扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种基于电子束显微技术的分析仪器。
其工作原理是在真空环境中,用电子束扫描样品表面,通过检测扫描电子的反射、散射或透射等信号,来获取样品表面的形貌、成分以及晶体结构等信息。
与光学显微镜相比,SEM具有更高的放大倍数、更高的分辨率和更大的深度。
四、X射线衍射(XRD)X射线衍射(XRD)是一种非常常用的材料分析技术,主要用于分析固体材料的结晶结构和晶体学性质。
该方法的原理是通过将物质置于X射线束中,当X射线与样品中的晶体结构相互作用时,会发生衍射现象。
通过测量样品衍射的位置、强度和形状等信息,可以确定样品的晶体结构、晶格参数和晶体定向等。
五、核磁共振(NMR)核磁共振(NMR)是一种通过检测原子核在磁场中的共振信号来进行物质分析的方法。
其工作原理是利用样品中特定原子核的性质,将其置于强大的磁场中,然后通过外加的射频电磁场来激发核自旋共振。
现代材料分析技术及应用

现代材料分析技术及应用现代材料分析技术是指利用现代科学技术手段对材料进行全面、准确、细致的研究和分析的方法。
它是材料科学领域研究的基础和支撑,广泛应用于材料的研发、生产和质量控制等方面。
现代材料分析技术包括物理性质测试、化学分析、显微成像、表面分析、光谱分析、电子显微镜等多个方面。
下面将介绍几种常见的现代材料分析技术及其应用。
一、物理性质测试技术物理性质测试技术是对材料的物理性能进行测试和分析的方法。
常见的测试技术有强度测试、硬度测试、韧性测试、热膨胀系数测量等。
这些测试技术可以用于评估材料的强度、硬度、韧性、热稳定性等性能。
例如,在金属材料的研发过程中,可以通过硬度测试来评估其抗拉强度和延展性,进而确定最佳的工艺参数。
二、化学分析技术化学分析技术是对材料中化学成分进行定性和定量分析的方法。
常见的化学分析技术包括光谱分析、质谱分析、原子吸收光谱分析等。
这些技术可以确定材料中元素的种类、含量以及化学结构。
化学分析技术在材料研发过程中起到了重要作用,可以选择最佳的原材料组合,提高材料的性能。
三、显微成像技术显微成像技术是观察和研究材料的微观形貌和结构的方法。
常见的显微成像技术有光学显微镜、电子显微镜和原子力显微镜等。
这些技术可以提供高分辨率的图像,揭示材料的表面形貌、内部结构和缺陷等信息。
显微成像技术广泛应用于材料的质量检测、缺陷分析和外观评估等方面。
四、表面分析技术表面分析技术是研究材料表面性质和表面结构的方法。
常见的表面分析技术有扫描电子显微镜、表面拉曼光谱、X射线光电子能谱等。
这些技术可以提供材料表面的化学组成、成分分布、晶体结构等信息。
表面分析技术对于材料的表面改性、涂层质量控制等有重要意义。
五、光谱分析技术光谱分析技术是研究物质的光学特性和结构的方法。
常见的光谱分析技术有红外光谱、紫外-可见吸收光谱、核磁共振光谱等。
这些技术可以通过分析物质与光的相互作用来判断其分子结构、化学键信息等。
光谱分析技术广泛应用于材料的组分分析、质量控制和性能评估等方面。
材料现代分析方法

材料现代分析方法材料现代分析方法是指利用现代科学技术手段对材料进行分析和研究的方法。
随着科学技术的不断发展,材料分析方法也在不断更新和完善。
现代材料分析方法的发展,为材料科学研究提供了更加精准、快速和全面的手段,对于材料的研究和应用具有重要的意义。
首先,光谱分析是材料现代分析方法中的重要手段之一。
光谱分析是利用物质对电磁波的吸收、发射、散射等现象进行分析的方法。
常见的光谱分析方法包括紫外可见吸收光谱、红外光谱、拉曼光谱等。
通过光谱分析,可以对材料的结构、成分、性质等进行研究和分析,为材料的研究和应用提供重要的信息。
其次,电子显微镜分析也是材料现代分析方法中的重要手段之一。
