关键酶HK

合集下载

临床医学检验技术生化重点

临床医学检验技术生化重点

生物化学检验常见考点总结一、临床化学基本概念临床化学是化学、生物化学和临床医学的结合,有其独特的研究领域、性质和作用,它是一门理论和实践性均较强的,并以化学和医学为主要基础的边缘性应用学科,也是检验医学中一个独立的主干学科。

二、临床化学检验及其在疾病诊断中的应用1.技术方面:达到了微量、自动化、高精密度。

2.内容方面:能检测人体血液、尿液及体液中的各种成分,包括糖、蛋白质、脂肪、酶、电解质、微量元素、内分泌激素等,也包含肝、肾、心、胰等器官功能的检查内容。

为疾病的诊断、病情监测、药物疗效、预后判断和疾病预防等各个方面提供理论和试验依据,也促进了临床医学的发展。

第一章糖代谢检查一、糖的无氧酵解途径(糖酵解途径)★概念:在无氧情况下,葡萄糖分解生成乳酸的过程。

1、关键酶:己糖激酶、磷酸果糖激酶和丙酮酸激酶2、三步不可逆反应:①葡萄糖磷酸化成为葡萄糖-6-磷酸,由己糖激酶催化。

为不可逆的磷酸化反应,消耗1分子ATP。

②果糖-6-磷酸磷酸化,转变为1,6-果糖二磷酸,由磷酸果糖激酶催化,消耗1分子ATP。

是第二个不可逆的磷酸化反应。

③磷酸烯醇式丙酮酸经丙酮酸激酶催化将高能磷酸键转移给ADP,生成丙酮酸和ATP,为不可逆反应。

3、两次底物水平磷酸化(产生ATP):①1,3-二磷酸甘油酸→3-磷酸甘油酸②磷酸烯醇式丙酮酸→丙酮酸4、1分子的葡萄糖通过无氧酵解可净生成2个分子ATP,糖原可净生成3分子ATP,这一过程全部在胞浆中完成。

5、生理意义:(1)是机体在缺氧/无氧状态获得能量的有效措施。

(2)机体在应激状态下产生能量,满足机体生理需要的重要途径。

(3)糖酵解的某些中间产物是脂类、氨基酸等的合成前体,并与其他代谢途径相联系。

依赖糖酵解获得能量的组织细胞有:红细胞、视网膜、角膜、晶状体、睾丸等。

二、糖的有氧氧化★概念:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的过程,是糖氧化的主要方式。

1、四个阶段:①葡萄糖或糖原经糖酵解途径转变为丙酮酸;②丙酮酸从胞浆进入线粒体,氧化脱羧生成乙酰辅酶A;③乙酰辅酶A进入三羧酸循环,共进行四次脱氢氧化产生2分子CO2,脱下的4对氢;④经氧化脱下的氢进入呼吸链,进行氧化磷酸化,生成H2O和ATP。

糖的无氧酵解与有氧氧化综述

糖的无氧酵解与有氧氧化综述

糖的无氧酵解与有氧氧化综述班级:生物工程(2)班学号:0902012035 姓名:何良兵摘要:糖是一类化学本质为多羟醛或多羟酮及其衍生物的有机化合物。

在人体内糖的主要形式是葡萄糖(glucose,Glc)及糖原(glycogen,Gn)。

葡萄糖是糖在血液中的运输形式,在机体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。

葡萄糖与糖原都能在体内氧化提供能量。

食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液运输到各组织细胞进行合成代谢和分解代谢。

机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及其他己糖代谢等。

本文主要介绍糖代谢的主要途径:糖酵解、有氧氧化的反应过程及生理意义。

关键词:糖酵解有氧氧化反应过程调节生理意义正文:糖酵解途径(glycolytic pathway)是指细胞在胞浆中分解葡萄糖生成丙酮酸(pyruvate)的过程,此过程中伴有少量ATP的生成。

在缺氧条件下丙酮酸被还原为乳酸(lactate)称为糖酵解。

有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O。

(一)葡萄糖的转运(transport of glucose)葡萄糖通过转运载体转入细胞示意图GLUT代表葡萄糖转运载体葡萄糖不能直接扩散进入细胞内,其通过两种方式转运入细胞:一种是在前一节提到的与Na+共转运方式,它是一个耗能逆浓度梯度转运,主要发生在小肠粘膜细胞、肾小管上皮细胞等部位;另一种方式是通过细胞膜上特定转运载体将葡萄糖转运入细胞内(图4-1),它是一个不耗能顺浓度梯度的转运过程。

目前已知转运载体有5种,其具有组织特异性如转运载体-1(GLUT-1)主要存在于红细胞,而转运载体-4(GLUT-4)主要存在于脂肪组织和肌肉组织。

(二)糖酵解过程糖酵解分为两个阶段共10个反应,每个分子葡萄糖经第一阶段共5个反应,消耗2个分子ATP为耗能过程,第二阶段5个反应生成4个分子ATP为释能过程。

关键酶

关键酶
关键酶
糖酵解
己糖激酶(hk),磷酸果糖激酶-1(PTK-1),丙酮酸激酶(pk)
丙酮酸还原为乳酸
乳酸脱氢酶(LDH)
丙酮酸生成乙酰CoA
焦磷酸硫胺素(TPP),硫辛酸,FAD,NAD+,CoA(交流饭难吃)(辅酶)
丙酮酸脱氢酶复合体
柠檬酸循环
柠檬酸合酶,异柠檬酸脱氢酶,α-酮戊二酸脱氢酶复合体(后两个是主要调节点)
氧化脱氨
L-谷氨酸脱氨酶
鸟氨酸循环(尿素合成)
氨基甲酰酸
嘌呤补救合成
腺嘌呤磷酸核糖转移酶
次黄嘌呤-鸟嘌呤磷酸核糖转移酶
核苷激酶
嘧啶补救合成
嘧啶磷酸核糖转移酶
磷酸戊糖途径
葡糖-6-磷酸脱氢酶(G6PDH)(辅酶NADP+)
糖原合成
糖原合酶
糖原分解
糖原磷酸化酶
糖异生
丙酮酸羧化酶,磷酸烯醇式丙酮酸,果糖二磷酸酶-1,葡萄糖-6-磷酸酶

甘油三酯合成
脂酰辅酶A转移酶
软脂酸合成
乙酰辅酶A羧化酶
软脂酸延长
脂肪酸合酶复合体
脂肪动员
甘油三酯脂肪酶
甘油转变为3-磷酸甘油
甘油激酶
β-氧化——脂肪酸活化
脂酰辅酶A合成酶
β-氧化——脂酰辅酶A进去线粒体
肉碱脂酰转移酶I
酮体合成
羟甲基戊二酸单酰辅酶A合酶(HMGCoA合酶)
酮体分解
琥珀酰辅酶A转硫酶,乙酰乙酸硫激酶
胆固醇合成
HMG-CoA还原酶
氨基酸
γ-谷氨酰胺循环
γ-谷氨酰胺转移酶
转氨基作用
L-谷氨酸转氨酶(辅酶:磷酸吡哆醛)

