钢桁架桥的结构设计与分析
大跨度钢桁架桥梁的结构设计

大跨度钢桁架桥梁的结构设计摘要钢桁架桥梁的使用主要在一些公路桥梁中,在城市规划建设中使用较少。
但是近些年来随着城市道路的快速发展和铁道事业不断推进,大跨度的钢桁架梁桥也得到了很大的发展。
鉴于大跨度钢桁架桥梁在使用中施工方便和能够承载较大的交通量的优势,给城市中桥梁建设提供了更多的选择。
在本文中,详细的介绍了大跨度钢桁架桥梁的结构设计特点,包含有桥梁结构的构造要求,通过使用有限元软件的分析方式,对于大跨度钢桁架梁桥的设计要点和结构承载进行讨论。
关键词大跨度钢桥;大钢桁架桥梁;结构设计;桥梁设计在城市的发展过程中,对于交通的需求不断提升。
在遇到自然阻碍的情况下需要不断提高工程的智慧来完成实际的需要。
面对江河的阻隔,架设桥梁方面就需要改变以往的设计思路。
这样的情况下,大跨度钢桁架桥梁就应运而生。
下面我们对大跨度钢桁架桥梁的结构进行设计。
1 工程结构概况某桥梁的整体结构选用下承式大跨度钢桁架桥梁,在桥梁的上部结构中包括有桥面结构、主桁架、桥梁连接体和桥梁支座等五个主要部分。
大跨度钢桁架桥梁桥面铺装结构使用厚度为30cm的钢筋混凝土连续板,并在钢筋混凝土上面铺设有3cm~6cm的防水层和6cm的沥青混凝土层。
整体的桥面板上采用16个现浇钢横梁。
桥梁的上部结构中所选用的混凝土强度为C45,承受荷载的钢筋为HRB450,构造筋为HRB400。
大跨度钢桁架桥梁的桥面结构由钢横梁和纵梁组成。
相比于一般跨径的传力结构相似,大跨度钢桁架桥梁通过桥面将荷载向下传递(纵梁--横梁),通过传力节点最终分布在钢桁架杆件中。
在桥面的钢桁架的横梁中有16道,断面采用工字型的焊接钢,尺寸为2□800×60,1□850×50(单位mm)。
因考虑到桥梁的结构为大跨度,承受的荷载较大,所以结构设计时采用混凝土和钢架共同受力的模式,同时在钢架顶端设置有螺栓剪力键,更好的使混凝土和钢架共同受力。
桥梁的连接体的作用是使得横梁和纵梁能够在风荷载的作用下保持稳定性,并且能在地震的作用下有一定的抗倾覆能力。
钢桁梁桥设计与计算详细解读,从基础开始~

钢桁梁桥设计与计算详细解读,从基础开始~一、钢桁梁的组成1、分类:按桥面位置的不同分为上承式桁梁桥、下承式桁梁桥、和双层桁梁桥2、组成:由主桁、联结系、桥面系及桥面组成(一)主桁它是的主要承重结构,承受竖向荷载。
主桁架由上、下弦杆和腹杆组成。
腹杆又分为斜杆和竖杆;节点分大节点和小节点;节间距指节点之间的距离。
(二)联结系1、分类:纵向联结系和横向联结系2、作用:联结主桁架,使桥跨结构成为稳定的空间结构,能承受各种横向荷载3、纵向联结系分上部水平纵向联结系和下部水平纵向联结系;主要作用为承受作用于桥跨结构上的横向水平荷载、横向风力、车上横向摇摆力及离心力。
另外是横向支撑弦杆,减少其平面以外的自由长度。
4、横向联结系分桥门架和中横联;主要作用为是增加钢桁梁的抗扭刚度。
适当调节两片主桁或两片纵联的受力不均。
(三)桥面系1、组成:由纵梁、横梁及纵梁之间的联结系2、传力途径:荷载先作用于纵梁,再由纵梁传至横梁,然后由横梁传至主桁架节点。
(四)桥面桥面是供车辆和行人走行的部分。
桥面的形式与钢梁桥及结合梁桥相似。
二、主桁架的图式及特点⌝三角形桁架(Warren trussesυ节间距较小时不设竖腹杆,较大时可设竖腹杆υ弦杆的规格和大节点的个数较少,适应定型化设计,便于制造和安装υ我国铁路中等跨度(L=48m~80m)下承式栓焊钢桁梁桥标准设计。
⌝斜杆形桁架(Pratt trusses)υ斜腹杆仅受压或受拉υ弦杆和竖杆规格多,均为大节点。
⌝双重腹杆桁架(Parallel chord rhombic truss)υ斜杆只承受节间剪力的一半υ受压斜杆短,对压屈稳定有利。