电子显微镜是利用电子束来照射样品,通过电子与样品相互作用产生的信号来获取样品的显微结构和成分信息的一种显微镜。
通过电子显微镜分析,可以对材料的微观形貌、晶体结构、成分分布等进行研究和分析,为材料的结构性能和应用提供重要的参考。
此外,质谱分析也是材料现代分析方法中的重要手段之一。
质谱分析是利用质谱仪对物质进行分析的方法,通过对物质中离子的质量和相对丰度进行检测和分析,来确定物质的分子结构和成分。
质谱分析可以对材料的组成、纯度、分子量等进行研究和分析,为材料的质量控制和应用提供重要的支持。
综上所述,材料现代分析方法是利用现代科学技术手段对材料进行分析和研究的方法。
光谱分析、电子显微镜分析、质谱分析等都是材料现代分析方法中的重要手段,通过这些方法可以对材料的结构、成分、性能等进行全面的研究和分析,为材料的研究和应用提供重要的支持。
随着科学技术的不断发展,相信材料现代分析方法将会更加完善和精准,为材料科学研究和应用带来更多的新突破。
材料现代分析方法

1000 1
100
10
0.1 0.01
整理课件
1 0.001
0.1 nm 0.0001 μm
13
OM
Ni-Cr合金的铸造组织
整理课件
14
SEM
整理课件
15
人类血细胞SEM照片
酵母
人类精子
整理课件
16
图为IBM公司的Eigler博士用扫描探针显微镜(SPM)搬动 35个氙原子绘制的“IBM”字样。如果这种原子搬动技术 被巧妙使用的话,就完全可以绘制成美妙的原子艺术画。
结构层次 物体尺寸
研究对象
研究方法
宏观结构 > 100 m 大晶粒、颗粒集 团
显微结构 0.2-100m 多晶集团
肉眼、放大 镜
显微镜
亚显微结 构
微观结构
10-200 nm
< 10 nm
微晶集团 晶格点阵
整理课件
扫描电镜
扫描隧道电 镜
8
2.材料分析的内容
表面和内部组织形貌。包括材料的外观形貌(如纳米 线、断口、裂纹等)、晶粒大小与形态、各种相的尺 寸与形态、含量与分布、界面(表面、相界、晶界)、 位向关系(新相与母相、孪生相)、晶体缺陷(点缺 陷、位错、层错)、夹杂物、内应力。
通过电磁性质变化研究分子运动——介电松弛与核磁共 振;
通过体积变化研究分子运动——热膨胀计
整理课件
34
课程说明
教材与参考书 《材料研究方法》——王培铭,许乾慰主编,科学出版社 《材料现代分析方法》——左演声,陈文哲,梁伟主编,北京工业大学
出版社 《聚合物材料表征与测试》 》——杨万泰主编,中国轻工业出版社
基于其它物理性质或电化学性质与材料的特征 关系建立的色谱分析、质谱分析、电化学分析 及热分析等方法也是材料现代分析的重要方法。 相对而言,上述四大类方法在材料研究中应用 得更加频繁。
材料现代分析测试方法

材料现代分析测试方法材料的现代分析测试方法是为了研究材料的组成、结构、性质以及相应的测试手段。
通过分析测试方法,我们可以深入了解材料的特点,进而为材料的研发、优化和应用提供有效的数据支持。
下面将介绍几种常用的材料现代分析测试方法。
一、质谱分析法质谱分析法是一种通过测量样品中不同质荷比(m/z)的离子的相对丰度来确定样品组成和结构的分析方法。
质谱分析法适用于分析有机物和无机物。
其优点是能快速分析出物质组成,提供准确的质量数据,对于结构复杂的样品仍能有效分析。
二、核磁共振(NMR)谱学核磁共振谱学是一种通过测量样品中核自旋与磁场相互作用的现象来分析样品结构和组成的方法。
不同核的共振频率和强度可以提供关于样品分子结构和组成的信息。
核磁共振谱学适用于有机物和无机物的分析。
由于从核磁共振谱图中可以获得丰富的结构信息,所以核磁共振谱学被广泛应用于有机化学、药物研发和材料科学等领域。
三、红外光谱学红外光谱学是一种通过测量样品对不同波长的红外辐射的吸收情况来分析样品结构和组成的方法。