己糖激酶-Ⅱ在直肠癌组织中表达临床意义

己糖激酶-Ⅱ在直肠癌组织中表达临床意义

己糖激酶-Ⅱ在直肠癌组织中表达临床意义龚海;石欣;刘双海【摘要】Objective:To study the expression of Hexokinase-II in carcinoma of the rectum,and analyze the relation-ships between HK-II expression and the clinical features. Methods: The expression of HK-II in 100 carcinoma of the rec-tum tissue was checked by using reverse transcriptase polymerase chain reaction,Western blot and inununohistochemistry technique.Then the relationships between HK-II expression and the clinical features of carcinoma of the rectum patients were further investigated,such as tumor sizes,clinical stages,differentiation levels,lymphatic metastasis. Results:RT-PCR re-sult showed that positive expression HK-II in carcinoma of the rectum tissue were higher than that in normal tissue on RNA level.Western blot result showed that positive expression HK-II in carcinoma of the rectum tissue were higher than that in normal tissue on proteinlevel.Inununohistochemistry results showed that the cancer tissue had more positive expres-sion than normal rectal mucosatissue(P=0.000).Inununohistochemistry results showed that tumor sizes, differentiation lev-els and merger of tumor stages was related with positive expression HK-II (prespectively 0.001,0.000,0.019), lymphatic metastasis was not related with positive expression HK-II (P=0.815). Conclusions:The cancer tissue had more positive HK-II expression than normal rectal mucosa tissue. Tumor sizes,clinical stages and differentiation levels were related with positive expression of HK-II, lymphatic metastasiswas not related with positive expression of HK-II.%目的:检测己糖激酶-Ⅱ基因在直肠癌组织中表达,探讨其与患者预后的关系。

生物化学——-糖代谢

生物化学——-糖代谢
44
45
46
47
(二)反应过程
⑴ 乙酰辅酶A进入TCA 不可逆 柠檬酸合成酶:关键酶,调节点
48
⑵柠檬酸经顺乌头酸生成异柠檬酸(顺乌头酸 酶)
(3)异柠檬酸氧化生成a-酮戊二酸和CO2 异柠檬酸脱氢酶(NAD+) :关键酶(主要) 不可逆
49
(4) a-酮戊二酸氧化脱羧生成琥珀酰CoA
17
(四)F-1,6-BP 甘油醛-3-磷酸+磷酸二羟丙酮
醛缩酶
(五)磷酸二羟丙酮
甘油醛-3-磷酸
磷酸丙糖异构酶
18
19
(六) 甘油醛-3-磷酸
1,3-二磷酸甘油酸
1. 酶 : 甘油醛-3-磷酸脱氢酶(NAD+ ,NADH+H+) 2. 十步反应中唯一的氧化还原反应
20
3.生成2( NADH+H + ),两种去向:
糖异生途径
无氧
淀粉 乳酸、氨基酸、甘油
H2O+CO2 ATP
乳酸
9
第二节 糖酵解
一 概述 (一)概念:糖酵解(glycolysis)是通过一
系列酶促反应将葡萄糖降解为丙酮酸的过 程。 Glycolysis is the metabolic pathway that converts glucose into pyruvate。 (二)部位:胞浆 (三)产物:丙酮酸
(一)概念: 生物体内糖类、脂肪和氨基酸等的氧化产物乙
酰辅酶A与草酰乙酸缩合生成柠檬酸,柠檬酸再通 过一系列氧化步骤产生CO2、NADH+H+及FADH2,并 重新生成草酰乙酸进行再循环,从而降解乙酰基 并产生能量的代谢过程。
也叫柠檬酸循环,Krebs循环 H.A.Krebs 1937年提出 1953--- Nobel Prize in Medicine

己糖激酶(hexokinae ,HK)试剂盒使用说明

己糖激酶(hexokinae  ,HK)试剂盒使用说明

己糖激酶(hexokinae,HK)试剂盒使用说明货号:SD105规格:50管/48样产品简介:HK广泛存在于动物、植物、微生物和培养细胞中,是葡萄糖分解过程中的第一个关键酶,催化葡萄糖转化为6-磷酸葡萄糖,6-磷酸葡萄糖是糖酵解和磷酸戊糖途径的交叉点。

HK催化葡萄糖合成6-磷酸葡萄糖,6-磷酸葡萄糖脱氢酶进一步催化6-磷酸葡萄糖脱氢生成NADPH,NAD PH在340nm有特征吸收峰。

试验中所需的仪器和试剂:可见分光光度计、恒温水浴锅、台式离心机、可调式移液器、1mL石英比色皿、研钵、冰和蒸馏水。

产品内容:提取液:60mL×1瓶,4℃保存;试剂一:液体30mL×1瓶,4℃保存;试剂二:液体30mL×1瓶,4℃保存;试剂三:液体5mL×1瓶,4℃保存;试剂四:粉剂×2支,-20℃保存,用时每支加2mL双蒸水充分溶解备用;用不完试剂仍-20℃保存;试剂五:粉剂×2支,-20℃保存;用时每支加1mL双蒸水充分溶解备用;用不完试剂仍-20℃保存;试剂六:粉剂×2支,-20℃保存;用时每支加125ul试剂一和125ul双蒸水充分溶解备用,用不完试剂4℃保存。

操作步骤:一、粗酶液提取:1、细菌、细胞或组织样品的制备收集细菌或细胞到离心管内,离心后弃上清;按照每200万细菌或细胞加入400µL提取液,超声波破碎细菌或细胞(功率20%。

超声3秒,间隔10秒。

重复30次)。

8000g4℃离心10分钟,取上清,置冰上待测。

称取约0.1g组织,加入1mL提取液进行冰浴匀浆;8000g4℃离心10分钟,取上清,置冰上待测。

2、血清(浆)样品:直接检测。

二、测定操作试剂名称测定管试剂一(ul)400试剂二(ul)400试剂三(ul)80试剂四(ul)80试剂五(ul)40试剂六(ul)8样本30将上述试剂按顺序加入1mL石英比色皿中,加样本的同时开始计时,在340nm波长下记录20秒时的初始吸光度A1,比色后迅速将比色皿连同反应液一起放入37℃(哺乳动物)或25℃(其他物种)水浴中,准确反应5分钟。

白内障晶状体中醛糖还原酶、多元醇脱氢酶、己糖激酶、过氧化氢酶

您好,白内障是眼内晶状体透明度降低的疾病,导致视力下降。

白内障的形成与多种因素有关,其中包括氧化应激、代谢紊乱和遗传因素等。

在白内障的发生和发展过程中,醛糖还原酶、多元醇脱氢酶、己糖激酶和过氧化氢酶等酶的活性改变可能起到关键作用。

1. 醛糖还原酶(AR) :
醛糖还原酶是参与多元醇途径的关键酶。

在正常情况下,这个途径主要负责生物体内葡萄糖的转化。

但在高血糖状态下,醛糖还原酶的活性增加,导致大量的葡萄糖转化为山梨醇,而不是葡萄糖。

山梨醇在细胞内积累会导致细胞渗透性改变,进而引起细胞损伤。

在白内障的发展中,这种细胞损伤可能导致晶状体的氧化应激和蛋白质变性。

2. 多元醇脱氢酶(ALDH) :
多元醇脱氢酶是多元醇途径的另一个关键酶。

与醛糖还原酶类似,多元醇脱氢酶的活性增加也会导致大量葡萄糖转化为山梨醇。

这种细胞内山梨醇的积累也可能导致细胞损伤和白内障的发展。

3. 己糖激酶(HK) :
己糖激酶是糖酵解途径的关键酶,负责将葡萄糖转化为葡萄糖-6-磷酸。

在白内障的发展中,己糖激酶的活性可能受到多种因素的影响,从而影响到晶状体的代谢和能量供应。

4. 过氧化氢酶(CAT) :
过氧化氢酶是细胞内清除过氧化氢的主要酶。

在白内障的发展中,过氧化氢的积累可能导致晶状体的氧化应激和蛋白质损伤。

过氧化氢酶的活性增加可能有助于减少这种氧化应激,从而延缓白内障的发展。

总之,醛糖还原酶、多元醇脱氢酶、己糖激酶和过氧化氢酶在白内障的发生和发展中都可能起到关键作用。

对这些酶的研究有助于我们更好地理解白内障的发病机制,并为白内障的治疗提供新的靶点。

生物化学名词解释含习题----王镜言第三版(西农整理)

