学案2:等差数列及前n项和(二).doc

合集下载

2.3等差数列前n项和公式(2)

2.3等差数列前n项和公式(2)
2011 学年第二学期高一数学学科教学案(第 20 份)
班级:高一( )班 2. 等差数列的前 3 n 项和(2) 授课时间 主备人 学生姓名: 第 周星期 王少媚 课型 审核人 复备人 学号: 新课 万冠民 王少媚
课题
1、加深理解数列前 n 项和的含义,掌握数列的通项与前 n 项和的关系,掌握根 考试说明 据前 n 项和求通项公式。 要求及习 2、熟练掌握等差数列的前 n 项和的公式,理解等差数列的前 n 项和与二次函数 目标 的关系,会求二次函数的最值问题。 学法 指导 公式灵活应用 学习过程 一、问题导学 1、等差数列的前 n 项和公式: S n 2、你能将等差数列 a n 的前 n 项和公式 S n n a1 化成关于 n 的函数吗?它是
2、 已知等差数列 a n 满足 a1 a 2 a1 0 0 0 ,则有(
A. a1 a1 0 1 0
B. a1 a1 0 1 0
C. a1 a1 0 1 0
3、等差数列 a n 中,若 S n 3 n 2 2 n ,则公差 d

n n 1 2
课堂札 记
Sn
d
函数,具有的特点:
3、数列 a n 的前 n 项和 S n a1 a 2 a n ,前 n 1 项和 S n 1 你能从以上两式得到 a n 与 S n 、 S n 1 的关系吗?
n 1 呢? a 1
(2)利用 S n : 由 S n
d d 2 n a1 n 2 2
利用二次函数配方法求得最值时 n 的值。
三、当堂检测 1、 在等差数列 a n 中,a 2 6 ,a 8 6 , 若数列 a n 的前 n 项和为 S n , ( 则 A. S 4 S 5 B. S 4 S 5 C. S 6 S 5 D. S 6 S 5 ) D. a 5 1 5 1 . )

《等差数列的前n项和》教学设计(精选五篇)

《等差数列的前n项和》教学设计(精选五篇)

《等差数列的前n项和》教学设计(精选五篇)第一篇:《等差数列的前n项和》教学设计:等差数列的前n项和是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义、通项公式后,对数列知识的进一步学习。

学情分析:学生通过对等差数列基本概念和通项公式的学习,对等差数列有了一定的了解。

但是由于学生是第一次接触到数列的求和,缺乏相关经验,因此,需要借助几何直观学习和理解。

教学目标:1、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。

2、过程与方法(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

3、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。

教学重点、难点:1、等差数列前n项和公式是重点。

2、获得等差数列前n项和公式推导的思路是难点。

设计理念:在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,由浅入深,层层深入,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。

教学资源:现代教育多媒体技术教学过程:(一)创设问题情境故事引入:德国伟大的数学家高斯“神述求和”的故事。

高斯在上小学四年级时,老师出了这样一道题“1+2+3……+99+100”高斯稍微想了想就得出了答案。

高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。

高斯的方法:首项与末项的和:1+100=101 第2项与倒数第2项的和:2+99=101 第3项与倒数第3项的和:3+98=101 ……第50项与倒数第50项的和:50+51=101 ∴前100个正整数的和为:101×50=50502.故事引入:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。