不同官能团在红外区域会有特定的吸收峰位,因此红外光谱能提供有关样品中化学键和官能团的信息。
红外光谱学适用于有机物和无机物的分析。
它具有非破坏性、快速、易于操作等特点,在化学、生物和材料科学领域得到了广泛应用。
四、X射线衍射(XRD)X射线衍射是一种通过测量样品对入射X射线的衍射现象来研究样品结构和晶体结构的方法。
不同物质的晶格结构具有不同的衍射图样,通过分析衍射图样可以获得样品的晶体结构信息。
X射线衍射适用于分析有晶体结构的材料,如金属、陶瓷、单晶等。
它能提供关于晶体结构、晶粒尺寸和应力等信息,被广泛应用于材料科学、地质学和能源领域。
五、扫描电子显微镜(SEM)和透射电子显微镜(TEM)扫描电子显微镜和透射电子显微镜是一种通过聚焦电子束对材料进行观察和分析的方法。
扫描电子显微镜主要用于获得材料的表面形貌、颗粒分布和成分分析。
透射电子显微镜则能提供材料的内部结构和界面微观结构的信息。
材料分析方法总结

材料分析方法总结材料是现代工业中不可缺少的一环,而材料的质量也直接影响着产品的性能和品质。
为了保证材料的质量,科学家们在不断探索新的材料分析方法。
本文将对几种常用的材料分析方法进行总结。
1. X射线衍射法X射线衍射法是一种广泛应用于材料分析的非破坏性测试方法。
它通过将X射线投射到材料上,并记录反射和散射的X射线来分析材料的晶体结构和化学成分。
这种方法适用于分析晶体,陶瓷、金属、粉末、涂料等材料的结构。
2. 扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种通过扫描专用电子束来实现高分辨率成像的仪器。
它主要用于表面形貌和微观结构的分析。
这种方法适用于分析金属、陶瓷、高分子材料、纳米颗粒等材料。
3. 原子力显微镜(AFM)原子力显微镜(AFM)是一种利用扫描探针进行表面成像的技术。
探针末端的尖端可以感知为表面提供足够的分辨率和精度。
这种方法适用于对纳米颗粒、表面形貌、物性、焊点和电性进行研究。
AFM在纳米领域的研究中应用广泛。
4. 操作模态分析(OMA)操作模态分析(OMA)是一种实验模态分析技术,通过对振动信号的处理和分析来实现材料的动态特性分析。
这种方法适用于设计振动器件、安装大型机器及其分析结构和疲劳寿命。
在固体、液体、气体中的物理情况下可以应用到OMA分析中。
5. 热重分析(TGA)热重分析(TGA)是一种非常有用的方法,可以在微观和宏观水平上实现对材料特性的分析。
它利用热重量差法分析在升温和等温条件下,材料的重量以及重量变化和热学性质。
这种方法适用于材料的分解、氧化和变化温度的测定。
同时还可以提供实际应用中需要的材料密度、表面面积、孔隙度及扰动过程参数等信息。
在工程领域中,材料分析是非常重要的一环,实现高质量,健康和可持续的生产会更加有挑战和漫长。
因此,科学家们一直在不断寻找新的材料分析方法,并不断完善现有的方法。
综合以上几种方法的优缺点,选择合适的方法来分析材料,可以有效提高材料质量,减少生产成本,提升产品品质。
材料现代分析方法

材料现代分析方法一.绪论1.材料现代分析方法:是关于材料成分、结构、微观形貌与缺陷等的现代分析,测试技术及其有关理论基础的科学。
2.基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代分析方法的重要组成部分,大体可分为光谱分析、电子能谱分析、衍射分析与电子显微分析等四大类方法。
3.各种方法的分析、检测过程均可大体分为信号发生器、检测器、信号处理器与读出装置等几部分组成。
二.核磁共振1.核磁共振(Nuclear Magnetic Resonance,NMR):无线电波照射样品时,使特定化学结构环境中的原子核发生的共振跃迁(核自旋能级跃迁)。