《生物化学--西农学生必看》——名词解释大全含习题!!!二、填空1、蛋白质分之的氨基酸之间以相连,核酸分子的单核苷酸之间以相连。

2、某蛋白质分子的PI是6.5,置于PH8.9的溶液中,该蛋白质带电荷,电泳时向移动。

3、核酸的基本组成成分有、、。

4、影响酶作用的因素有、、、、、。

5、全酶由和构成。

6、缺乏维生素和可引起巨幼红细胞性贫血。

7、缺乏维生素B2可引起,缺乏维生素D可引起。

8、写出下列符号的中文意思:CTPFAD FH49、线粒体内重要的呼吸链有和。

10、体内二氧化碳生成的方式有、、、。

11、呼吸链组成成分中起电子传递体作用的是和12、组成蛋白质的基本单位是,组成核酸的基本单位是。

13、蛋白质在等电点时以离子形式存在,在PH大于等电点的溶液中,大部分以离子形式存在,在PH小于等电点的溶液中,大部分以离子形式存在。

14、组成核酸中的戊糖有RNA中的和DNA中的。

15、酶作用的特点是、、、。

16、酶的化学本质是。

17、适量摄入维生素可维持机体的正常生理功能,但若长期过量摄入和可导致人类中毒。

18、缺乏维生素会引起相应的缺乏症。

VitB1——VitPP—— VitA——19、写出下列符号的中文意思:NAD+ 、UTP FMN 。

20、ATP的生成方式有和。

21、影响氧化磷酸化的因素有、、。

22、蛋白质的二级结构的主要形式有、。

tRNA 的二级结构为型。

23、糖原主要储存于、。

24、在条件下,正常人血糖浓度为。

25、糖酵解的全过程都在中进行,几乎每一步都有一种特异的酶参加。

其中,、、是糖酵解的三个关键酶。

26、一分子葡萄糖经酵解净生成分子ATP,从糖原开始,则每个葡萄糖可净生成分子ATP。

27、糖尿病的“三多一少”临床表现指的是多、多、多和减少。

28、惟一降低血糖浓度的激素是。

29、1mol乙酰辅酶A在体内彻底氧化能产生 molATP。

30、脂类是和的总称,其中为主要的能源物质之一,而则为生物膜的主要成分。

肿瘤糖代谢机制的研究进展

㊃综述㊃肿瘤糖代谢机制的研究进展*彭瑞1,赵丽1,赵琦1,相绿竹1,王晔2综述,牟晓峰2ә审校1.青岛大学医学部,山东青岛266003;2.山东省青岛市中心医院检验科,山东青岛266042摘要:代谢重编程是肿瘤的主要特征,其中葡萄糖代谢异常是最突出的特征㊂癌细胞和正常细胞中葡萄糖代谢的主要区别在于癌细胞中的葡萄糖在有氧条件下仍优先转化为乳酸,而不是在线粒体中被氧化,这一过程称为有氧糖酵解,即 瓦博格效应 ㊂肿瘤细胞通过改变葡萄糖转运体及相关关键酶来提高代谢能力以支持肿瘤组织大量消耗葡萄糖的需要㊂本文就肿瘤细胞有氧糖酵解的特征做一综述,为靶向肿瘤代谢的个体化治疗寻找有效靶点㊂关键词:有氧糖酵解;肿瘤糖代谢;葡萄糖转运蛋白;限速酶D O I:10.3969/j.i s s n.1673-4130.2021.07.025中图法分类号:R73文章编号:1673-4130(2021)07-0872-05文献标志码:AA d v a n c e s i n t u m o r g l u c o s e m e t a b o l i s m*P E N G R u i1,Z HA O L i1,Z HA O Q i1,X I A N G L y u z h u1,WA N G Y e2,MU X i a o f e n g2ә1.Q i n g d a o U n i v e r s i t y S c h o o l o f M e d i c i n e,Q i n g d a o,S h a n d o n g266003,C h i n a;2.D e p a r t m e n t o f C l i n i c a l L a b o r a t o r y,Q i n g d a o C e n t r a l H o s p i t a l,S h a n d o n g266042,C h i n aA b s t r a c t:E n e r g y m e t a b o l i s m r e p r o g r a mm i n g i s t h e m a i n f e a t u r e o f t u m o r s,a n d a b n o r m a l g l u c o s e m e t a b-o l i s m i s t h e m o s t p r o m i n e n t f e a t u r e.A m a j o r d i f f e r e n c e b e t w e e n g l u c o s e m e t a b o l i s m i n c a n c e r c e l l s a n d n o r-m a l c e l l s i s t h a t g l u c o s e i n c a n c e r c e l l s i s p r e f e r a b l y c o n v e r t e d t o l a c t a t e i n a e r o b i c c o n d i t i o n s r a t h e r t h a n o x i-d i z e d i n m i t o c h o n d r i a.T h i s p r o c e s s i s c a l l e d a e r o b i c g l y c o l y s i s,k n o w n a s t h e"W a r b u r g e f f e c t".T u m o r c e l l s i m p r o v e t h e m e t a b o l i c c a p a c i t y b y c h a n g i n g g l u c o s e t r a n s p o r t e r s a n d r e l a t e d k e y r e g u l a t o r y e n z y m e t o s u p p o r t t h e n e e d o f t u m o r t i s s u e s t o c o n s u m e l a r g e a m o u n t s o f g l u c o s e.T h i s a r t i c l e w i l l r e v i e w t h e c h a r a c t e r i s t i c s o f a e r o b i c g l y c o l y s i s o f t u m o r c e l l s a n d f i n d e f f e c t i v e t a r g e t s f o r i n d i v i d u a l i z e d t r e a t m e n t s t a r g e t i n g t u m o r m e t a b-o l i s m.K e y w o r d s:a e r o b i c g l y c o l y s i s;t u m o r g l u c o s e m e t a b o l i s m;g l u c o s e t r a n s p o r t e r; k e y r e g u l a t o r y e n-z y m e代谢重编程是癌症的重要标志之一,为了满足细胞快速㊁持续增殖对于物质及能量的需求,肿瘤细胞中多种代谢途径将发生变化,主要包括有氧糖酵解㊁脂质生物合成和谷氨酰胺代谢,其中最经典的是有氧糖酵解㊂细胞通过糖酵解最终将葡萄糖代谢为乳酸,该过程能够产生能量,但是该途径产生的能量远低于三羧酸循环每次产生的能量㊂肿瘤细胞需要高效率的糖酵解,为了实现这一需求,肿瘤细胞通过增加葡萄糖转运蛋白(G L U T)或者是各种关键酶来提高效率,以达到促进营养物质高效进入细胞并参与代谢的目的㊂因此通过靶向转运蛋白及各种关键酶有望成为肿瘤治疗的药物靶点,通过靶向干预能够抑制肿瘤细胞的代谢途径,进而导致肿瘤细胞因无足够的能量供应而死亡㊂1糖代谢1.1正常糖代谢葡萄糖主要的生理功能是作为碳源及能源物质为机体生命活动供能㊁合成生物大分子原料及分解相关物质以满足细胞生长与增殖的需要,葡萄糖的能量转换主要有以下3种途径:糖的有氧氧化㊁无氧氧化(糖酵解)及磷酸戊糖途径㊂葡萄糖或糖原在缺氧条件下,分解为乳酸同时产生少量腺苷三磷酸(A T P)的过程称为糖酵解㊂糖酵解是所有生物进行葡萄糖氧化分解代谢所必须经过的阶段㊂葡萄糖通过G L U T进入细胞,首先通过糖酵解㊃278㊃国际检验医学杂志2021年4月第42卷第7期I n t J L a b M e d,A p r i l2021,V o l.42,N o.7*基金项目:国家自然科学基金项目(81670822㊁81370990)㊂ә通信作者,E-m a i l:m u x i a o f e n g2005@126.c o m㊂本文引用格式:彭瑞,赵丽,赵琦,等.肿瘤糖代谢机制的研究进展[J].国际检验医学杂志,2021,42(7):872-876.