定量PCR基本原理及方法

合集下载

荧光定量 pcr 的基本原理和步骤

荧光定量 pcr 的基本原理和步骤

荧光定量PCR的基本原理和步骤
荧光定量PCR(quantitative polymerase chain reaction,qPCR)是一种常用的分子生物学技术,可以用于检测和定量DNA或RNA分子。

其基本原理是在PCR过程中加入荧光探针,通过监测荧光信号的强度来定量PCR产物的数量。

下面是荧光定量PCR的基本步骤:
1. 样品处理:首先需要从待检测样品中提取DNA或RNA,并进行适当的处理,例如反转录、扩增等。

2. 设计引物:根据待检测的目标序列设计特异性引物。

3. PCR反应体系的制备:将引物、荧光探针、dNTPs、PCR缓冲液等混合,制备PCR反应体系。

4. PCR反应:将样品DNA或RNA与PCR反应体系混合,进行PCR反应。

5. 荧光定量:在PCR反应过程中,荧光探针会结合到目标序列上,并通过荧光信号的产生来检测PCR产物的数量。

在荧光定量PCR中,通常采用SYBR Green或TaqMan探针来检测PCR产物的数量。

6. 数据分析:通过对荧光信号的强度进行分析,计算出样品中目标序列的数量,并进行比较和分析。

需要注意的是,在荧光定量PCR中,需要选择合适的荧光探针和荧光信号检测系统,以确保准确和可靠的结果。


外,为了避免PCR过程中的污染和误差,需要严格控制PCR 反应条件和操作流程。

定量pcr的方法

定量pcr的方法

定量pcr的方法定量聚合酶链反应(Quantitative Polymerase Chain Reaction,qPCR)是一种在实验室中常用的分子生物学技术,旨在定量测定DNA或RNA分子的相对丰度。

本文将详细介绍定量PCR的原理、操作步骤以及应用领域。

一、定量PCR的原理定量PCR的原理基于聚合酶链反应(PCR)技术,该技术通过复制模板DNA 或RNA分子的特定片段来实现特异性扩增,从而产生大量复制产物。

在定量PCR 中,引入一种特定的荧光探针,该荧光探针与扩增产物结合,并在每个扩增周期的末端释放荧光信号。

荧光信号的数量与初始模板分子量成正比,因此可以通过测量荧光信号的强度来定量PCR产物中的特定DNA或RNA分子序列的相对丰度。

二、定量PCR的操作步骤1. 制备PCR反应体系:将反应缓冲液、模板DNA或RNA、引物、荧光探针、聚合酶、核苷酸和水混合制备反应体系。

反应体系中的核苷酸是用来提供DNA 或RNA的基本成分。

2. 热循环条件设置:选择合适的PCR仪,并设置合适的热循环条件。

热循环的三个步骤包括变性、退火和扩增。

3. 变性步骤:将反应体系加热至高温,通常为94-98,使DNA或RNA解性,即DNA双链分离,RNA变性为单链,使模板分子可供扩增。

4. 退火步骤:降低温度到引物特异性结合的温度,引物会与模板分子特异性结合,这通常在50-65之间进行。

5. 扩增步骤:将退火的反应体系加热至合适的温度,通常为72,此时聚合酶开始合成新的DNA链,延伸引物。

该步骤重复多次,每次扩增会产生两倍数量的DNA或RNA分子。

6. 荧光检测:在PCR反应进行过程中,荧光探针会与扩增产物结合,并在每个扩增周期的末端释放荧光信号。

荧光信号的强度与扩增产品的数量成正比。

7. 数据分析:使用特定的软件来分析荧光信号数据,将其转化为反应物的初始模板浓度。

可以通过比较不同样本的荧光信号强度来定量比较DNA或RNA的相对丰度。

荧光定量pcr的原理方法

荧光定量pcr的原理方法

荧光定量pcr的原理方法
荧光定量PCR(Fluorescent Quantitative PCR,qPCR)是一种用荧光信号量化检测PCR产物的方法,用于定量分析目标DNA或RNA的含量。