2.拉摩尔进动:外磁场与核自旋磁场的相互作用,导致核自旋轴绕磁场方向发生回旋,称为拉摩尔进动。
3.核磁共振现象的产生机理:主要是由核的自旋运动引起的,核的自旋产生了不同的核自旋能级,当某种频率的电磁辐射与核自旋能级差相同时,原子核从低自旋能级跃迁到高自旋能级,产生了核磁共振现象。
4.描述核自旋运动的量子数I与原子核的质子数和中子数有关,有下列三种情况:(1)偶-偶核,I=0;(2)奇-偶核,I为半整数;(3)奇-奇核,I为整数。
5.核磁共振的条件:(1)原子核有自旋现象(I﹥0);(2)在外磁场中发生能级裂分;(2π)。
(3)照射频率与外磁场的比值υB=γIB。
6.1H核磁共振条件:υO=γI2π7.化学位移:某一质子吸收峰出现的位置,与标准物质质子吸收峰出现的位置之间的差异,称为该质子的化学位移δ。
8.化学位移现象:同一种类原子核,但处在不同的化合物中,或是虽在同一种化合物中,但所处的化学环境不同,其共振频率也稍有不同,这就是所谓的化学位移现象。
9.影响化学位移的因素:诱导效应、共轭效应、磁各向异性效应、氢键效应和溶剂效应。
质子周围电子云密度↑,屏蔽效应↑,在较高磁场强度处(高场)发生核磁共振,δ小;电子云密度↓,屏蔽效应↓,在较低磁场强度处(低场)发生核磁共振,δ大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-Al2O3 符合,进一步比对其他衍射峰的结果可以确定是
α -Al2O3。 XRD 物相分析的一
般步骤。( 5 分) 测定衍射线的峰位及相对强度 I/I1 : 再根据 2dsinθ =nλ 求出对应的
面间距 d 值。 (1) 以试样衍射谱中三强线面间距 d 值为依据查 Hanawalt 索引。 (2)
就得
到暗场像, 将入射束倾斜, 让某一衍射束与透射电镜的中心轴平行, 且通过物镜光阑就得到
中心暗场像。
2. 简述能谱仪和波谱仪的工作原理。 答:能量色散谱仪主要由 Si(Li)半导体探测器、在电
子束照射下,样品发射所含元素的荧光标识
X 射线,这些 X 射线被 Si(Li)半导体探测器吸
收,进入探测器中被吸收的每一个 X 射线光子都使硅电离成许多电子—空穴对,构成一个
Mg Kα 射线 (能量为 1253.8 eV)为激发源, 由谱仪(功函数 4eV)测某元素电子动能为 981.5eV, 求此元素的电子结合能。 ( 5 分) 答:在入射 X 光子的作用下,核外电子克服原子核和样
品的束缚, 逸出样品变成光电子。 入射光子的能量 hυ 被分成了三部分: ( 1)电子结合能 EB;
各自满足布拉格方程的 2θ 方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐
标的 X 射线能量色散谱。 3. 电子束与试样物质作用产生那些信号?说明其用途。
( 1)
二次电子。当入射电子和样品中原子的价电子发生非弹性散射作用时会损失其部分能量
(约 30~ 50 电子伏特 ),这部分能量激发核外电子脱离原子,能量大于材料逸出功的价电子 可从样品表面逸出, 变成真空中的自由电子, 即二次电子。 二次电子对试样表面状态非常敏
部分处于基态的分子跃迁到激发态, 则散射光能量减少, 在垂直方向测量到的散射光中, 可
以检测到频率为( ν 0 - Δ ν )的谱线,称为斯托克斯线。相反,若光子从样品激发态分子中
获得能量, 样品分子从激发态回到基态, 则在大于入射光频率处可测得频率为 ( ν0 + Δν )
的散射光线,称为反斯托克斯线
8 分) 如果
电子束沿面心立方的【 100】晶带轴入射,可能的衍射花样是什么,并对每个衍射斑点予以
标注?( 7 分)
二、 名词解释 名词解释 名词解释 名词解释(每小题 4 分 共 20 分)