过程,在己糖激酶(H K)㊁磷酸果糖激酶(P F K)㊁丙酮酸激酶(P K)这3种限速酶及其他非限速酶的作用下产生丙酮酸㊂正常氧浓度下,丙酮酸进入线粒体氧化脱羧生成乙酰辅酶A,之后通过一系列限速酶及非限速酶的作用彻底氧化分解产生能量㊂葡萄糖通过糖酵解 三羧酸循环氧化磷酸化途径消耗O2,从而彻底分解葡萄糖,1m o l葡萄糖最终代谢可产生36m o l A T P,是细胞代谢的最重要的途径㊂无氧条件下,正常细胞通过糖酵解途径产生的丙酮酸不再进入三羧酸循环,而是在细胞质中通过乳酸脱氢酶(L D H)生成乳酸,该方式产生A T P较少,1m o l葡萄糖仅产生2m o l A T P,是细胞在无氧或缺氧情况下一种代偿的代谢模式㊂1.2瓦博格效应在20世纪20年代,德国生理学家瓦博格发表了一项开创性的观察结果,即与正常细胞比较,肿瘤细胞消耗更多的葡萄糖㊂瓦博格通过比较肝癌组织与肝癌旁组织,发现与肝癌旁组织比较,肝癌组织耗氧量明显减少,然而葡萄糖代谢率及乳酸产生率升高[1]㊂瓦博格认为即使在有氧状态下,肿瘤细胞仍会优先选择糖酵解,而不是选择能够高效产能的氧化磷酸化以提供肿瘤细胞所需能量,这种现象称之为 瓦博格效应 ,即有氧糖酵解[2]㊂瓦博格效应 主要是肿瘤为了适应外界环境所进行的代偿活动㊂一方面,高效率有氧糖酵解为肿瘤细胞增殖提供便利,首先它允许肿瘤细胞利用细胞外营养物质产生丰富的A T P,尽管有氧糖酵解过程中每分子葡萄糖产生的能量不及氧化磷酸化产生的能量,但是在葡萄糖量充足的情况下,有氧糖酵解产生A T P 的速率可以超过氧化磷酸化产生A T P的速率㊂另一方面,有氧糖酵解为细胞提供生物合成途径所需的中间产物,包括核苷酸合成所需的核糖,脂质合成所需的甘油㊁枸橼酸盐和非必需氨基酸等,葡萄糖还可以通过磷酸戊糖途径产生烟酰胺腺嘌呤二核苷酸磷酸㊂因此, 瓦博格效应 利于肿瘤细胞生物能量学及生物合成㊂2影响有氧糖酵解的因素与正常细胞比较,肿瘤细胞表现出高效的有氧糖酵解速率,肿瘤细胞需要增加葡萄糖通量,提高肿瘤细胞摄取葡萄糖的效率㊂因此,G L U T及糖酵解限速酶如H K㊁P F K㊁P K等酶的活性与蛋白质表达水平在肿瘤细胞中均明显上调㊂2.1葡萄糖的转运葡萄糖是亲水性的,它不能穿透疏水性细胞膜,因此需要特殊类型的跨膜转运蛋白进行转运㊂葡萄糖是肿瘤细胞的主要能源物质,大量消耗葡萄糖不可避免地增加了葡萄糖的摄入,因此大多数肿瘤细胞的G L U T表达明显上调,如肺癌[3]㊁肝癌[4]㊁乳腺癌[5]㊁宫颈癌[6]等㊂目前G L U T已鉴定出14种亚型,其中G L U T1㊁G L U T2(S L C2A2)㊁G L U T3 (S L C2A3)及G L U T4(S L C2A4)这4种亚型研究最多,而不同的亚型介导不同的过程,在葡萄糖摄取㊁代谢等方面均发挥着重要的作用㊂G L U T1是最早发现的,恶性肿瘤中的G L U T1常常过表达㊂癌基因与抑癌基因可以调节G L U T1,如c-m y c可以使细胞内G L U T1过表达,引起葡萄糖摄取增加㊂P53等抑癌基因可以抑制细胞中G L U T1的表达,使葡萄糖摄取减少进而抑制肿瘤的发生发展㊂G L U T3在大多数癌细胞中表达,但是在正常细胞中往往是不表达的㊂通过靶向G L U T可以抑制有氧糖酵解程度,进而影响肿瘤的发生发展㊂2.2有氧糖酵解相关酶糖酵解是一个复杂的过程,以葡萄糖为起点,经过多种非限速酶及限速酶的催化,最终形成乳酸㊂经典的糖酵解主要涉及3种限速酶,分别是H K㊁P F K㊁P K㊂3种酶介导不同的过程,在糖代谢中发挥着重要的作用㊂第1个限速酶是H K,其催化葡萄糖转化为葡萄糖-6-磷酸的过程,由于葡萄糖-6-磷酸是糖酵解㊁磷酸戊糖途径㊁糖原合成等过程的共同中间产物,因此这个过程称为糖代谢过程中最为关键的一步,而H K也成了最重要的限速酶㊂HK有4种亚型H K1㊁H K2㊁H K3㊁H K4,其中H K2在正常细胞中几乎不表达,其表达在恶性肿瘤中有重要意义㊂研究发现,H e c t H9可以通过激活H K2和甘油醛-3-磷酸脱氢酶的转录,增加肿瘤细胞对葡萄糖的摄取,提高有氧糖酵解速率,加快乳酸分泌,从而刺激小鼠和人类肺癌细胞的有氧糖酵解依赖性转移[7]㊂人乳头瘤病毒E6/E7致癌基因可以通过直接上调H K2的表达,导致人乳头瘤病毒阳性细胞的代谢重编程[8]㊂第2个限速酶是P F K,其催化6-磷酸果糖为1,6-二磷酸果糖,这是糖酵解途径中的关键调控步骤㊂哺乳动物中P F K主要存在3种形式,分别为肌型P F K㊁血小板型P F K及肝脏型P F K,在肿瘤中肝脏型和血小板型则更加丰富㊂P F K主要有2种构象:基本没有活性的二聚体和活性非常高的四聚体㊂2,6-二磷酸果糖是P F K1的变构激活剂,来源于6-磷酸果糖-2-激酶果糖-2,6-二磷酸酶4(P F K F B4),这是一种兼具激酶活性和磷酸酶活性的酶,且2,6-二磷酸果糖的水平取决于激酶和磷酸酶的相对活性㊂研究发现,P F K F B4可以使类固醇受体共激活因子3的丝氨酸857位点磷酸化,增强其转录活性进而促进乳腺癌的侵袭及转移[9]㊂P F K F B4高表达的乳腺癌患者表现出不良的总体生存期及预后,已证明P F K F B4是乳腺癌的独立预后因素[10]㊂㊃378㊃国际检验医学杂志2021年4月第42卷第7期I n t J L a b M e d,A p r i l2021,V o l.42,N o.7第3个限速酶是P K,P K可以把磷酸烯醇式丙酮酸转化为丙酮酸,同时生成A T P㊂P K具有4个同工型:L㊁R㊁M1和M2㊂P K L㊁P K R㊁P KM1多在正常组织中表达,而P KM2在高度增殖的细胞中特别表达,是葡萄糖代谢过程中的重要限速酶㊂P KM2可以通过翻译后修饰发挥其作用,包括磷酸化[11]㊁O-乙酰氨基葡萄糖(O-G l c N A c)修饰[12]㊁乙酰化[13],琥珀酰化[14]和甲基化[15]㊂例如,体外结合和激酶测定表明P KM2在S e r20,S e r141和S e r192/197处直接磷酸化P A K2并使其表达下降进而降低胰腺导管腺癌细胞的转移能力[16]㊂P KM2通过O-G l c N A c修饰抑制其催化活性,从而促进有氧糖酵解和肿瘤生长[17]㊂在正常的葡萄糖条件下,去乙酰化的不均一核糖核蛋白(h n R N P)A1减少了原发性肝癌细胞中的P KM2,增加了P KM1的选择性剪接,导致P K的代谢活性降低[18]㊂除以上3种限速酶外,L D H通过电子受体N A D 的再生在有氧糖酵解中发挥关键作用㊂在肿瘤细胞中,L D H A催化丙酮酸变为乳酸,促进乳酸堆积㊁降低p H值,为肿瘤微环境提供必要条件[19]㊂E W S-F L I1是尤因肉瘤的致癌驱动因子,其可以通过调节L D H A 的表达进而影响肿瘤糖代谢过程,后续研究发现运用L D H A特异性抑制剂处理后可以阻断有氧糖酵解过程,影响肿瘤的发展[20]㊂3肿瘤有氧糖酵解信号通路肿瘤有氧糖酵解能量代谢调控机制主要包括致癌性代谢调控和抑癌性代谢调控㊂致癌性代谢调控主要包括m y c㊁R a s等促癌基因及P I3K-A k t-m T O R 等代谢通路㊂抑癌性代谢调控主要涉及P53㊁P T E N 等抑癌基因㊂通过这些基因或者通路的调控对肿瘤的发生㊁发展㊁恶性表型起到关键性的作用㊂3.1致癌性调控 m y c基因家族有多种基因型,包括c-m y c㊁L-m y c㊁s-m y c㊁N-m y c㊂这些基因在肿瘤中可以通过扩增,编码转录因子发挥作用,其中研究最为广泛的是c-m y c㊂c-m y c可以调控多种糖酵解基因的转录过程㊂c-m y c可以与H K2的调节区域结合,进而在肿瘤有氧糖酵解中发挥重要作用[21]㊂P K催化糖酵解的最后一步,P KM2仅存在于可以自我更新的组织,如干细胞㊁肿瘤等㊂c-m y c可以直接在P KM2启动子区域富集,上调P KM2的表达,从而促进肿瘤有氧糖酵解[22]㊂另外c-m y c可以通过间接调节h n R N P蛋白进而诱导P KM2剪接,从而促进有氧糖酵解[23]㊂葡萄糖-6-磷酸脱氢酶是糖代谢途径的关键酶,研究证明,c-m y c可以与葡萄糖-6-磷酸脱氢酶的启动子区域结合促进其表达,从而促进磷酸戊糖途径[24]㊂总之,c-m y c可以通过上调各种葡萄糖代谢基因,重新编程葡萄糖代谢途径并促进有氧糖酵解㊂R a s介导的代谢重编程在肿瘤的发生㊁发展中发挥着重要的作用㊂研究证明,R a s可以促进有氧糖酵解,为肿瘤细胞提供代谢能量㊂R a s信号通路激活后可以通过多种酶促进有氧糖酵解产生乳酸㊁α-酮戊二酸等㊂R a s可以通过增加细胞膜表面G L U T1的表达来促进有氧肿瘤细胞摄取葡萄糖,进而增加有氧糖酵解效率[19]㊂另外,P I3K-A k t-m T O R信号也是葡萄糖摄取的主要调节剂,可促进G L U T1中m R N A的表达及G L U T1蛋白从内膜向细胞膜表面的转运,进而促进糖酵解㊂P I3K-A k t-m T O R信号转导通路在多种肿瘤发展中发挥着重要的作用,是目前肿瘤预防和靶向治疗的热点㊂3.2抑癌性调控 P53是最关键的抑癌性基因,在恶性肿瘤中,50%以上会出现该基因的突变㊂P53通过编码转录因子影响细胞周期㊂P53可以通过多种途径调节有氧糖酵解过程㊂一方面,P53通过调节G L U T1㊁G L