υ适用于大跨度钢桁梁,如武汉、南京长江大桥和我国铁路标准设计(L=96m~120m)下承式简支栓焊钢桁梁桥。
主桁架的主要尺寸⌝先确定桥梁跨度,再确定主桁架的主要尺寸包括:桁架高度、节间长度、斜杆倾角和两片主桁架的中心距。
⌝在拟定上述尺寸时,要综合考虑各种影响因素,相互协调,尽可能采用标准化和模数化,目的在于使设计、制造、安装、养护和更换工作简化及方便。
钢桁架结构加固方案设计与经济性分析

钢桁架结构加固方案设计与经济性分析钢桁架结构是一种常见的结构形式,具有轻量、高强度、刚性好等优点,广泛应用于建筑、工业和桥梁等领域。
然而,由于长期使用和自然灾害的影响,钢桁架结构可能出现弯曲、扭转和腐蚀等问题,需要进行加固处理。
本文将探讨钢桁架结构加固方案设计与经济性分析的相关内容。
一、加固方案设计1. 结构评估与分析:首先需要进行结构评估与分析,了解钢桁架结构受力情况、现有强度和变形情况等。
通过现场勘察、结构计算和非破坏性测试等方法,确定加固方案设计的依据。
2. 加固材料选择:根据结构评估结果,选取合适的加固材料。
常见的加固材料包括碳纤维复合材料、玻璃纤维增强材料和钢板等。
根据结构的不同需要,选择适合的加固材料可以在保证结构强度的同时减少结构自重。
3. 加固方案设计:根据结构评估结果和加固材料的特点,制定具体的加固方案设计。
例如,可以使用外包围式加固、内置加固、粘结加固等不同的加固方式。
4. 结构施工和监测:在加固方案设计完成后,进行结构施工和监测工作。
施工过程中要注意施工工艺和安全措施,确保施工质量。
同时,定期进行结构监测,了解加固效果和结构的变形情况,及时采取措施进行调整和补充加固。
二、经济性分析1. 加固方案的成本:在加固工程中,成本是重要的考虑因素之一。
加固方案的成本包括加固材料费用、施工费用和监测费用等。
通过合理选择加固材料和施工工艺,可以降低成本,提高加固的经济性。
2. 加固效果与增值:加固方案旨在提高钢桁架结构的强度和稳定性,延长使用寿命。
加固后的结构可以承载更大的荷载,减少变形和挠度,从而提高结构的安全性和稳定性。
此外,加固后的结构还可以提升建筑物的经济价值和市场价值,增加投资回报率。
3. 经济效益与环保效益:加固工程的经济性不仅考虑成本投入和经济回报,还应考虑到长期的维护费用和环境效益。
合理的加固方案可以降低维护费用,延长使用寿命,减少资源消耗和建筑废弃物的产生,从而达到环保的目的。
桁架结构的受力分析与计算

桁架结构的受力分析与计算桁架结构是一种由各种杆件连接而成的稳定结构,被广泛应用于建筑、桥梁、航天器等领域。
在设计和建造桁架结构时,受力分析和计算是至关重要的步骤。
本文将介绍桁架结构的受力分析方法,并给出相应的计算步骤。
一、桁架结构的受力分析桁架结构由杆件和节点组成,杆件通常是直线段或曲线段,节点是连接杆件的固定点。
在受力分析中,需要确定每个节点和杆件的受力情况。
1. 节点的受力分析节点是桁架结构中的重要连接点,它承受着来自相邻杆件的受力。
对于单个节点,可以利用力平衡原理来进行受力分析。
首先,在水平方向上,所有受力要素的水平分力之和应等于零;其次,在竖直方向上,所有受力要素的竖直分力之和也应等于零。
通过解这两个方程,可以求得节点的受力。
2. 杆件的受力分析杆件是桁架结构中起支撑作用的构件,它们承受着来自外力和节点的受力。
在受力分析中,需要确定每个杆件的受力大小和方向。
根据静力平衡原理,杆件上的受力要满足力的平衡条件,即合力为零。
可以利用力的合成和分解的原理来进行受力分析,将受力分解为水平方向和竖直方向的分力。
通过解这些方程,可以求得杆件的受力。
二、桁架结构的受力计算在桁架结构的受力计算中,需要根据受力分析的结果来进行具体的计算。
主要涉及到以下几个方面。
1. 材料的选择和强度计算桁架结构中的杆件通常采用钢材、铝材等材料制作。