数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

第2讲 等差数列及前n 项和考纲展示 命题探究1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2.3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( )A .1 B.53 C .2D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2.3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4. ∵a 1=2,∴d =a 2-a 1=4-2=2.∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50. 解得a 1=12,d =2.所以a n =2n +10;(2)由S n =na 1+n (n -1)2d ,S n =242,得方程12n +n (n -1)2×2=242,解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2,∴b n +1-b n =a n +2-a n +1-(a n +1-a n )=2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,累加法可得a n -a 1=1+3+5+…+(2n -3)=(n -1)2,∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )扫一扫·听名师解题A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,而S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),整理得2a1+1=0,解得a1=-1 2.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.等差数列及其前n项和的性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1=….(2)等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(3)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m∈N*).(4)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为n2d.(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a n a n +1. ②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( )(3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44答案 C 解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13.由a 3+a 6+a 9=27,得3a 6=27,a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C.[答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n=a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. (2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m +a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d=-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0, 即⎩⎪⎨⎪⎧ a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,≤n ≤n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确.2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能.∴a 2012>0,a 2013<0.再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0, 而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n 3n +1,则a n b n=( ) A.23B.2n -13n -1C.2n +13n +1D.2n -13n +4 答案 B解析 a n b n =2a n 2b n=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4.所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32. ∴当n =1或n =2时,S 1=S 2且最小. [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学猜题]已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.[2016·武邑中学仿真]已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C. 3.[2016·冀州中学期末]在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 A 解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .4.[2016·衡水中学预测]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27答案 B解析 S 3=9,S 6-S 3=36-9=27,根据S 3,S 6-S 3,S 9-S 6成等差数列,S 9-S 6=45,S 9-S 6=a 7+a 8+a 9=45,故选B.5.[2016·衡水二中期中]已知等差数列{a n }中,前四项和为60,最后四项和为260,且S n =520,则a 7=( )A .20B .40C .60D .80答案 B解析 前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n =520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a 7是中间项,所以a 7=40.6.[2016·枣强中学模拟]已知等差数列{a n }的前n 项和为S n ,且S 4S2=4,则S 6S 4=( )A.94B.32C.53 D .4答案 A解析 由S 4S 2=4,可设S 2=x ,S 4=4x .∵S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4).则S 6=3S 4-3S 2=12x -3x =9x ,因此,S 6S 4=9x 4x =94.7.[2016·衡水二中热身]设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =______.答案 13解析 由S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝ ⎛⎭⎪⎫-3+322=-212,解得k =13.8.[2016·武邑中学期末]设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案 14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n , ∴S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.[2016·衡水中学周测]已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________.答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39.10.[2016·冀州中学月考]设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.11.[2016·衡水中学模拟]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛ 110-3n -⎭⎪⎫113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12.[2016·冀州中学期中]已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n-1S n -1=2(n ≥2),又S 1=a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n=2+(n -1)×2=2n ,故S n =12n .∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). ∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.[2016·衡水中学猜题]已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.[2016·衡水中学一轮检测]已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B解析 ∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.15.[2016·武邑中学猜题]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n (20-2n +22)2=(21-n )n ;当n >11时,S n =S 11+2+4+…+(2n -22)=110+(n -11)(2+2n -22)2=n 2-21n +220. 综上所述,S n =⎩⎪⎨⎪⎧(21-n )n ,n ≤11n 2-21n +220,n >11.16.[2016·冀州中学仿真]已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解 (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1, 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.。

睢县回族高级中学数学5学案:12(新人教A版)

睢县回族高级中学数学5学案:12(新人教A版)

课题:等差数列的前n 项和(二)制作:张志新 审核:皇甫真一 使用说明:1. 结合问题用大概10分钟的时间自主学习课本的相关内容,完成问题导学.2. 然后大家再用15分钟时间讨论本章的重点内容,讨论时全体起立,小组内解决不了的问题交由老师分析解答,讨论过程要认真积极.二 学习目标:1.了解等差数列前n 项和公式的函数特征。

2.掌握等差数列的前n 项和的性质,灵活运用等差数列前n 项和公式及有关性质解题。

三。

知识回顾等差数列{}na 的前n 项和公式有=nS .=n S .四演习教材重难点研习点1.等差数列的前n 项和公式与函数的关系 由于.,2,2,)2(22)1(21121bn an S da b d a n d a n d d n n na Sn n+=-==-+=-+=则有设 探究:若数列{}na 的前n 项和.2bn an S n+=求数列{}n a 的通项公式,你能发现什么规律?对于.2bn an Sn+=当0≠a )0≠d (即时,n S 是关于n 的二次式,即点),(nSn在二次函数bx axy +=2的图像上.从而,当0≠d 时,由{}n a 的组成的前n 项和nS 组成的新数列⋅⋅⋅⋅⋅⋅,,,,,321n S S S S 的图像是二次函数bx ax y +=2的图像上一系列孤立的点.当0≠d 时,nS 是关于n 的二次式且常数项为0,因而,我们可以借助二次函数的图像和性质(单调性、最值)来研究等差数列前n 项和的有关问题。

归纳总结:等差数列的前n 项和公式与函数的关系给出了一种判断数列是否为等差数列的方法:若数列的前n 项和c bn an S n++=.2,那么当0=c 时,数列是一个首项为b a +,公差为a 2等差数列;当0≠c 时,数列不是一个等差数列.研习点2。