U T4的表达调节葡萄糖摄取效率,进而影响有氧糖酵解[25]㊂另一方面,P53可以通过调节T P53介导的糖酵解和凋亡诱导因子的表达来抑制有氧糖酵解[26]㊂除此之外,P53还可以通过调节线粒体呼吸功能㊁磷酸戊糖途径㊁糖酵解相关酶等抑制肿瘤有氧糖酵解功能[27]㊂P T E N是一种抑癌基因,是人体肿瘤中最常发生突变的基因之一,在肺癌㊁肠癌㊁子宫内膜癌㊁前列腺癌等恶性肿瘤中均有突变㊂P T E N蛋白主要通过P I3K/A k t㊁局部黏着斑激酶和丝裂原活化蛋白激酶这3条信号通路发挥抑制肿瘤的作用㊂其中,P I3K/ A k t通路是最经典的通路㊂P T E N通过抑制P I3K/ A k t通路的失活来抑制肿瘤的发生[28]㊂有研究发现,磷酸甘油酸激酶1(P G K1)可以作为糖酵解酶发挥作用,或者发生磷酸化作为蛋白激酶发挥其作用㊂P T E N直接与P G K1相互作用控制肿瘤的有氧糖酵解过程㊂P T E N编码的蛋白质具有磷酸酶活性,可以抑制磷酸化的P G K1,从而抑制有氧糖酵解和肿瘤细胞增殖[29]㊂4非编码R N A与肿瘤有氧糖酵解之间的关系很多非编码R N A,如微小R N A(m i R N A)㊁长链非编码R N A(l n c R N A)等,在介导肿瘤糖代谢过程中发挥重要作用㊂4.1 m i R N A与有氧糖酵解之间的关系 m i R N A是由内源性基因编码的长度约20~24个核苷酸的非编码单链R N A分子,参与转录后基因的表达调控㊂m i R N A在肿瘤的发生发展中发挥着重要的作用㊂m i R N A-135可以通过靶向P F K1抑制胰腺导管腺癌有氧糖酵解过程,增加其葡萄糖的利用以支持三羧酸㊃478㊃国际检验医学杂志2021年4月第42卷第7期I n t J L a b M e d,A p r i l2021,V o l.42,N o.7循环,促进胰腺导管腺癌的发生发展[30]㊂m i R N A-338可以直接抑制肝脏型P F K的表达而对肝癌发挥抑制作用[31]㊂m i R N A-885-5p可以通过H K的3' U T R来调控H K2在肿瘤中的表达[32]㊂研究证明, m i R-142-3p可以靶向作用于L D H A,作为肝细胞癌的肿瘤抑制因子进而抑制肿瘤的生长㊁迁移㊁侵袭等[33]㊂4.2l n c R N A与肿瘤有氧糖酵解之间的关系l n-c R N A是一类长度大于200个氨基酸的非编码单链R N A分子,其在转录㊁沉默㊁激活㊁染色体修饰㊁核内运输等均具有重要的功能㊂l n c R N A P V T1通过竞争性结合胆囊癌细胞中的内源性m i R-143来调节H K2表达,进而影响肿瘤有氧糖酵解过程与肿瘤的发生发展[34]㊂l n c R N A U C A1通过下调m i R-182的表达抑制m i R-182与果糖2,6-双磷酸酶结合,进而调节胶质母细胞瘤的有氧糖酵解及侵袭过程[35]㊂4.3环状R N A(c i r c R N A)c i r c R N A是一类特殊的非编码R N A,与线性R N A不同,c i r c R N A分子为封闭环状结构,不受R N A外切酶影响,表达更稳定,不易降解,在基因表达调控层面发挥着重要的作用㊂研究证明c i r c R N A在肿瘤糖代谢中发挥着重要的作用,主要通过以下2种机制发挥作用:一方面,c i r c R N A 可以充当m i R N A分子海绵,通过海绵作用结合m i R-N A,间接调控其下游靶基因的表达从而调控基因转录㊂研究发现,烯醇化酶1(E N O1)是一种糖酵解酶,在葡萄糖代谢中起关键作用,在肿瘤的进展中发挥着重要的作用㊂肺腺癌中,c i r c-E N O1可以充当海绵与m i R N A-22-3p相互作用并上调E N O1的表达,进而促进肺腺癌中的有氧糖酵解与肿瘤进展[36]㊂另一方面,c i r c R N A通过与R N A结合蛋白的结合来调控蛋白功能㊂研究发现转录因子C U X1和c i r c-C U X1促进神经母细胞瘤中的有氧糖酵解和肿瘤进程,c i r c-C U X1可以与E W S R N A结合蛋白1结合,促进其与m y c相关的锌指蛋白(MA Z)的相互作用,从而导致MA Z的反式激活及C U X1的表达,进而改变肿瘤相关基因的转录,促进肿瘤的进展[37]㊂5肿瘤糖代谢的研究前景细胞代谢异常是肿瘤发生发展的关键特征,糖代谢异常是其中最基本的特征㊂通过靶向肿瘤细胞糖代谢过程,修正细胞代谢异常成为预防肿瘤发生发展和治疗肿瘤的新思路㊂目前,越来越多的研究人员聚焦于靶向肿瘤糖代谢的研究,一批靶向肿瘤糖代谢的药物正在临床试验阶段㊂但是肿瘤细胞糖代谢过程复杂,与其他学科存在交叉,运用靶向药物在降低肿瘤异常糖代谢的同时会引起其他反应代偿性激活,从而降低糖代谢抑制效能㊂未来将继续深入肿瘤糖代谢研究,注意与其他代谢途径及影响因素结合,多学科共同合作,基础联合临床,为肿瘤治疗创造新机遇㊂参考文献[1]L I B E R T I M V,L O C A S A L E J W.T h e w a r b u r g e f f e c t:h o w d o e s i t b e n e f i t c a n c e r c e l l s[J].T r e n d s B i o c h e m S c i, 2016,41(3):211-218.[2]D E B E R A R D I N I S R J,C HA N D E L N S.F u n d a m e n t a l s o fc a n c e r m e t a b o l i s m[J].S c i Ad v,2016,2(5):e1600200.[3]Z HA O H,S U N J,S HA O J S,e t a l.G l u c o s e t r a n s p o r t e r1 p r o m o t e s t h e m a l i g n a n t p h e n o t y p e o f n o n-s m a l l c e l l l u n g c a n c e r t h r o u g h i n t e g r i nβ1/S r c/F A K s i g n a l i n g[J].JC a n c e r,2019,10(20):4989-4997.[4]Z HU A N G X,C H E N Y W,WU Z R,e t a l.M i t o c h o n d r i a lm i R-181a-5p p r o m o t e s g l u c o s e m e t a b o l i s m r e p r o g r a m-m i n g i n l i v e r c a n c e r b y r e g u l a t i n g t h e e l e c t r o n t r a n s p o r tc h a i n[J].C a r c i n o g e n e s i s,2020,41(7):972-983.[5]L I Z,G O N G X,Z HA N G W,e t a l.I n h i b i t i o n o f m i R N A-34a p r o m o t e s t r i p l e n e g a t i v e c a n c e r c e l l p r o l i f e r a t i o n b y p r o m o t i n g g l u c o s e u p t a k e[J].E x p T h e r M e d,2019,18(5):3936-3942.[6]K I M B H,C HA N G J H.D i f f e r e n t i a l e f f e c t o f G L U T1o v e r e x p r e s s i o n o n s u r v i v a l a n d t u m o r i mm u n e m i c r o e n v i-r o n m e n t o f h u m a n p a p i l l o m a v i r u s t y p e16-p o s i t i v e a n d-n e g a t i v e c e r v i c a l c a n c e r[J].S c i R e p,2019,9(1):13301.[7]L E E H J,L I C F,R U A N D E,e t a l.N o n-p r o t e o l y t i c u b i q-u i t i n a t i o n o f h e x o k i n a s e2b y H e c t H9c o n t r o l s t u m o r m e-t a b o l i s m a n d c a n c e r s t e m c e l l e x p a n s i o n[J].N a t C o m-m u n,2019,10(1):2625.