荧光定量PCR的基本原理如下:
1.引物设计:设计特异性引物,使其能够特异性地扩增目标DNA或RNA序列。

2.模板DNA或RNA的提取:从样品中提取目标DNA或RNA。

3.cDNA合成:对于RNA样品,需要首先将RNA反转录成cDNA,作为PCR 的模板。

4.Real-time PCR扩增反应:将模板DNA或cDNA与引物和荧光探针一起加入PCR反应体系中,进行实时PCR扩增。

PCR反应体系中还包括核苷酸,聚合酶和缓冲液等。

5.荧光信号检测:随着PCR的进行,荧光探针被解旋成单链,释放出与之配对的荧光染料。

荧光染料产生荧光信号,信号强度与扩增产物的数量成正比。

6.荧光信号检测系统:荧光信号检测系统实时检测PCR反应体系中的荧光信号,并将其转换成数值。

7.标准曲线绘制:通过使用已知浓度的标准品进行一系列稀释,绘制出标准曲线。

标准曲线将荧光信号强度与目标DNA或RNA的初始浓度之间建立了一个标准关系。

8.样品定量:通过对样品的荧光信号强度进行测量,并使用标准曲线进行插值计算,确定样品中目标DNA或RNA的初始浓度。

荧光定量PCR具有高灵敏度、高特异性、宽动态范围、低检测限和快速分析等优点,广泛应用于分子生物学和疾病诊断等领域。

1、试述荧光定量pcr技术的原理、方法、注意事项及其在临床与科研中的应用

1、试述荧光定量pcr技术的原理、方法、注意事项及其在临床与科研中的应用

1、试述荧光定量pcr技术的原理、方法、注意事项及其在临床与科研中的应用
荧光定量PCR是一种在PCR反应过程中,通过荧光信号的检测来对PCR产物进行实时定量分析的技术。

1. 原理:
荧光定量PCR利用荧光染料或者荧光探针,标记扩增过程中的每一个循环的产物,这些荧光标记的产物在激发光的作用下会发出荧光。

随着反应的进行,PCR产物不断累积,荧光信号也随之增强。

通过对荧光信号的实时监测,可以推断出样本中起始模板的数量。

2. 方法:
主要方法包括探针法、SYBR Green I染料法和分子信标法等。

探针法使用与目标序列特异性结合的荧光探针来标记PCR产物。

SYBR Green I染料法则是利用染料与双链DNA的结合特性,将染料添加到反应体系中,随着PCR产物的增加,染料的荧光信号也增强。

3. 注意事项:
荧光定量PCR对样品纯度要求较高,应避免杂质的干扰。

反应体系中的成分和浓度需要精确控制,以确保实验结果的准确性。

荧光定量PCR的结果解读需要参考标准曲线,以确定未知样本中的目标序列数量。

4. 在临床与科研中的应用:
在临床应用中,荧光定量PCR被广泛用于病原体检测、基因突变分析、遗传病诊断以及癌症研究等。

例如,用于检测病毒如HIV、HBV等的载量,或者检测癌症相关基因的表达水平。

在科研领域,荧光定量PCR可用于基因表达分析、基因组学和表观遗传学研究中。

例如,比较不同组织或细胞类型的基因表达差异,或者研究表观遗传修饰对基因表达的影响。

总的来说,荧光定量PCR技术是一种高灵敏度、高特异性的核酸定量分析方法,对于临床诊断和科学研究具有重要意义。

定量PCR 简介

定量PCR 简介

定量PCR简介聚合酶链反应(polymerase chain reaction, PCR)是微量核酸扩增的有效工具,由于其灵敏、特异、快速等优点,在医学上已广泛应用与病毒、细菌病原体及遗传病、肿瘤的早期诊断。

随着PCR技术的发展,特别是病毒或肿瘤的治疗监测、疾病的诊断、机体基因表达调控方面,不仅需要检测其存在是否;而且还需要得知扩增前标本中的模板的数量,因而必须对PCR进行定量检测,即定量PCR技术,本文将对定量PCR的定量原理、技术类型以及相关进展方面综述如下:一、定量PCR的基本原理:在PCR实验条件下(Mg++、缓冲液、Taq酶、dNTP、引物、模板),经变性→退火→延伸的一个循环,引物在退火阶段与相应的模板结合,在延伸阶段进行复制,此时产物为:Yn=Yn-1×(1+Ev) ,Yn:n个PCR循环后PCR产物的分子数;Yn-1:为n-1个热循环后PCR产物的分子数;Ev:为扩增效率,0≤Ev≤1;若n个热循环中其Ev是一致的话,经n个循环后的扩增产物的分子数(Y)和反应物中原始分子数(X)之间关系,可描述为:Y=x×(1+ Ev)n。