等差数列的前n 项和的性质 1.等差数列{}na 中,证明:⋅⋅⋅--,,,232n n n n nS S S S S也是等差数列,公差是d n 2.2.等差数列{}na 中,若),(,p m m S p Sp m≠==求p m S +的值.3.等差数列{}na 中,若),(p m S Sp m≠=求p m S +的值。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。

2. 掌握等差数列的前n项和的计算公式。

3. 能够运用等差数列的前n项和公式解决实际问题。

二、教学重点1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

三、教学难点1. 等差数列的前n项和的公式的推导过程。

2. 运用等差数列的前n项和公式解决实际问题。

四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。

2. 通过实例分析,让学生掌握等差数列的前n项和的应用。

3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。

五、教学内容1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

3. 等差数列的前n项和的性质。

4. 运用等差数列的前n项和公式解决实际问题。

第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。

等差数列及其前n项和教案

等差数列及其前n项和教案

等差数列及其前n项和教案一、教学目标:1. 理解等差数列的定义及其性质。

2. 掌握等差数列的前n项和的计算方法。

3. 能够运用等差数列的概念和前n项和公式解决实际问题。

二、教学内容:1. 等差数列的定义与性质等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差,这个数列叫做等差数列。

等差数列的性质:(1)等差数列的通项公式:an = a1 + (n-1)d(2)等差数列的前n项和公式:Sn = n/2 (a1 + an) 或Sn = n/2 (2a1 + (n-1)d)2. 等差数列的前n项和的计算方法(1)利用通项公式法计算等差数列的前n项和:Sn = n/2 (a1 + an) = n/2 (a1 + a1 + (n-1)d) = n/2 [2a1 + (n-1)d] (2)利用首项和末项法计算等差数列的前n项和:Sn = n/2 (a1 + an) = n/2 (a1 + a1 + (n-1)d) = n/2 [2a1 + (n-1)d] 3. 实际问题中的应用例题:已知等差数列的前5项和为35,公差为3,求首项和末项。

解:设首项为a1,末项为an,则有:S5 = n/2 (a1 + an) = 5/2 (a1 + an) = 35a1 + an = 14an = a1 + (n-1)d = a1 + 43 = a1 + 12将an代入上式得:a1 + (a1 + 12) = 142a1 + 12 = 142a1 = 2a1 = 1an = a1 + 12 = 1 + 12 = 13三、教学重点与难点:重点:等差数列的定义与性质,等差数列的前n项和的计算方法。

难点:等差数列前n项和的计算方法的灵活运用。

四、教学方法:采用讲解法、例题解析法、练习法相结合的教学方法,通过PPT辅助教学,使学生更好地理解和掌握等差数列及其前n项和的知识。

五、教学准备:1. PPT课件2. 黑板、粉笔3. 教学案例及练习题六、教学过程:1. 导入:通过复习等差数列的定义与性质,引导学生进入本节课的学习。

等差数列及其前n项和教案

等差数列及其前n项和教案

等差数列及其前n项和教案一、教学目标1. 让学生理解等差数列的概念,掌握等差数列的通项公式。

2. 让学生掌握等差数列的前n项和公式,并能灵活运用。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 等差数列的概念:定义、性质。

