工业结晶-第六章-结晶器设计资料
07无机盐生产-结晶课件

七种晶系:晶体按其晶格构造可分为七种晶系
11
14 种 空 间 点 阵 形 式
12
13
➢ 晶面:围绕晶体的自然平面 ➢ 晶棱:两个晶面的交线 ➢ 晶胞:晶体中的每个格子,是构成晶体的
根本单元。 ➢ 液晶:某些液体内部构造与固态晶体一样,
具有规律的空间排列
14
第一节 根本概念〔三〕晶体根本性质
43
2、二次成核
➢ 受已存在的宏观晶体的影响而形成晶核的现象, 称为二次成核。是晶核的主要来源。
➢ 两种机理: ➢ 〔1〕液体剪应力成核:由于过饱和液体与正在成
长的晶体之间的相对运动,液体边界层和晶体外 表的速度差,在晶体外表产生的剪切力,将附着 于晶体之上的微粒子扫落,而成为新的晶核。 ➢ 〔2〕接触成核〔碰撞成核〕:指当晶体之间或晶 体与其它固体物接触时,晶体外表的裂开成为新 的晶核。在结晶器中晶体与搅拌桨叶、器壁或挡 板之间的碰撞、晶体与晶体之间的碰撞都有可能 产生接触成核。 ➢ 主要由搅拌强度有关。被认为是获得晶核最简洁, 最好的方法。
44
接触成核:当晶体与其他固体物接触时所产生的晶体外 表的碎粒。在过饱和溶液中,晶体只要与固体物进展能量 很低的接触,就会产生大量的微粒。
在工业结晶器中,晶体与搅拌桨、器壁间的碰撞,以及 晶体与晶体之间的碰撞都有可能发生接触成核。
接触成核的几率往大于剪应力成核。
45
接触成核
优点:
①动力学级数较低,即溶液过饱和度对成核影响
17
粒度分布曲线
18
晶体的粒度分布
变异系数(coefficient of variation,cv):为一统 计量,与Gaussian分布的标准偏差相关。
CV10(r084%r16%) 2r50%
钢铁冶炼中的连铸结晶器设计分析

钢铁冶炼中的连铸结晶器设计分析钢铁工业是世界上最重要的基础工业之一,而连铸结晶器作为钢铁冶炼中的重要工艺设备,在钢铁生产中起着至关重要的作用。
它是将钢水连续铸造成铸坯的装备,也被称为CCM(Continuous Casting Machine )。
在连铸过程中,结晶器是影响铸坯质量和生产效率的重要因素之一。
本文将对钢铁冶炼中连铸结晶器的设计分析进行探讨。
一、连铸结晶器的功能及结构连铸结晶器是用于生产钢铁板材,构造为铸件钢水进入结晶器后,在结晶器内先通过液态状况(即铸造生长过程,在结晶器内生长晶核,从而使废钢液态状况成为铸块的过程),然后在结晶器出口处形成固态状况。
由此长出的铸坯被拉拔出结晶器,进入辊道机,经过各种工艺制成板材。
连铸结晶器主要由上零件、下零件、水冷夹套等部分组成。
其中,上零件通常包括喷嘴、芯棒、雾化器等部分,是铸坯形状的决定因素;下零件通常包括结晶器底板、结晶器壁板等部分,能够起到硬质支撑作用;水冷夹套则被用来控制结晶器的温度,保证连铸过程中的均匀性及稳定性。
二、连铸结晶器设计分析1. 结晶器形状结晶器的形状是直接影响铸坯外形的关键因素,对于连铸生产来说,形状应该均匀,能够保持稳定的流动。
根据结晶器的形状不同,连铸结晶器可分为恒形、变形和弯形三种类型。
其中,恒形结晶器一般是采用椭圆形或圆形结构,无法适应精密产品的生产;变形结晶器适用于不同的产品,但其结构较为复杂;弯形结晶器为当前应用较为广泛的结构,因为其结构简单、适用性强。
2. 水冷结构在连铸生产过程中,由于高温状态和高速上下铸造的影响,结晶器壁面容易出现过热的现象,因此需要引入冷却水来降低壁面温度,以保证铸坯质量。