1. 终点法定量原理:在最佳实验、循环次数n一定、Ev相同的前提下,根据扩增产物的量可以计数出反应物中原始分子数,若核酸提取效率相同(与标准品),进而计算出标本中靶分子的准确含量,即:lnx=lnY-n×ln(1+Ev)=lnY - b (b为常数)2. 实时检测法定量原理:在最佳实验、相同Ev以及相同扩增产物的情况下,反应物中原始分子数(X)与其所需要的扩增循环次数(n)成反比,若核酸提取效率相同(与标准品),进而计算出标本中靶分子的准确含量,即:LgX=LgY–n×Lg(1+Ev)=b - n×a (a、b为常数)3. 扩增效率(Ev)的影响因素:以上所述的定量原理均假定反应体系中扩增效率是不变,但是,实际上,Ev在不同的扩增管之间和同一扩增管的不同循环次数之间是不同,如何控制及解决Ev的变异以及标本制备的可靠性是PCR定量的可靠性所在,也是定量PCR的发展方向,那么,Ev的影响因素有:a. 引物和靶序列的结合能力(G+C%及突变),扩增产物的长度,G+C含量。

PCR定量方法概述

PCR定量方法概述

PCR定量方法概述PCR(聚合酶链式反应)是一种广泛应用于分子生物学研究中的技术,可通过扩增特定DNA片段数量来进行定量分析。

PCR定量方法的发展使得我们能够更加准确、快速地测量和定量目标DNA序列或基因表达水平。

本文将概述PCR定量方法的原理、步骤和应用。

一、PCR定量方法的原理PCR定量方法是基于PCR技术的扩增效率与起始模板浓度成正比的原理。

在PCR反应中,模板DNA以指数级倍增,而每个PCR周期后,扩增效率会逐渐降低。

通过确定PCR周期数和目标序列浓度之间的关系,可以利用定标曲线或计算方法来定量目标DNA的起始浓度。

二、PCR定量方法的步骤1. DNA提取:从样本(如细胞、组织或血液)中提取DNA,并纯化得到高质量的模板DNA。

2. 靶序列选择:根据需要定量的目标序列,设计引物和探针,保证其特异性和高效性。

3. PCR反应设置:根据目标序列的长度和特性,确定PCR反应体系中的引物和探针的浓度,优化反应条件(如温度和时间)。

4. 制备标准曲线:通过系列稀释的已知浓度的标准品,构建定标曲线,用于后续定量计算。

5. PCR扩增:将模板DNA与引物和探针加入PCR反应体系中,进行一系列PCR循环,扩增目标序列。

6. 实时监测:利用实时荧光PCR仪或其他检测方法,监测PCR反应过程中探针的荧光信号强度。

7. 数据分析:根据定标曲线和荧光信号强度,计算出目标DNA的起始浓度。

三、PCR定量方法的应用1. 基因表达分析:通过比较不同样品中目标基因的表达水平,研究基因在生理和病理过程中的变化。

2. 病原体检测:定量PCR可用于检测和定量病原体DNA,用于快速诊断与预后评估。

3. 肿瘤检测:通过定量PCR检测肿瘤标志物,提供肿瘤早期诊断和治疗效果监测。

4. 遗传病筛查:利用PCR定量方法可以检测和定量与遗传病相关的突变或多态性位点。

5. GMO检测:定量PCR可用于识别和量化转基因生物的成分和含量。

6. 受精能力评估:通过检测精子和卵子中特定基因的数量,评估生殖健康和受精能力。

1定量PCR基本原理

1定量PCR基本原理

1定量PCR基本原理定量PCR(Quantitative Polymerase Chain Reaction)是一种用于检测和测量DNA或RNA分子数量的分子生物学技术。