2. 等差数列的通项公式:ar + (a1 a)d。

3. 等差数列的前n项和公式:S_n = n/2 (a1 + a_n) 或S_n = n/2 (2a1 + (n 1)d)。

三、教学重点与难点1. 教学重点:等差数列的概念、通项公式、前n项和公式。

2. 教学难点:等差数列前n项和公式的推导及灵活运用。

四、教学方法1. 采用问题驱动法,引导学生主动探索等差数列的性质。

2. 使用数形结合法,帮助学生直观理解等差数列的前n项和公式。

3. 利用实例分析,让学生学会解决实际问题。

五、教学过程1. 引入:通过生活中的实例,如连续的自然数、等间隔的时间等,引导学生思考等差数列的特点。

2. 讲解:讲解等差数列的定义、性质,引导学生推导等差数列的通项公式。

3. 探讨:分组讨论等差数列的前n项和公式,引导学生运用归纳法进行推导。

4. 应用:通过例题,让学生学会运用等差数列的前n项和公式解决实际问题。

教案编辑专员:[[您的名字]]六、教学练习1. 让学生通过练习题加深对等差数列概念、通项公式和前n项和公式的理解。

2. 培养学生运用所学知识解决实际问题的能力。

练习题:(1)判断题:等差数列的任意两项之和等于这两项中间项的两倍。

(对/错)(2)填空题:已知等差数列的首项为3,公差为2,求第10项的值。

(3)计算题:已知等差数列的首项为2,公差为3,求前5项的和。

七、拓展与应用1. 让学生了解等差数列在实际生活中的应用,如等差数列在统计、物理、经济学等领域中的应用。

2. 培养学生将所学知识运用到实际问题中的能力。

案例分析:分析现实生活中等差数列的应用实例,如连续奖金发放、等额本息还款等,引导学生运用等差数列的知识解决实际问题。

等差数列及其前n项和学案

等差数列及其前n项和学案

等差数列及其前n 项和 2013.10 命制人:刘晓琳1.考查运用基本量法求解等差数列的基本量问题. 2.考查等差数列的性质、前n 项和公式及综合应用. 二、知识梳理 1.等差数列的定义如果一个数列从第 项起,每一项与它的前一项的差等于 ,那么这个数列就叫做等差数列,这个常数叫做等差数列的 ,通常用字母 表示. 2.等差数列的通项公式若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n = 3.等差中项如果A = ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m + (n ,m ∈N *).(2)若{a n }为等差数列,且*2(,,,,)k l m n t k l m n t N +=+=∈,则_________________k l a a +==。

(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)S 2n -1= a n .(6)若n 为偶数,则S 偶-S 奇= ;S 奇/S 偶= 若n 为奇数,则S 奇-S 偶= .S 奇/S 偶= 5.等差数列的前n 项和公式S n = = 6.等差数列的前n 项和公式与函数的关系S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,数列{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 为常数). 7.最值问题在等差数列{a n }中,a 1>0,d <0,则S n 存在最 值,若a 1<0,d >0,则S n 存在最 值.1.(人教A 版教材习题改编)已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ). A .4 B .5 C .6 D .72.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ). A .31 B .32 C .33 D .343.(2011·江西)已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1.那么a 10=( ). A .1 B .9 C .10 D .554.(2012·杭州质检)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ). A .13 B .35 C .49 D .635.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 6.①61451515333a a a ,求,==; ②d a 和,求=,1128168S 48S =; ③8856510S a S a 和,求,==; ④3116S 3,求=a .四、例题精选考向一 等差数列通项公式和基本量的计算 【例1】►(2011·福建)在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.一、复习要求 三、基础训练【训练1】(1)在等差数列{}n a 中,(1)已知120,54,999,n n a a s ===求d 和n ;(2)已知2,15,10,n d n a ===-求1a 和n s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案2:等差数列及前n项和(二)
姓名班级
1.等差数列定义式: ,若数列o,A,0成等差数列则
2.等差数列的(1)通项公式q, =;(2)通项公式推广:%=
(3)等差数列通项公式。

〃是关于n的一次函数% =
>7 — a. n — a
(4)公差d的计算方法:①d=a n— a n_}②d=—------------- —③d=— ------ —
n-1 n-m
3.等差数列的常用性质
⑴{□〃}为等差数列,(1)若m + n = p + q则.
(2)若m + n = 2p时,则.
(2)当d〉0时,{&}单调递;当d=0时,{%}为常数列;当d<0时,0}单调递—.
4.等差数列的前〃项和公式:(1) S〃 = ______________ = ____________
(2)等差数列{%}的前n项和S〃是关于n的二次函数,且常数项为0,则$〃 =.
5.证明数列{%}是等差数列的常用方法:
方法一:运用等差数列的定义:%】一。

〃=d;
方法二:运用等差中项性质:2% 二%1 .
6.设&是等差数列{%}的前n
(1)数列圣是等弟数列;
n
(2)数列S m9S2m - S m9S3m -,Sm一Sgim 是等差数列;
s
(3)设等差数列的项数为2n,则有:S2n=n(a n+a fl+i\ S^-S^=nd,工=鱼
S奇a n s
(4)设等差数列的项数为2n-l,则有:S”】=(2〃—1)《;S.-S f,=,室=——
一"' S 偶n-\
(5)若数列{福与{久}都是等差数列,且前n项的和分别为Sn和T n ,则亳=务,是中间项)
T2n-1 b n
7.在等差数列{%}中
(1)若。