水冷结构主要包括结晶器壁面、底部和顶部。
其中,结晶器壁面使用内侧水冷夹套或内部金属套管,底部使用底部夹套进行冷却,顶部采用上喷雾式冷却,以达到均匀冷却效果。
3. 喷嘴设备喷嘴作为连铸结晶器结构的关键之一,其设计应当综合考虑稳定性、均匀性、流速和流量等因素。
化工原理-结晶

结晶
升华 结晶
沉淀 结晶
3、结晶过程的特点 (1)能从杂质含量相当多的溶液或多组分的熔融 混合物中形成纯净的晶体。而用其他方法难以分 离的混合物系,采用结晶分离更为有效。如同分 异构体混合物、共沸物系、热敏性物系等。
(2) 固体Biblioteka 品有特定的晶体结构和形态(如晶形、 粒度分布等)。
(3)能量消耗少,操作温度低,对设备材质要求 不高,三废排放少,有利于环境保护。 (4)结晶产品包装、运输、储存或使用都很方便。
— 有些物质的溶解度随温度的升高而增加,称为正溶解度,
— 有些物质的溶解度随温度的升高而降低,称为倒溶解度,
了解物质的溶解度特性有助于结晶方法的选 择,例如:
一些盐的溶解度曲线
100 90
80
70 60 50
40
30 20 10 0 0 10 20 30 40 50 60 70 80 90 100
(三)溶液的过饱和与介稳区
• 如果溶液含有超过饱和量的溶质,该溶液称为 过饱和溶液。 • 同一温度下,过饱和溶液与饱和溶液间的浓度 差,称为过饱和度。 • 过饱和度是结晶过程必不可少的推动力。 溶液的过饱和度与结晶的关系可用下图说明:
MSZW(no solids) 超溶解度曲线 不稳区 介稳区宽度MSZW
C E D
B
A
(with solids)
溶解度曲线 稳定区
温度
溶液的过饱和与超溶解度曲线 • • • 在稳定区(不饱和区)晶体的成核和生长不会产生,也就 是,溶质溶解,不会从溶液中结晶出来; 在介稳区,自发成核不会产生,但当晶种存在时,二次成 核、晶体的生长会发生; 在不稳定区,自发成核会产生。如图中的ABCDE点。
(五)结晶机理与动力学
结晶方法和结晶器 ppt课件

成核。在介稳区内洁净的过饱和溶液还不能自 发地产生晶核,只有进入不稳区后,晶核才能 自发地产生,这种在均相过饱和溶液中自发产 生晶核的过程称为均相初级成核;如果溶液中 混入外来固体杂质,它们对初级成核有诱导作 用,这种在非均相过饱和溶液中产生晶核的过 程称为非均相初级成核。
• 冷却方式有自然冷却、间壁冷却和直接 接触冷却。
ppt课件
27
• (1)自然冷却 是使溶液在大气中冷却 而结晶。其设备与操作均较简单,但冷 却缓慢,生产能力低。
• (2)间壁冷却 原理和设备如同换热器, 多用水作冷却剂,也可用其他冷却剂 (如冷冻盐水)。这种方式耗能少,应 用较广泛,但传热速率较低,冷却壁面 上常形成晶垢,影响冷却效果。
ppt课件
5
• 二、结晶过程的相平衡
• 1.溶解度和溶解度曲线
• (1)溶解度
• 一定条件下,溶解达平衡时的溶液称为饱和溶 液,饱和溶液中溶质的浓度称为此条件下该溶 质的溶解度。
• 溶质浓度超过溶解度的溶液称为过饱和溶液。 显然,溶质可以继续溶解于未饱和的溶液中, 直至达到饱和为止。过饱和溶液析出过多的溶 质后成为饱和溶液,即结晶只能在过饱和溶液 中进行。
ppt课件
4
• 晶体从溶液中析出后,便可进一步用沉 降、过滤、离心分离等方法使其与溶液 分离。
• 结晶出来的晶体和剩余的溶液所构成的 混合物称为晶浆。