[8]HO P P E-S E Y L E R K,HO N E G G E R A,B O S S L E R F A,e ta l.V i r a l E6/E7o n c o g e n e a n d c e l l u l a r h e x o k i n a s e2e x-p r e s s i o n i n H P V-p o s i t i v e c a n c e r c e l l l i n e s[J].O n c o t a r-g e t,2017,8(63):106342-106351.[9]D A S G U P T A S,R A J A P A K S H E K,Z HU B K,e t a l.M e t-a b o l i c e n z y m e P F K F B4a c t i v a t e s t r a n s c r i p t i o n a l c o a c t i v a-t o r S R C-3t o d r i v e b r e a s t c a n c e r[J].N a t u r e,2018,556 (770):249-254.[10]Y A O L,WA N G L,C A O Z G,e t a l.H i g h e x p r e s s i o n o fm e t a b o l i c e n z y m e P F K F B4i s a s s o c i a t e d w i t h p o o r p r o g-n o s i s o f o p e r a b l e b r e a s t c a n c e r[J].C a n c e r C e l l I n t,2019, 19(1):165.[11]M C D O N N E L L S R,HWA N G S R,R O L L A N D D,e t a l.I n t e g r a t e d p h o s p h o p r o t e o m i c a n d m e t a b o l o m i c p r o f i l i n g r e v e a l s N P M-A L K-m e d i a t e d p h o s p h o r y l a t i o n o f P KM2 a n d m e t a b o l i c r e p r o g r a mm i n g i n a n a p l a s t i c l a r g e c e l l l y m p h o m a[J].B l o o d,2013,122(6):958-968. [12]Y A N G X,Q I A N K.P r o t e i n O-G l c N A c y l a t i o n:e m e r g i n gm e c h a n i s m s a n d f u n c t i o n s[J].N a t R e v M o l C e l l B i o l, 2017,18(7):452-465.[13]L I J,L I S,G U O J S,e t a l.N a t u r a l p r o d u c t m i c h e l i o l i d e(M C L)i r r e v e r s i b l y a c t i v a t e s p y r u v a t e k i n a s e M2a n d㊃578㊃国际检验医学杂志2021年4月第42卷第7期I n t J L a b M e d,A p r i l2021,V o l.42,N o.7s u p p r e s s e s l e u k e m i a[J].J M e d C h e m,2018,61(9):4155-4164.[14]Q I H,N I N G X L,Y U C,e t a l.S u c c i n y l a t i o n-d e p e n d e n tm i t o c h o n d r i a l t r a n s l o c a t i o n o f P KM2p r o m o t e s c e l l s u r-v i v a l i n r e s p o n s e t o n u t r i t i o n a l s t r e s s[J].C e l l D e a t h D i s, 2019,10(3):170.[15]L I U F,MA F,WA N G Y,e t a l.P KM2m e t h y l a t i o n b yC A R M1a c t i v a t e s a e r o b i c g l y c o l y s i s t o p r o m o t e t u m o r i-g e n e s i s[J].N a t C e l l B i o l,2017,19(11):1358-1370.[16]C H E N G T Y,Y A N G Y C,WA N G H P,e t a l.P y r u v a t ek i n a s e M2p r o m o t e s p a n c r e a t i c d u c t a l a d e n o c a r c i n o m a i n-v a s i o n a n d m e t a s t a s i s t h r o u g h p h o s p h o r y l a t i o n a n d s t a b i-l i z a t i o n o f P A K2p r o t e i n[J].O n c o g e n e,2018,37(13): 1730-1742.[17]S I N G H J P,Q I A N K,L E E J S,e t a l.O-G l c N A c a s e t a r-g e t s p y r u v a t e k i n a s e M2t o r e g u l a t e t u m o r g r o w t h[J].O n c o g e n e,2020,39(3):560-573.[18]Y A N G H,Z H U R,Z H A O X,e t a l.S i r t u i n-m e d i a t e dd e a c e t y l a t i o n o f h n R N P A1s u p p r e s s e s g l y c o l y s i s a n dg r o w t h i n h e p a t o c e l l u l a r c a r c i n o m a[J].O n c o g e n e,2019,38(25):4915-4931.[19]M E N G Y,X U X,L U A N H Y,e t a l.T h e p r o g r e s s a n d d e-v e l o p m e n t o f G L U T1i n h i b i t o r s t a r g e t i n g c a n c e r e n e r g y m e t a b o l i s m[J].F u t u r e M e d C h e m,2019,11(17):2333-2352.[20]Y E U N G C,G I B S O N A E,I S S A Q S H,e t a l.T a r g e t i n gg l y c o l y s i s t h r o u g h i n h i b i t i o n o f l a c t a t e d e h y d r o g e n a s e i m-p a i r s t u m o r g r o w t h i n p r e c l i n i c a l m o d e l s o f e w i n g s a r c o-m a[J].C a n c e r R e s,2019,79(19):5060-5073.[21]D E J U R E F R,E I L E R S M.MY C a n d t u m o r m e t a b o l i s m:c h i c k e n a nde g g[J].E M B O J,2017,36(23):3409-3420.[22]G U P T A A,A J I T H A,S I N G H S,e t a l.P A K2-c-M y c-P KM2a x i s p l a y s a n e s s e n t i a l r o l e i n h e a d a n d n e c k o n c o-g e n e s i s v i a r e g u l a t i n g W a r b u r g e f f e c t[J].C e l l D e a t h D i s,2018,9(8):825.[23]D A V I D C J,C H E N M,A S S A N A H M,e t a l.H n R N Pp r o t e i n s c o n t r o l l e d b y c-M y c d e r e g u l a t e p y r u v a t e k i n a s em R N A s p l i c i n g i n c a n c e r[J].N a t u r e,2010,463(7279): 364-368.