1. 标
识 X 射线和荧光 X 射线: 标识 X 射线:只有当管电压超过一定的数值时才会产生,且波
长与 X 射线管的管电压、 管电流等工作条件无关, 只决定于阳极材料, 这种 X 射线称为标识
谱线上标注的是 2θ 的角度值, 根据谱图和 PDF 卡片判断该氧化铝的类型, 并写出 XRD 物
相分析的一般步骤。 答:确定氧化铝的类型( 5 分) 根据布拉格方程 2dsin θ =nλ ,
d=λ /(2sin θ ) 对三强峰进行计算: 0.2090nm,0.1604nm,0.2588nm, 与卡片 10-0173 α
能量对温度或时间作图的方法。
5. 红外吸收光谱和激光拉曼光谱
红外吸收光谱和
激光拉曼光谱: 物质受光的作用时, 当分子或原子基团的振动与光发生共振, 从而产生对光
电流脉冲, 经放大器转换成电压脉冲, 脉冲高度与被吸收的光子能量成正比。 最后得到以能
量为横坐标、 强度为纵坐标的 X 射线能量色散谱。
在波谱仪中,在电子束照射下, 样品
发出所含元素的特征 x 射线。 若在样品上方水平放置一块具有适当晶面间距
d 的晶体, 入
射 X 射线的波长、 入射角和晶面间距三者符合布拉格方程时, 这个特征波长的 X 射线就会 发生强烈衍射。 波谱仪利用晶体衍射把不同波长的 X 射线分开, 即不同波长的 X 射线将在
按索引给出的卡片号找出几张可能的卡片,并与衍射谱数据对照。
(3) 如果试样谱线与卡
片完全符合,则定性完成。 六、简答题(每题 5 分,共 15 分) 1.透射电镜中如何获
得明场像、暗场像和中心暗场像?
答:如果让透射束进入物镜光阑,而将衍射束挡掉,
在成像模式下, 就得到明场象。 如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,
4. 什么是化学位移, 在哪些分析手段中利用了化学位移? 而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。在 核磁共振等分析手段中均利用化学位移。
同种原子处于不同化学环境 XPS、俄歇电子能谱、
5。拉曼光谱的峰位是由什么因素决定的 , 试述拉曼散射的过程。
拉曼光谱的峰位是由分
子基态和激发态的能级差决定的。 在拉曼散射中,若光子把一部分能量给样品分子,使一
有一部分电子的总散射角大于 90o , 重新从试样表面逸出, 称为背散射电子。
透射电子:
当试样厚度小于入射电子的穿透深度时, 入射电子将穿透试样, 从另一表面射出, 称为透射
电子。 4. 差热分析法和示差扫描量热法
差热分析法:把试样和参比物置于相同的加
热条件下, 测定两者的温度差对温度或时间作图的方法。
以获得晶体的衍射谱, 在物镜的像面上形成反映样品特征的形貌像。 当中间镜的物面取在物
镜后焦面时 , 则将衍射谱放大,则在荧光屏上得到一幅电子衍射花样;当中间镜物面取在物
镜的像面上时, 则将图像进一步放大 ,这就是电子显微镜中的成像操作。 五、计算题( 10 分)
用 Cu Kα X 射线( λ =0.15405nm )的作为入射光时, 某种氧化铝的样品的 XRD 图谱如下,
( 3)X 射线。当入 (约几百电子伏特 ),这
部分能量将激发内层电子发生电离, 失掉内层电子的原子处于不稳定的较高能量状态,
它们
将依据一定的选择定则向能量较低的量子态跃迁, 跃迁的过程中将可能发射具有特征能量的
x 射线光子。 由于 x 射线光子反映样品中元素的组成情况, 因此可以用于分析材料的成分。 七、问答题 1.根据光电方程说明 X 射线光电子能谱( XPS)的工作原理。 (5 分 ) 以
《现代材料分析方法》期末试卷 1
三、简答题(每题 5 分,共 25 分)
1. 扫描电镜的分辨率和哪些因素有关?为什么 ?