• 分离出晶体后剩余的溶液称为母液。
• 为了保证结晶产品的纯度,生产中,通 常在对晶浆进行母液分离后,再用适当 的溶剂对固体进行洗涤,以尽量除去由 于粘附和包藏母液所带来的杂质。
ppt课件
6
• 溶解度常用的表示方法有:
结晶器原理

结晶器原理结晶是一个重要的化工过程,是物质提纯的主要手段之一。
众多化工、医药产品及中间产品都是以晶体形态出现的,结晶往往是大规模生产它们的最好又最经济的方法。
结晶过程是一个复杂的传热、传质过程。
在溶液和晶体并存的悬浮液中,溶液中的溶质分子向晶体转移(结晶),同时晶体的分子也在向溶液扩散(溶解)。
在未饱和溶液中溶解速度大于结晶速度,从宏观上看这个过程就是溶解;在过饱和溶液中结晶速度大于溶解速度,从宏观上看这个过程就是结晶。
所以,结晶的前提是溶液必须有一定的过饱和度。
连续结晶器和间歇结晶器相比具有以下优点:连续结晶具有收率高、能耗低、母液少、产品质量好、自动化程度高、设备占地面积小及操作人员少等优点。
由于连续结晶器具有较高的生产效率,一套连续结晶器往往可以取代数套乃至数十套间歇结晶器,相应配套设备的数量也大大减少。
对于医药产品的结晶,由于连续结晶器都是全密闭的,结晶器可以布置在gmp车间的外面,而仅将离心机、烘干和包装布置在gmp车间的里面,这将极大地减少gmp车间的面积,从而降低整个工程的投资。
已连续结晶器可以便利地和机械放大泵女团,在低温下展开冷却结晶,不但不须要蒸汽,而且无须冷藏水。
节能环保的同时也防止了巨大的冷冻机投资。
过饱和度是结晶的一个重要参数。
根据大量试验的结果证实,溶液的过饱和与结晶的关系可用上图1表示;图中的ab线为普通的溶解度曲线,cd线代表溶液过饱和而能自发地产生晶核的浓度曲线(超溶解度曲线),它与溶解度曲线大致平行。
这两根曲线将浓度――温度图分割为三个区城。
在ab曲线以下是稳定区,在此区中溶液尚未达到饱和,因此没有结晶的可能。
ab线以上为过饱和溶液区,此区又分为两部分:在ab与cd线之间称为介稳区,在这个区域中,不会自发地产生晶核,但如果溶液中已加了晶种,这些晶种就会长大。
cd线以上是不稳区,在此区域中,溶液能自发地产生晶核。
若原始浓度为e的洁净溶液在没有溶剂损失的情况下冷却到f点,溶液刚好达到饱和,但不能结晶,因为它还缺乏作推动力的过饱和度。
工业结晶

16 V N P A exp[ 3 3 ] 2 3k T (ln S )
C C* S C*
A→指前因子;Vm→摩尔体积;k→Boltzmann常数; T→绝对温度;σ →表面张力。
结晶过程的动力学
初级成核过程中晶核的临界粒径与过饱和度间有关
2Vm dc k ln S
在过饱和溶液中,只有大于临界粒径的晶核才能生存 并继续生长,小于此值的粒子则会溶解消失。 非均相初级成核:在工业结晶器中发生均相初级成核 的机会比较少,实际上溶液中有外来固体物质颗粒, 如大气中的灰尘或其他人为引入的固体粒子,在非均 相过饱和溶液中自发产生晶核的过程。这些外来杂质 粒子对初级成核过程有诱导作用,非均相成核可在比 均相成核更低的过饱和度下发生。
中间粒度(medium size,MS):筛下累计质量分数 为50%时对应的筛孔尺寸值。
粒度分布曲线
二、晶体的粒度分布
变异系数(coefficient of variation,cv):为一统 计量,与Gaussian分布的标准偏差相关。
100(r84% r16% ) CV 2r50%