它是常用的基因表达和检测技术。

以下是定量PCR的基本原理。

定量PCR的基本原理可以分为三个主要步骤:扩增反应、检测荧光信号和标准曲线计算。

第一步是扩增反应。

PCR反应通常在一个热循环中进行,每个循环包括三个步骤:变性、退火和延伸。

变性步骤通过高温将DNA双链分离成两条单链。

然后,在退火步骤中,引物通过与目标DNA序列特异性碱基配对,使其结合到模板DNA上。

最后,在延伸步骤中,DNA聚合酶将新的DNA链合成为与模板DNA相匹配的互补链。

这个循环过程被重复多次,每个循环使得目标序列的数量翻倍,从而进一步扩增目标DNA序列。

第二步是检测荧光信号。

PCR反应中通常会引入一个特定的探针或染料,其结构包括与目标DNA序列特异性结合的引物,并带有一个发光染料和一个参考染料。

扩增反应进行时,DNA聚合酶会催化探针与模板DNA结合,并释放出发光信号。

发光信号的强度与目标DNA序列的数量成正比。

参考染料发出的信号用于校正可能因扩增反应条件变化而引起的信号差异。

第三步是用标准曲线计算目标序列的数量。

标准曲线是通过基于已知浓度的一系列标准样品构建的。

这些标准样品包含与待测样品相同的目标序列,但其浓度已知。

将标准曲线上的荧光信号强度与标准样品的浓度进行比较,可以建立一个线性关系模型。

然后,通过将待测样品的荧光信号强度与标准曲线进行比较,可以计算出待测样品中目标序列的初始浓度。

定量PCR的结果可以用于不同的应用,如基因表达研究、病原体检测、遗传病诊断等。

通过定量PCR,可以准确测量目标序列的数量,并比较不同样品之间的差异。

总结一下,定量PCR通过扩增反应、检测荧光信号和标准曲线计算三个主要步骤来定量测量DNA或RNA分子的数量。

这种技术在许多生物学研究和医学诊断中发挥着重要作用。

定量PCR基本原理及方法-PPT精品文档

定量PCR基本原理及方法-PPT精品文档
原理:根据扩增产物的量计数反应物中原始分子数,即: lnx=lnY-n×ln(1+Ev)=lnY - b (b为常数) 2. 实时检测法定量原理 前提:在最佳实验、相同Ev以、扩增产物量相同 原理:反应物中原始分子数(X)与其所需要的扩增循环次数(n)
成反比,由此计算出标本中靶分子的准确含量,即:
LgX=LgY–n×Lg(1+Ev)=b - n×a (a、b为常数)
Ampliflour Probe,LUX
定量分析
基因型分析
利用扩增信号的种类来分型 —— Taqman
根据熔解曲线的不同来分型 —— FRET, Molecular Beacon LC Green
利用扩增信号的种类来分型 双Taqman探针法检测野生型和突变型
在基因型分析中,可采用两种不同的Taqman探针(分别针对野生型和突变型),即一个突 变型探针以一种荧光素(Flr)标记,而野生型探针则用不同的荧光物(Tet)标记。如果只有 一种信号被扩增出来,则样本为对应的基因型(野生型或突变型)的纯合子;如二者都被有效 地扩增出来,则样本为杂合型。
后来用与双链DNA有更强结合力的SYBR Green I取代EB
荧光定量PCR的定量原理
PCR的理论方程: Y=x×(1+ Ev)n Real-time Chemistries
Y:扩增物数量; X :起始模板数量;Ev:扩增效率;n:扩增循环数
1. 终点法定量原理
前提:在最佳实验、循环次数n一定、Ev相同
定量PCR基本原理及方法
基因有限公司 黄妤
内 容
一. 荧光定量PCR基本原理 二. 荧光定量PCR标记方法 三. 荧光定量PCR不同方法学的应用
一.荧光定量PCR基本原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Molecular Beacon 定量分析,熔解曲线分析,基因型分析
FRET 定量分析,熔解曲线分析,基因型分析
Ampliflour Probe,LUX 定量分析
➢ 基因型分析
利用扩增信号的种类来分型 —— Taqman 根据熔解曲线的不同来分型 —— FRET, Molecular Beacon
➢ 荧光定量PCR的定量原理
RePaCl-Rti的m理e论C方he程m:isYt=rxie×s(1+ Ev)n
Y:扩增物数量; X :起始模板数量;Ev:扩增效率;n:扩增循环数
1. 终点法定量原理 前提:在最佳实验、循环次数n一定、Ev相同 原理:根据扩增产物的量计数反应物中原始分子数,即: lnx=lnY-n×ln(1+Ev)=lnY - b (b为常数)
R
3’
3’
3’
5’
QQQ
Q
5’
分子信标(Molecular Beacon Probe)
R ExcitatEiomnission Q
Excitation
荧光共振能量传递(FRET Probe)
Oligo 1: Fluorescein Excitation
Transfer
Oligo 2: LC Red 640 Emission