和所用的信号种类和束斑尺寸有关,
因为不同信号的扩展效应不同,例如二次电子产生的
区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。
2.原子力显微镜的利用的是哪两种力, 又是如何探测形貌的? 范德华力和毛细力。 以 上两种力可以作用在探针上,致使悬臂偏转 ,当针尖在样品上方扫描时,探测器可实时地检
测悬臂的状态,并将其对应的表面形貌像显示纪录下来。
3.在核磁共振谱图中出现多重峰的原因是什么? 旋互相偶合造成的。在外磁场中,氢核有两种取向,
多重峰的出现是由于分子中相邻氢核自 与外磁场同向的起增强外场的作用,
与外磁场反向的起减弱外场的作用。根据自选偶合的
组合不同,核磁共振谱图中出现多重
峰的数目也有不同,满足“ n+1”规律
四、问答题 ( 10 分) 说明阿贝成像原理及其在透射电镜中的具体应用方式。
答:阿
贝成像原理( 5 分):平行入射波受到有周期性特征物体的散射作用在物镜的后焦面上形成
衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的特征的像。
在透射电镜中的具
体应用方式( 5 分)。利用阿贝成像原理,样品对电子束起散射作用,在物镜的后焦面上可
¼¸ºÎѧÔòÊÇ×îÔ翪ʼ±»ÈËÃÇÑо¿µÄÊýѧ·ÖÖ§£®Ö±µ½16ÊÀ¼ÍµÄÎÄÒÕ¸´ÐËʱÆÚ£¬µÑ¿¨¶û´´Á¢Á˽âÎö¼¸ºÎ£¬½«µ±Ê±ÍêÈ«·Ö¿ªµÄ´úÊýºÍ¼¸ºÎѧÁªÏµµ½ÁËÒ»Æð£®´ÓÄÇÒÔºó£¬ÎÒÃÇÖÕÓÚ¿ÉÒÔÓüÆËãÖ¤Ã÷¼¸ºÎѧµÄ¶¨Àí£»Í¬Ê±Ò²¿ÉÒÔÓÃͼÐÎÀ´ÐÎÏóµÄ±íʾ³éÏóµÄ´úÊý·½³Ì£®¶øÆäºó¸ü·¢Õ¹³ö¸ü¼Ó¾«Î¢µÄ΢»ý·Ö£®Ê±ÊýѧÒѰüÀ¨¶à¸ö·ÖÖ§£®´´Á¢ÓÚ¶þÊ®ÊÀ¼ÍÈýÊ®Äê´úµÄ·¨¹úµÄ²¼¶û°Í»ùѧÅÉÔòÈÏΪ£ºÊýѧ£¬ÖÁÉÙ´¿Êýѧ£¬ÊÇÑо¿³éÏó½á¹¹µÄÀíÂÛ£®½á¹¹£¬¾ÍÊÇÒÔ³õʼ¸ÅÄîºÍ¹«Àí³ö·¢µÄÑÝÒïϵͳ£®ËûÃÇÈÏΪ£¬ÊýѧÓÐÈýÖÖ»ù±¾µÄĸ½á¹¹£º´úÊý½á¹¹£¨Èº£¬»·£¬Óò£¬¸ñ¡¡£©¡¢Ðò½á¹¹£¨Æ«Ðò£¬È«Ðò¡¡£©¡¢ÍØÆË½á¹¹£¨ÁÚÓò£¬¼«ÏÞ£¬Á¬Í¨ÐÔ£¬Î¬Êý¡¡£©Êýѧ±»Ó¦ÓÃÔںܶ಻ͬµÄÁìÓòÉÏ£¬°üÀ¨¿ÆÑ§¡¢¹¤³Ì¡¢Ò½Ñ§ºÍ¾¼ÃѧµÈ£®ÊýѧÔÚÕâЩÁìÓòµÄÓ¦ÓÃÒ»°ã±»³ÆÎªÓ¦ÓÃÊýѧ£¬ÓÐʱÒà»á¼¤ÆðеÄÊýѧ·¢ÏÖ£¬
X 射线。 荧光 X 射线:因为光电吸收后,原子处于高能激发态,内层出现了空位,外层
电子往此跃迁, 就会产生标识 X 射线这种由 X 射线激发出的 X 射线称为荧光 X 射线。
2.
布拉格角和衍射角 布拉格角: 入射线与晶面间的交角。 衍射角: 入射线与衍射线的交角。
3. 背散射电子和透射电子
背散射电子: 电子射入试样后, 受到原子的弹性和非弹性散射,
放大,在以适当的方式显示、记录,得到
XPS 谱图,根据以上光电方程,求出电子的结合
能 , 进 而 判 断 元 素成 分和 化 学 环 境 。 此 元 素的 结 合 能 EB = h υ - EK - Ф S=
1253.8-981.5-4=268.3eV 2.面心立方结构的结构因子和消光规律是什么?(
感,能有效地显示试样表面的微观形貌。
(2)背散射电子。背散射电子是指被固体样品