rm%为筛下累积质量分数为m%的筛孔尺寸。 对于一种晶体样品,MS越大,→平均粒度 大,CV值越小,粒度分布越均匀。
工业结晶
概述 结晶过程:固体物质以晶体状态从蒸汽、溶液 或熔融物中析出的过程。工业结晶技术作为高效 的提纯、净化与控制固体特定物理形态的手段
晶浆:在结晶器中结晶出来的晶体和剩余的溶液 (或熔液)所构成的混悬物。
母液:去除悬浮液中的晶体后剩下的溶液(或熔液)。 结晶过程中,含有杂质的母液(或熔液)会以表面粘附 和晶间包藏的方式夹带在固体产品中。用适当的溶剂对 固体进行洗涤 。
溶解度的影响因素:溶质及溶剂的性质、温度及压强。
结晶资料

4、杂质成分,杂质成分较多,则比较容易形成晶核,结晶体粒径越小。
给一一偏关于结晶理论的文章:结晶及其原理结晶是固体物质以晶体状态从蒸汽、溶液或熔融物中析出的过程。
在化学工业中,常遇到的情况是从溶液及熔融物中使固体物质结晶出来。
结晶是一个重要的化工过程,为数众多的化工产品及中间产品都是以晶体形态出现,如磷肥生产、氮肥生产、纯碱生产、盐类生产、络合物的沉析、有机物生产及胶结材料的固化等。
这是因为结晶过程能从杂质含量相当多的溶液中形成纯净的晶体(形成混晶的情况除外);此外,结晶产品的外观优美,且可在较低的温度下进行。
对许多物质来说,结晶往往是大规模生产它们的最好又最经济的方法;另一方面,对更多的物质来说,结晶往往是小规模制备纯品的最方便的方法。
结晶过程的生产规模可以小至每小时数克,也可以大至每小时数十吨,有效体积达300m3以上的结晶器已不罕见。
近期在国际上溶液结晶的新进展主要表现在三个方面。
(1)在生物化学的分离过程中广泛采用了溶液结晶技术,如味精、蛋白质的分离与提取等。
(2)在连续和间歇结晶过程中,广泛地应用了计算机辅助控制与操作手段,对于间歇结晶过程借助CAC实现最佳操作时间表,控制结晶器内过饱和度水平,使结晶的成核与结垢问题减低到最少;对于连续结晶过程,则藉以连续控制细晶消除,以缓解连续结晶过程固有的非稳定行为——CSD周期振荡问题,稳定结晶主粒度。
(3)结晶器设计模型的最佳化。
由于结晶过程是一个复杂的传热、传质过程,反应结晶(或称反应沉淀结晶过程)尤甚。
在不同的物理(流体力学等)化学(组分组成等)环境下,结晶过程的控制步骤可能改变,反映出不同的结晶行为,均使结晶过程数学模型复杂化。
但目前仍以使用粒数衡算模型及经验结晶动力学方程联立求解,进而建立设计模型为主。
对于不同的结晶物系,产生过饱和度的方法可能不同,可以是冷却、蒸发、盐析、加压或双相萃取等。
为了适应这些不同方法的特殊要求,在国际工业结晶界已经开发出各种型式的结晶器,结构不断更新,多达30余种。
结晶原理与结晶器讲座

在溶液中,6-APA是一种两性电解质,以三种 阳离子AA+、两性离子AA+、阴离子AA-三种形式 存在。 溶解度:
S6 APA S AA [ AA ] [ AA ]
温度对溶解度的影响:
Fig.3 6-APA溶解度与温度的关系
pH值对溶解度的影响:
S6APA/(g.L-1)
提高搅拌速度,产品的晶体粒度小,含量偏低; 加入高纯度的晶种,有利于改善产品的溶解度; 快速降温使产品的晶体细小,含量偏低。
溶剂对晶习的影响:
二氯甲烷 Fig.15 不同溶剂中阿莫西林的晶习
丙酮
Chemistry Letters, Yan-hong Zhao Jin-rong Liu,2006 35(9),1040.