在进行强度计算时,需要考虑材料的强度和安全系数。
根据结构所受力的种类(拉力、压力或剪力),选择适当的强度计算公式和安全系数。
2. 荷载的计算桁架结构在使用过程中会承受各种形式的荷载,如静荷载、动荷载、地震荷载等。
荷载的计算是桁架结构设计的重要一环。
需要根据设计要求和建筑规范,合理计算各种荷载的大小和作用方向,以确定结构的强度和稳定性。
3. 结构的稳定性计算桁架结构在承受荷载作用时,需要保持结构的稳定性,避免产生倾覆和失稳等安全隐患。
在进行结构的稳定性计算时,需要考虑结构的整体平衡和节段局部稳定性问题。
钢桁架桥的设计与优化

钢桁架桥的设计与优化钢桁架桥是一种常见且重要的桥梁结构形式,其以其高度的强度和耐久性而被广泛应用于现代交通建设。
设计和优化钢桁架桥的过程是一个综合性的工程,需要考虑多种因素并做出合理权衡。
本文将探讨钢桁架桥的设计和优化过程,并介绍一些相关的技术和方法。
首先,设计钢桁架桥时需要考虑的一个重要因素是桥梁的结构强度。
钢桁架桥需要能够承受车辆和行人的荷载,并保证桥梁的稳定和安全运行。
设计师通常会使用结构力学和有限元分析等方法来计算和评估桥梁的结构强度,并确保其满足工程要求。
同时,设计师还应考虑桥梁在不同环境条件下的稳定性和可靠性,如地震和风荷载等。
其次,钢桁架桥的设计过程还需要考虑到桥梁的美观性和可持续性。
作为城市交通建设的重要组成部分,钢桁架桥的外观设计应与周围环境相协调,并具备一定的艺术价值。
同时,设计师还应采用可持续材料和技术来减少桥梁的环境影响,如使用高强度钢材和节能设计等。
此外,钢桁架桥的优化也是设计过程中的一个重要环节。
通过优化设计,可以改善桥梁的结构性能、减少材料的使用量和降低工程成本。
一种常见的优化方法是拟合和调整钢桁架的形状和尺寸,以实现最佳的结构效果。
此外,优化还可以通过改进桥梁的抗震性能和减少桥梁的自重来提高桥梁的性能。
在设计和优化钢桁架桥时,还需要考虑到桥梁施工和维护的可行性。
设计师应该选择合适的施工方法和工艺,以确保桥梁能够按照设计要求安全、高效地建设。
此外,桥梁的维护和保养也是一个重要的方面,设计师应考虑到桥梁的维修和检查的便利性,并采用合理的方法和技术来延长桥梁的使用寿命。
总结来说,钢桁架桥的设计和优化是一个复杂且综合性的工程,需要考虑多个因素并做出合理的决策。
设计师应该熟悉相关的技术和方法,并具备一定的工程实践经验。
通过合理的设计和优化,可以创建出结构稳定、美观实用且具备可持续性的钢桁架桥,为城市交通建设提供有效的支持。
钢桁架桥梁结构的ANSYS分析

钢桁架桥梁结构的ANSYS分析摘要本文中采用有限元分析法,在大型有限元分析软件ANSYS平台上分析桥梁工程结构,很好地模拟桥梁的受力、应力情况等。
在静力分析中,通过加载各种载荷,得出结构变形图,找出桥梁的危险区域。
1、问题描述下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。
该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1-1。
桥长L=32m,桥高H=5.5m。
桥身由8段桁架组成,每段长4m。
该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N,见图1。
1图1桥梁的简化平面模型(取桥梁的一半)2、模型建立在桥梁结构模拟分析中,最常用的是梁单元和壳单元,鉴于桥梁的模型简化,采用普通梁单元beam3。
实体模型的建立过程为先生成关键点,再形成线,从而得到桁架桥梁的简化模型。
3、有限元模型3.1单元属性整个桥梁分成三部分,分别为顶梁及侧梁、弦杆梁、底梁,三者所使用的单元都为beam3单元,因其横截面积和惯性矩不同,所以设置3个实常数。