2. 实时检测法定量原理 前提:在最佳实验、相同Ev以、扩增产物量相同 原理:反应物中原始分子数(X)与其所需要的扩增循环次数(n)成反比, 由此计算出标本中靶分子的准确含量,即: LgX=LgY–n×Lg(1+Ev)=b - n×a (a、b为常数)
✓ n: 扩增循环数的确定
PCR efficiency =[10(-1/slope)]-1 Where slope=1/m
LC Green
利用扩增信号的种类来分型
双Taqman探针法检测野生型和突变型
在基因型分析中,可采用两种不同的Taqman探针(分别针对野生型和突变型),即一个突 变型探针以一种荧光素(Flr)标记,而野生型探针则用不同的荧光物(Tet)标记。如果只有 一种信号被扩增出来,则样本为对应的基因型(野生型或突变型)的纯合子;如二者都被有效 地扩增出来,则样本为杂合型。
三.荧光定量PCR不同方法学的应用
➢ 研究目的 ➢ 标记方法
➢ 研究目的
定量分析(基因拷贝数的绝对定量,基因表达调控的相对定量) Sybr-Green (LC Green), Taqman, Molecular Beacon, etc
熔解曲线分析 Sybr-Green, LC Green, Molecular Beacon, FRET
73 74 75 76 77 78 79 80 81 82 83 84 85 86 8d7eg. 88 89 90 91 92 93 94 95 96 97 98 99 100 deg.
AnAnnenaelainligngata6t 06℃3℃
➢ 标记方法
Taqman 定量分析,基因型分析
Sybr-Green 定量分析,熔解曲线分析,基因型分析 (LC Green)
基因型分析(SNP、突变型分析) Taqman, Molecular Beacon, FRET, LC Green
绝对定量
某 科 研 用 户 使 用 Rotor-Gene 3000 进 行 基 因 表 达 检 测 结 果
(自备标准品,检测样品做复管)
相对定量
某科研用户使用Rotor-Gene 3000进行基因表达相对定量分析,下图为用 ∆∆Ct法得出的分析结果 。(自备标准品,检测样品做3次重复复管)
内掺式染料 SYBR-Green I
Excitation
5’
3’
SG
Emission
SG
SG
3’
SG
5’
SG
内掺式染料 SYBR-Green I
Excitation
SG
5’
3’
SG SG SG
Emission
3’ 5’
SG
双标记探针(Taqman Probe)
5’
5’
3’
Excitation Excitation
HouseKeeper Gene
Gene of Intቤተ መጻሕፍቲ ባይዱrest
熔解曲线分析 利用溶解曲线进行实验条件的优化(RG3000)
dF/dT dF/dT
.35 1.2
1.1
Bin A
.3
Bin A
1
.9
Bin B
.25
.8
.7 .2
.6
.15 .5
.4 .1 .3
.2 .05
.1
0 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
✓ Ct值与起始模板的关系
logN=log N0 +nlogE n=Ct 每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系。利用已知起始拷贝数 的标准品作出标准曲线,根据未知样品的Ct值,即可计算出该样品的起始拷贝数。
Y轴—Ct值
X—起始拷贝数的对数
✓ 绝对定量——未知浓度的样品与标准曲线相比较
Slope -3.322
100%efficienc y
阈值(threshold)的设定
阈值:PCR扩增信号进入相对稳定的 对数增长期时的荧光值。
Ct值——n:扩增循环数
PCR循环在到达Ct值所在的循环数时 ,刚刚进入真正的指数扩增期(对数期 ),此时微小误差尚未放大,因此Ct值 的重现性极好,即同一模板不同时间扩 增或同一时间不同管内扩增,得到的Ct 值是恒定的。
标准曲线 • 由系列稀释的已知浓度的样品做标准曲线 • 计算待测样品的初始模板浓度
log N0 =-Ct logE+logN
二.荧光定量 PCR 标记方法
内掺式染料 序列特异性探针
引物特异性探针
SYBR Green I, LC Green Taqman Molecular Beacons FRET Amplifluor (Intergen) LUX
定量PCR基本原理及方法
基因有限公司 黄妤
内容
一. 荧光定量PCR基本原理 二. 荧光定量PCR标记方法 三. 荧光定量PCR不同方法学的应用
一.荧光定量PCR基本原理
➢ 定量PCR技术的产生 EB 1992年由Higuchi等人第一次报告:使用 加入PCR反应体系,经改装
的带有冷CCD的PCR仪检测样品的荧光强度 核酸 ↔ 染料荧光 后来用与双链DNA有更强结合力的SYBR Green I取代EB
相关文档
最新文档