物质中析出的过程。工业结晶过程是一个复杂的多
相传热、传质过程,最大生产能力由热力学相平衡
数据确定。结晶是一个可逆的相变过程,可分为溶 液结晶、熔融结晶、升华结晶及沉淀结晶四大类, 其中溶液结晶是化学工业中最常采用的结晶方法。 过饱和度是溶液结晶的推动力。
2、溶液结晶的基本类型:
结晶类型 1、冷却结晶 2、蒸发结晶 3、真空结晶 4、反应结晶 5、沉淀结晶 6、加压结晶 7、等电点结晶 产生过饱和度的方法 降低温度 溶剂的蒸发 溶剂的闪蒸 由于放热效应移去溶剂 外加物质以降低溶解度 改变压力,降低溶解度 控制pH值,降低溶解度
C (r ) — 粒径为r的溶质溶解度
C
— 正常平衡溶解度
M — 溶质分子质量
— 结晶界面张力
— 每摩尔电解质形成离子摩尔数
r — 粒子半径
— 固体密度
溶液的过饱和、超溶解度曲线、 介稳区
过饱和:溶液含有超过饱和量的溶质。 超溶解度:标志溶液过饱和而欲自发产生晶核 的极限浓度。 介稳区:超溶解度曲线与溶解度平衡曲线之间 的区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 强制循环结晶器可用 于很多过程,可根据 不同的过程来调节, 其也可设置粒度控制 系统。
结晶器的计算
• 生产能力和产品质量,和粒度要求 • 计算要求的基础数据与模型
– 溶解度数据
• 溶液的基本性质和颗粒的基本性质 如密度、形状系 数等
– 结晶成长速率模型与成核动力学模型 – 溶液的初始浓度C0
r e (L / L* )m
e xm
r—相对产品颗粒个数的累积分布,当所有的晶体考虑在内 r=1 m—改良的均一系数,不同的m值表示不同的分布函数,假设在一个过程中
的产品其m值不变,也不随颗粒的尺寸而变。 L—晶体的尺寸。 L*—参考尺寸,其定义为在此尺寸下,r值为0.3679与m无关。 x—无因次晶体尺寸,x=L/L*
0
0
xd
Ld L*
(1
)2
1 m
m
3
L *3 L3d 27
方程(6)变成
P vV
6Bk v L*3
2 9
Bk
v
L3d
这一结果和MSMPR的结果相同
以上分析是从产品晶体部分来考虑,下面再从结晶 器内部的晶体变化来考虑。
• 在稳定操作状态下,细小的晶体或者从外部加入
(加晶种)或者来源于系统内的成核,假设在操
dx
ห้องสมุดไป่ตู้
0
θ
dr dx
dx
Θ—平均停留时间
dr dx
一定尺寸的晶体个数
θ 一定尺寸晶体的停留时间
• 等号两边同时等于结晶器内晶体的总个数(相对
值,因为r为相对分布),从晶体生长的角度我们
有 G L
G
(
dL d
)av
L ( dL / d )av
或
0
dr dx
dx
mx e dx L 0 (dL / d )av
m1 x m
m x e dx L* (dL / d )av
m xm 0
(9)
由方程(8)和(9)
N
0
n
0
e
x
m
dx
F'
L* (dL / d )av
m
x mexm dx
0
粒数密度
F'L*m xme xm dx
0
n 0
(dL / d )av
exm dx
0
(10)
把方程(10)代入晶体总质量方程(7)
作过程中成长的晶体没有破碎或聚并。因此,在
结晶器内一定尺寸的晶体的晶数密度与产品中大
于此晶体尺寸的积累尺寸分布成正比,也就是说,
在这种假设下,在结晶器内的晶体密度分布正比
于方程(1)的r。如果把晶种(成核)在dx范围
内的个数表示为n0dx(注意:n0为核的粒数密度
n0,
在#/m无4 h因次晶体尺寸x的颗粒数为
晶体的成核速率 #/h
• 如果以产品中最大质量的晶体作为晶体尺寸来表 示,这种晶体尺寸可以从方程(3)得出即
(4) dw
dx