此外,他们材料都为型钢,材料属性视为相同,取为弹性模量EX为2.1e11 ,泊松比prxy为0.3,材料密度dens为7800。
3.2网格划分线单元尺寸大小为2,即每条线段的1/2。
4、计算4.1约束根据问题描述的要求,该桁架桥梁在x=0处的边界条件为全约束,x=32处的边界条件为y方向位移为0(即UY=0)。
如下图所示。
4.2载荷卡车对桥梁的压力视为3个集中载荷,因为模型只取桥梁的一般,所以3个集中载荷的力之和为20000N,分别为p1=5000N,p2=10000N,p3=5000N。
并将载荷施加在底梁的关键点4,5,6上。
如下图所示。
5、静力分析的计算结果5.1查看结构变形图显示y方向位移显示x方向位移5.2结论从加载后的结构变形图中可以看出,在载荷作用下,桁架桥的中间位置向下发生弯曲变形最为明显而两侧的侧梁变形最小,载荷引起的位移最大处在桥中间位置,随跨中间向两侧递减。
浅谈钢桁架栈桥在结构设计中应注意的问题

浅谈钢桁架栈桥在结构设计中应注意的问题摘要:钢桁架作为一种比较常用的承重结构构建应用十分广泛,尤其是在栈桥的结构设计中。
在这些跨度较大的栈桥结构中采用的钢桁架的形式很多样。
笔者在本文中针对钢桁架栈桥的常见结构形式,从栈桥的支撑体系有承重体系两个主要方面出发,介绍了钢桁架栈桥的结构体系,并根据以往的经验,总结了钢桁架栈桥在架构设计中需要注意的一些问题。
关键词:钢桁架栈桥结构设计Abstract: steel truss as a kind of more commonly used bearing structure build applied widely, especially in the parts of the structure design. In the span of the large bridge structure used in the form of steel truss is diverse. The author in this paper according to the parts of the common steel truss structure form, from the parts of the support system have bearing system two main aspect, introduces the parts of the steel truss structure system, and based on past experience, summarizes the steel truss bridge in architecture design of the need for attention to some problems.Keywords: steel truss bridge structure design在工业与民用的建筑中,栈桥这一结构形式已经逐渐被采用。
MIDASCIVIL钢桁梁桥建模及分析

图XN.8 添加完截面后的对话框
3.3.3 建立主桁架
3.3.3.1 建立下弦杆
(1) 在图标菜单中选择视图控制→
在主窗口中显示节点号和单元号。
(2) 在屏幕右侧工具条点击打开自动对其功能。
(3) 选择主菜单
建议使用黑色背景。 (5) 在屏幕右侧工具条点击
正面显示主窗口。 3.3 建立模型 3.3.1 输入构件的材料数据
(1) 在主菜单中选择模型→材料和截面特性→材料或在图标菜单中选择特性→
按
钮调出图XN.6(a)所示对话框。
(2) 点击按钮调出材料数据对话框如图XN.6(b)所示。
(3) 在一般的材料号输入栏中确认“1”。
(4) 在设计类型选择栏确认“钢材”。
(5) 在钢材的规范栏选择“GB(S)”。