〃 =m, a m = n(m。

〃),则《= , a tn+n = 0
⑵若,〃 =sjm。

〃),则-----
8.求等差数列前刀项和肉最值的两种方法
(1)函数法:利用等差数列前〃项和的函数表达式Sn=昂*bn,通过配方或借助图象求二次函数最
值的方法求解.
(2)邻项变号法:
&20,
①用〉0,冰0时,满足八的项数〃使得角取得最大值为S;
②当0VO,技)时,满足、八的项数E吏得S〃取得最小值为琳总+1N0
题型一:等差数列前n项和的性质应用
例1: (1) (2).已知等差数列0}的前〃项和为S〃,且Sio=lO, 520=30,则$30=•
(2)等差数列a)的前10项之和为140,其中奇数项之和为125,则&=。

(3)等差数列的前12项之和为354,前12项中偶数项与奇数项之比为32: 27,公差d=
(4)等差数列的总项数为奇数,且奇数项之和为77,偶数项之和为66,
则中间项二,总项数为o
(5)若两个等差数列{%}和{如}的前〃项和分别为&和T n ,
①若&=2〃 + 3 ,求,_= ;②若岛=2〃 + 3,则色= ___________
如〃 +3 T. ------------ T n〃 +3 b7
题型二:数列求和
例2:已知数列{%}的前〃项和S n=\2n-n2f求数列{园}的前〃项和7;。

题型二:最值I可题
例3: (1)等差数列0}满足幻+。

8+。

9>0, a7+aio<O,则当〃=时,{叫}的前〃项和最大.
(2)设等差数列{&}的前〃项和为S”且&>0,血+&>0, &衍V0,贝IJ满足£>0的最大自然
数〃的值为( )
A. 6
B. 7
C. 12
D. 13
变式1:已知等差数列{%}的前〃项和为S,,并且S|°>O,S/O,若5Z1 < 5,对〃E N*恒成立,正整数k=・
变式2:在等差数列{%}中,印=7,公差为d,前〃项和为& ,当且仅当〃=8时,取得最大值,
则d的取值范围为
1.等差数列{“〃}中,3(口3+。

5)+ 2(。

7+"|()+。

13)=24,则该数列前13项的和是()
A. 13
B. 26
C. 52
D. 156
2.已知等差数列{〃〃}满足吻=3, £—&一3=51(〃>3), &=10(),则〃的值为( )
A. 8
B. 9
C. 10
D. 11
3.设等差数列{&}的前n 项和为S n,若 S3=12, S6=42,则a10+a,i+a12= ( ) (A) 156 (B)102
(C) 66 (D) 48
4.------------------------------------------------------------------在等龙数列{an}中,公差d=—,且%
+q+% ------------------------------------------------------------角9 =60,但+“4+"6 --------- %oo =()
2
A. 85
B. 145
C. 110
D. 90
5.等差数列{。

〃}中,。

1+3缠+。

15= 120,则2。

9一。

1。

的值是( )
A. 20
B. 22
C. 24
D. -8
6.数列{如}的通项公式%= _ ,己知它的前n项和为S〃=9,则
n=()
〃 J 〃 +1 +
A 9
B 10
C 99
D 100
7.已知数列{。

〃}是等差数列,若%+“7 +%()=17 , % +角+。

6 + 一・+。

14=77旦练=13
则化=.
8.数列{%}是等差数列,若项数为奇数,旦奇数项和为44,偶数项和为33,则该数列的项数为.
9.己知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是
10.设%,d为实数,首项为%,公差为6/的等差数列{%}的前〃项和为S〃,满足5我+ 15 = 0,
则d的取值范围是 .
11.等差数列{%}, {如}前n项和分别为s〃,羸若& = 竺,,则& = ___________
b n 2〃一3 T9
若金=玉=1,则查=
T n 2/?-3 b<)
12.等差数列{%}的前〃项和S,且皿=12,S|, >0,S.v0.则公差d的取值范围;
当S〃最大时n的值为o
13.已知在等差数列{%}中,《° = 23,% = -22 ,S〃为其前〃项和.
⑴求§。


(2)当〃为何值时,S〃的值最大,并求这个最大值
(3)求数列{园}的前〃项和7;
14.等差数列{&}的首项为乳公差d=-l,前n项和为&.
⑴若S5=-5,求衡的值. (2)若SMa.对任意正整数n均成立,求a,的取值范围.。

相关文档
最新文档