[24]Y A N G X,Y E H,H E M Q,e t a l.L n c R N A P D I A3P i n t e r-a c t s w i t h c-M y c t o r e g u l a t e c e l l p r o l i f e r a t i o n v i a i n d u c t i o no f p e n t o s e p h o s p h a t e p a t h w a y i n m u l t i p l e m y e l o m a[J].B i o c h e m B i o p h y s R e sC o mm u n,2018,498(1):207-213.[25]S C HWA R T Z E N B E R G-B A R-Y O S E P H F,M I C HA L A,K A R N I E L I E.T h e t u m o r s u p p r e s s o r p53d o w n-r e g u l a t e sg l u c o s e t r a n s p o r t e r s G L U T1a n d G L U T4g e n e e x p r e s-s i o n[J].C a n c e r R e s,2004,64(7):2627-2633. [26]L E E P,V O U S D E N K H,C H E U N G E C.T I G A R,T I-G A R,b u r n i n g b r i g h t[J].C a n c e r M e t a b,2014,2(1):1.[27]HA S H I MO T O N,N A G A N O H,T A N A K A T.T h e r o l eo f t u m o r s u p p r e s s o r p53i n m e t a b o l i s m a n d e n e r g y r e g u-l a t i o n,a n d i t s i m p l i c a t i o n i n c a n c e r a n d l i f e s t y l e-r e l a t e dd i se a s e s[J].E n d o c r J,2019,66(6):485-496.[28]C A R N E R O A,B L A N C O-A P A R I C I O C,R E N N E R O A,e t a l.T h e P T E N/P I3K/A K T s i g n a l l i n g p a t h w a y i n c a n c-e r,t h e r a p e u t i c i m p l i c a t i o n s[J].C u r r C a n c e r D r u g T a r-g e t s,2008,8(3):187-198.[29]Q I A N X,L I X,S H I Z,e t a l.P T E N s u p p r e s s e s g l y c o l y s i sb y d e p h o s p h o r y l a t i n g a n d i n h i b i t i n g a u t o p h o s p h o r y l a t e dP G K1[J].M o l C e l l,2019,76(3):516-527. [30]Y A N G Y,I S HA K-G A B R A M B,HA N S E E A,e t a l.M i R-135s u p p r e s s e s g l y c o l y s i s a n d p r o m o t e s p a n c r e a t i cc a n c e r c e l l ad a p t a t i o n t o me t a b o l i c s t r e s s b y t a r g e t i n gp h o s p h o f r u c t o k i n a s e-1[J].N a t C o mm u n,2019,10(1): 809.[31]Z H E N G J P,J U N L,HU I Z,e t a l.125I s u p p r e s s e d t h eW a r b u r g e f f e c t v i a r e g u l a t i n g m i R-338/P F K L a x i s i n h e p-a t o c e l l u l a r c a r c i n o m a[J].B i o m e d P h a r m a c o t h e r,2019,119(1):109402.[32]X U F,Y A N J J,G A N Y,e t a l.m i R-885-5p n e g a t i v e l yr e g u l a t e s W a r b u r g e f f e c t b y s i l e n c i n g h e x o k i n a s e2i n l i v-e r c a n c e r[J].M o l T h e r N u c l e i c A c i d s,2019,18(1):308-319.[33]HU A S,L I U C D,L I U L,e t a l.m i R-142-3p i n h i b i t s a e r o-b ic g l y c o l y s i s a nd ce l l p r o l if e r a t i o n i n h e p a t o c e l l u l a r c a r c i-n o m a v i a t a r g e t i n g L D HA[J].B i o c h e m B i o p h y s R e sC o mm u n,2018,496(3):947-954.[34]C H E N J,Y U Y,L I H,e t a l.L o n g n o n-c o d i n g R N A P V T1p r o m o t e s t u m o r p r o g r e s s i o n b y r e g u l a t i n g t h e m i R-143/H K2a x i s i n g a l l b l a d d e r c a n c e r[J].M o l C a n c e r,2019,18(1):33.[35]H E Z,Y O U C,Z HA O D.L o n g n o n-c o d i n g R N A U C A1/m i R-182/P F K F B2a x i s m o d u l a t e s g l i o b l a s t o m a-a s s o c i a t-e d s t r o m a l c e l l s-m e d i a t e d g l y c o l y s i s a n d i n v a s i o n o f g l i o-m a c e l l s[J].B i o c h e m B i o p h y s R e s C o mm u n,2018,500(3):569-576.[36]Z HO U J,Z HA N G S,C H E N Z M,e t a l.C i r c R N A-E N O1p r o m o t e d g l y c o l y s i s a n d t u m o r p r o g r e s s i o n i n l u n g a d e-n o c a r c i n o m a t h r o u g h u p r e g u l a t i n g i t s h o s t g e n e E N O1 [J].C e l l D e a t h D i s,2019,10(12):885.[37]L I H,Y A N G F,HU A P,e t a l.T h e r a p e u t i c t a r g e t i n g o fc i r c-C U X1/E W S R1/MA Z a x i s i n h i b i t s g l y c o l y s i s a n dn e u r o b l a s t o m a p r o g r e s s i o n[J].E M B O M o l M e d,2019,11(12):e10835.(收稿日期:2020-07-09修回日期:2020-12-12)㊃678㊃国际检验医学杂志2021年4月第42卷第7期I n t J L a b M e d,A p r i l2021,V o l.42,N o.7。