(6) 在数据库选择栏选择“16Mnq”。
(7) 点击按钮添加新材料后的材料数据对话框如图XN.6(c)所示。 (a)
(c)
(b) 图XN.6 添加材料
12
下平纵联斜杆 用户 T型截面*1
0.16 0.18 0.01 0.01
13
桥门架上下横撑和短斜撑 用户 双角钢截面*10.08 0.125 0.01 0.01 0.01
14
桥门架长斜撑 用户 双角钢截面*10.1 0.16 0.01 0.01 0.01
击所需镜像平面对应的文本框后在主窗口结
构中挪动鼠标文本框中的数值会随着鼠标处
节点坐标的变化而变化点击对称平面上任一
点的即可得到所需坐标值这样就省去了计算
坐标值的麻烦。 3.3.3.2 建立上弦杆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢桁架桥的结构设计与分析
1、概述
钢桁架桥以其跨越能力强、施工速度快、承载能力强、耐久性好普遍应用于铁路桥梁。
长期以来,由于钢材价格高,材料养护费用高,钢桁架桥梁在公路领域应用较少。
近年来,随着我国炼钢水平的提高,国产的钢材品质已经完全能满足结构安全的需要,同时随着钢结构防腐技术的提高,钢结构桥梁越来越多的在公路工程领域得到应用。
相比较我国当前100m左右中等跨径常用的桥型如连续梁、系杆拱、矮塔斜拉桥等结构,钢桁架桥梁虽然建筑成本高,但刨去成本控制的因素,钢桁架桥具有以下的几点优越性:1.建筑高度低,由于钢桁架结构主桁主要由拉杆和压杆构成,对杆件界面的抗弯刚度要求不大,因此钢桁架的建筑高度由横梁控制,在桥梁宽度不是非常大时可极大的降低桥梁建筑高度,尤其适用于对桥梁建筑高度有严格限制的桥梁;2.施工周期短,速度快。
钢桁架施工可在工厂制作杆件,运到现场拼装成桥,可采用顶推和支架拼装等方法,这使它在很多工期较紧的工程(如重要道路的桥梁改建)和跨越重要道路的跨线桥上成为桥型首选之一;3.随着钢结构防腐技
术的提高,钢桁架桥的耐久性大为提高,同时钢材作为延性材料,结构安全性较混凝土桥梁高。
正因为钢桁架桥梁的这几方面的优点,桁架桥梁成为特定条件下的经济而合理的桥型选择。
2、结构设计
公路桥位于江苏省境内,正交跨越京杭大运河,河口宽95m,通航净空要求90x7m,桥梁主跨采用97m,由于桥梁中心至桥头平交处距离仅140余米,若采用其他结构纵坡将达到5%以上,经综合考虑,主桥采用97m下承式钢桁架结构。
2.1主桁
主桁采用带竖杆的华伦式三角形腹杆体系,节间长度5.35m,主桁高度8m,高跨比为1/12.04。
两片主桁中心距为8.6m,宽跨比为1/11.2,桥面宽度为8m。
图1主桁一般构造图
主桁上下弦杆均采用箱形截面,截面宽度500mm,高度均为540mm,板厚20~24mm,工厂焊接,在工地通过高强度螺栓在节点内拼接。
除端斜杆采用箱形截面以增加面内外刚度外,其余腹杆均采用焊接H形截面,截面宽度
500mm,高度均为400mm,最大板厚24mm。
2.2桥面系
桥面系为联合梁,由下面的钢梁和上面的桥面板结合而成,其钢梁部分仍采用纵横梁体系。
本设计横梁高870mm,为工字形截面,与主桁在节点上通过高强螺栓连接;纵梁高420mm,也采用工字形截面,上翼缘与横梁上翼缘的底面齐平,在纵梁腹板上设一对角钢与横梁腹板相连,横向每2m 设置一道;桥面板采用钢筋混凝土结构,板厚15cm,与纵、横梁相交处带肋,板厚增至20cm,通过剪力钉与横梁、纵
梁相连。
2.3上、下平纵联
上、下平面纵向联结系均采用交叉式,与弦杆在节点处相连,以抵抗横向风力及弦杆变形产生的内力。
在桁梁两端斜杆所在的斜平面设置桥门架,上弦节点每个节点均设一道横向联结系。
2.4节点构造
杆件以16mm厚节点板连接,连接采用M24高强锚栓,设计预紧力为240kN。
2.5技术指标
工程用钢量为600kg/㎡。