F' CkvL*3(m 2 mxm )xm 1e xm
0
xd
(1
)2
1 m
m
xd
Ld L*3
注意:当m=1时,xd=3,其分布式和MSMPR的结
果一致。
当m=0时,产品晶体为同一尺寸,表示一 个连续操作的带有理想产品分级的操作过程,对 方程(3)进行积分,得到以质量为基础的生产速 率。
3
P=
L
F'
v k v L*
x3
(
dr dx
)dx
=F' vkvL*3m
0
xm e2 -xmdm
(5)
F' 是全部结晶器内成核速率,如果用V表示结晶器体积,
成核速率表示为B, #/m3 h
即 F' BV
P vV
L*3 (Bkvm 0 xm e2 -xm dx)
(6)
当m=1
m xm2exm dx x3exdx 6
• 当结晶器操作于MSMPR模型
Ld 3G
Ld 3G
• 结晶器体积 :进料流率 * 停留时间
这样设计的结晶器比较简单,但因为是MSMPR的假设下, 而以其结果很难适用于大型结晶器。
设计图及设计程序
• 假设在稳定连续操作 的结晶过程中,其产
品的颗粒的累积尺寸 分布可用RosionRammler 方程表示:
3. 设计流程 • 操作模型的选择
连续:大型生产一般产生的晶体的尺寸分布较 宽可用一些控制手段来完成大晶体窄分布的产 品。
间歇:相对小的生产能力(50T/天)一般可产 生分布较窄的晶体也需要适当的控制方法。
• 操作过程的选择 冷却:溶解度随温度变化较大的体系,适宜用 冷却的方法。
蒸发:如果溶解度随温度变化不大的体系可用 蒸发法。在溶解度高时,为提高回收率用蒸发 的方法。
反应:能产生沉淀的反应体系。
其它:溶剂萃取,高压结晶等。
结晶器类型的选择
• DTB结晶器(draft tube and baffle)图 5.7(导流筒、挡板式)
• 特征:固体悬浮较好, 可带有结晶排除系统 和产品颗粒分级系统, 实现晶体粒度的控制。
• FC(forced circulation)强制循环
• 计算:
MT—悬浮密度
C1—溶液的终止浓度,根据最后排出体系的温度
而定,即C1=f(Tf) VW—蒸发水量
MT
C0 1 VW
C1
V0
可V0根—据溶母液液的中进杂料质体浓积度流而率定,,此对参单数组对分多系组统分M系T统是, 一个操作参数,根据结晶器的流动状态而定。因
此,可用上式计算体积、流率。
第五章 结晶器的选择与设计
• 根据不同的过程要求,很多种类型结晶器。 • 在现代结晶器的设计中
– 考虑结晶动力学 – 设计产品的尺寸,尺寸 – 产品的质量。
• 结晶器工艺设计 1. 确定操作模型 (1). 连续型 (2). 间歇型 2. 产生过饱和度的方法 冷却、 蒸发、 反应、 其它 3。结晶过程质量衡算 质量、热量、粒数衡算(略) 颗粒衡算与质量、热量衡算的关系
(n0dx)r=(n0dx)e-xm
• 因此,在结晶器内全部晶体重量为
wt
0
v
k
v
L3n
e-xm
0
dx
vkvL*3n0 0 x3e-xm dx
(7)
• 从另一方面讲,在结晶器内晶体的全部个
数也可以表示为
N=F' =
n
e-xm
0
dx
0
• Θ—晶体的平均停留时间
(8)
从晶体的平均停留时间的定义
0
dr dx
• 在用方程(1)表示积 累产品晶体分布时,
颗粒的粒数密度(即
在一定的颗粒尺寸范 围内的晶体个数)为
dr dx
(2)
mxm 1e xm
因此,在此尺寸范围内的晶体质量为
(3) w(x)
F'
C
k
v
x
3L*3
(
dr dx
)
F' CkvL*mxm 2e xm
w(x) —产品晶体的质量分布 kg/m·h C —晶体密度 kg/m3 kv —晶体的体积形状系数 F' —以个数为基准的晶体生产速率,它等于