关键酶名词解释

关键酶名词解释关键酶是指在细胞代谢中发挥关键作用的酶。

酶(Enzyme)是一种催化生物化学反应的蛋白质,由于酶的催化作用极具特异性和高效性,因此酶在细胞代谢中起着至关重要的作用。

关键酶则是对维持生命特别重要的酶,其催化作用对于细胞的正常生存和功能发挥至关重要。

下面将对几种常见的关键酶进行详细解释。

1. 乙酰辅酶A羧化酶(Acetyl-CoA carboxylase):这是一种关键的酶,在细胞内催化乙酰辅酶A转化为丙酰辅酶A。

丙酰辅酶A是细胞合成脂肪酸和胆固醇的重要物质。

乙酰辅酶A羧化酶的活性直接影响脂肪酸和胆固醇的合成速率,调节细胞内脂肪代谢的平衡。

2. 乙醛脱氢酶(Alcohol dehydrogenase):这是一类关键酶,它催化乙醇转化为乙醛。

乙醛脱氢酶参与乙醇代谢的过程,将乙醇转化为乙醛,进而进一步转化为乙酸。

这个过程是人体中乙醇的主要代谢途径,也是酒精中毒的解毒过程的一部分。

3. DNA聚合酶(DNA polymerase):DNA聚合酶是细胞中复制和修复DNA过程中的关键酶类。

DNA聚合酶能够将DNA 模板链上的碱基序列准确地复制到合成链中,是DNA复制的关键酶。

细胞复制DNA时,DNA聚合酶能够保证复制过程中的准确性,从而确保新合成的DNA与原始模板DNA完全一致。

4. 丙酸脱氢酶(Pyruvate dehydrogenase):丙酸脱氢酶是关键的酶类之一,参与细胞呼吸过程中的关键环节。

丙酸脱氢酶能够将丙酮酸转化为乙酰辅酶A,为细胞供应继续产生能量所需的底物。

丙酸脱氢酶活性的调节与细胞的能量代谢紧密相关。

5. ATP酶(ATPase):ATP酶是将ATP(腺苷三磷酸)分解为ADP(腺苷二磷酸)和无机磷酸盐的关键酶。

细胞中的能量通常储存于ATP中,而ATP酶能够将ATP分解为ADP释放出储存的能量。

这个过程是细胞内能量供应的重要途径,也是调节细胞内ATP/ADP比例的重要手段。

以上仅为几个常见的关键酶的解释,关键酶的种类很多,每个关键酶都在重要的生物代谢过程中扮演着重要的角色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

糖代谢
1.糖的氧化:无氧氧化(3个酶,胞液);有氧氧化(7个酶,胞液+线粒体)
①己糖激酶(葡萄糖激酶):↓-G6P、长链脂酰COA;↑-胰岛素。

②磷酸果糖激酶-1:↓-ATP、柠檬酸;↑F-2,6-2P、F-1,6-2P、ADP、AMP。

③丙酮酸激酶:↓-ATP、丙氨酸、胰高血糖素;↑F-1、6-2P。

④丙酮酸脱氢酶复合体:↓ATP、乙酰COA、NADH、脂肪酸;↑AMP、COA、NAD、Ca2+
⑤柠檬酸合酶:- -
⑥异柠檬酸脱氢酶:↓ATP;↑ADP、Ca2+。

⑦α-酮戊二酸脱氢酶:↓ATP、NADH、琥珀酰CoA;↑Ca2+。

2.磷酸戊糖途径:胞液
葡糖-6-磷酸脱氢酶(NADPH/NADP+的产物负反馈调节)
3.糖原合成:肝、肌肉(胞液)
糖原合酶(a:有活性,去磷酸化的)。

↓磷酸化、AMP;↑ATP、G-6-P、胰岛素
4. 糖原分解:肝、肌肉、肾
糖原磷酸化酶(b:有活性,磷酸化的)。

↓血糖高时、胰岛素;↑磷酸化、胰高血糖素、Ca2+、肾上腺素
5.糖异生:肝、肾(胞液、线粒体。

原料:乳酸、甘油、生糖氨基酸、GTP、ATP)
①G-6-P酶:
②果糖二磷酸酶-1:
③丙酮酸羧化酶:↓;↑乙酰COA
④磷酸烯醇式丙酮酸羧激酶:
总:↓果糖-2,6-二磷酸、AMP、胰岛素;↑ATP、胰高血糖素、肾上腺素、GC、乙酰COA、饥饿运动
脂质代谢
1.酮体(乙酰乙酸、β-羟丁酸、丙酮):肝(线粒体。

原料、乙酰COA--脂肪酸β氧化而来的)
①酮体的生成:HMG CoA(羟甲基戊二单酰CoA)合成酶
②酮体的氧化利用:心、肾、脑、骨骼肌(琥珀酰COA转硫酶)
2.胆固醇:肝、小肠(内质网+胞液。

原料:乙酰COA-三大代谢的分解产物、NADPH、ATP)
①合成:HMG CoA还原酶。

三高:高耗能(36A TP)、高耗料(18乙酰COA)、高耗氧(16NADPH+H)↓胰高血糖素、皮质醇、饥饿禁食、胆固醇;↑胰岛素、甲状腺素、高糖高饱高脂肪饮食
②转化为类固醇物质:胆汁酸、类固醇激素、VitD3
3.甘油三酯:
①合成:肝、脂肪组织、小肠(内质网。

原料:甘油、脂肪酸)脂酰COA转移酶
4.脂肪酸的合成:肝、肾、脑、肺、乳腺、脂肪组织(胞液。

原料:乙酰COA-线粒体内)柠檬酸-丙酮酸循环
乙酰COA羧化酶:↓脂酰COA、胰高血糖素、肾上腺素、生长激素、高脂饮食;↑柠檬酸、异柠檬酸、乙酰COA、胰岛素、高糖饮食、Mn2+。

辅基:生物素。

缩合、加氢、脱水、再加氢(NADPH供氢)
5.脂肪酸的分解:
①脂肪动员(脂肪细胞):激素敏感性甘油三酯脂肪酶(HSL)↓胰岛素、前列腺素E、烟酸;↑肾上腺素、去甲、胰高血糖素、ACTH、TRH。

②甘油的利用(肝、肾、肠):甘油激酶(脂肪细胞和骨骼肌的活性较低)
③脂肪酸β氧化(肝、心肌、骨骼肌,除脑外):线粒体外活化、线粒体内β氧化。

肉碱脂酰转移酶I:禁食饥饿
脱氢、加水、再脱氢、硫解
④其他:1)不饱和脂肪酸的氧化:△3顺-△2反烯脂酰COA异构酶。

2)超长碳链脂肪酸:β氧化的同工酶。

3)奇数碳原子脂肪酸:有丙酰COA生成,β羧化酶作用后生成甲基丙二酰COA,消旋酶和异构酶作用后变成琥珀酰COA
氨基酸代谢
1.脱氨基作用
①转氨基作用:除赖、苏、脯、羟脯氨酸外
②L-谷氨酸氧化脱氨基:L-谷氨酸脱氢酶:唯一既能利用NAD+又能利用NADP+的酶
③联合脱氨基:肝、肾。

转氨酶和L-谷氨酸脱氢酶的联合作用。

④嘌呤核苷酸循环:肌肉组织中
2.尿素的合成(鸟氨酸循环、Krebs-H循环):线粒体(甲酰磷酸合成酶I--N乙酰谷氨酸即AGA可激活)+胞液(精氨酸代琥珀酸合成酶)
核苷酸代谢
1.嘌呤合成:
①从头合成:肝细胞胞液(原料:天冬氨酸、谷氨酰胺、甘氨酸、CO2、FH4)。

PRPP合成酶
②补救合成(重新合成):脑、骨髓(原料:游离的嘌呤碱、嘌呤核苷)APRT和HGPRT
2.嘌呤分解:黄嘌呤氧化酶(别嘌呤醇可抑制)
3.嘧啶合成:
①从头:氨基甲酰磷酸合酶II(人类胞液,UMP负反馈)。

天冬氨酸氨基甲酰转移酶(细菌,CTP负反馈)
②补救:嘧啶磷酸核糖转移酶,尿苷激酶
4.嘧啶分解:核苷酸酶、核苷磷酸化酶。

①②③④⑤⑥⑦
↓;↑。

相关文档
最新文档