3、结构计算
主桥计算采用空间有限元程序midasCivil2010进行分析,主桁、横梁、上下平纵联采用桁架单元,桥面板采用厚
板单元模拟。
全桥共划分单元6624个,其中桁架单元3712个,板单元2912个。
桥面铺装、防撞护栏等二期恒载采用平面荷载施加在桥面板上,移动荷载采用车道面加于桥面板上,全桥模型如下:
图2全桥计算模型
3.1结构静力计算
结构按如下工况进行计算,分别是工况一:自重+二期恒载;工况二:自重+二期恒载+整体升温+日照温差+汽车荷载;工况三:自重+二期恒载+整体降温+日照温差+汽车荷载。
根据对结构进行计算分析,承载能力状态上弦杆压应力为170.7MPa,下弦杆最大拉应力为86.2MPa,均小于Q345钢设计容许应力,满足钢结构设计规范要求,其中上弦杆应力控制设计。
使用状态下横梁跨中承受正弯矩引起的弯曲应力,横梁
与下弦杆节点处承受固端弯矩引起的二次应力,根据计算结果横梁上下缘应力均满足规范要求,其中横梁上缘因节点固端弯矩产生的最大压应力为120Mpa,控制设计。
在使用状态下,汽车荷载产生的竖向挠度为5.7cm,小于L/800=12.1cm,满足规范要求。
自重+二期恒载+汽车工况下桁架跨中最大挠度为21.8cm,大于L/1600=6.1cm,需要设置预拱度,根据《公路桥涵钢结构及木结构设计规范》(JTJ025-86)需设置自重+1/2活载产生的竖向挠度作为预拱度,本桥预拱度采用18.9cm。
3.2结构整体稳定计算
由于桥宽较窄,故结构整体稳定性成为主要控制因数。
本桥整体稳定采用MidasCivil2010进行分析,结构一阶失稳是上弦杆平面外失稳,临界荷载特征值系数为25,满足规范要求。
4、结构防腐
防腐作为影响桥梁耐久性的重要方面,在设计中作了周密的考虑。
对□型构件所用的钢板需作预处理。
即:抛丸(或
喷砂)除锈至Sa2.5级,喷涂醇溶无机硅酸锌车间底漆20~30微米。
(1)钢结构外表面
表面处理:喷砂除锈等级Sa2.5级,表面粗糙度25~60μm
底漆水性无机富锌IC-100两道共80μm
封闭漆环氧磷酸盐封闭漆IC-123一道20μm
中间漆环氧云铁中间漆IC-200两道共100μm
面漆丙烯酸聚氨酯面漆IC-300两道共80μm
合计280μm
(2)□型构件内表面
表面处理:电动工具打磨焊缝至St3级。
其它部位用电动工具清除浮尘及污染物。
并用除油剂清除油渍。
底漆环氧富锌底漆IC-101一道或两道50μm
面漆环氧厚浆漆IC-302两道共200μm
(3)纵横梁顶面
表面处理:喷砂除锈等级Sa2.5级,表面粗糙度25~60μm
单层水性无机富锌IC-100两道共100μm
(4)高强螺栓连接面
表面处理:喷砂除锈等级Sa2.5级,表面粗糙度25~60μm
低温潮湿季节涂装时
单层无机富锌防锈防滑涂料IC-108两道共100μm
高温干燥季节涂装时
单层无机富锌防锈防滑涂料IC-109两道共100μm
5、施工方法
本桥梁位于交通繁忙的航道,航道交通量非常大,不能采用断航的施工方案,施工时所有杆件在工厂切割加工,在桥梁引桥上现场拼装焊接成整体,采用浮运拖拉方案架设桥梁,最后施工桥面板、铺装、护栏等桥面设施。
6、结语
(1)钢桁架以其快速的施工速度,较大的跨越能力,在桥梁建筑高度和建筑工期受限时,越来越多的作为桥型选择的首选方案。
(2)钢桁架主桁设计时上弦杆为主要控制设计的构件,设计时注意验算上弦杆的局部稳定和作为压杆的面内面外
稳定,确保结构安全。
为了施工的方便,下弦杆的断面尺寸可依据上弦杆确定。
(3)横梁设计时需注意节点板处固端弯矩引起的二次
应力,大部分桁架桥中自重引起的二次应力超过了活载引桥的结构应力,应引起设计者足够重视。
(4)设计中应充分征求钢结构生产厂家和防腐涂料生产厂家的意见,确保设计方案的可行性和合理性。