通信网络实验报告
移动通信实验报告

移动通信实验报告移动通信实验报告1. 简介本实验旨在通过搭建移动通信系统的实验平台,探索移动通信技术原理和实际应用。
移动通信是指在不受空间限制的情况下,通过移动通信设备进行无线通信的技术,广泛应用于方式、平板电脑等移动设备。
在本实验中,我们将使用SIM卡、方式和电脑组成实验平台,通过调试和实验,深入了解移动通信的基本原理和技术。
2. 实验目的- 了解移动通信的基本原理和技术;- 掌握移动通信实验平台的搭建;- 学习使用SIM卡进行移动通信。
3. 实验内容实验所需材料和设备:- SIM卡- 方式- 电脑实验步骤:1. 将SIM卡插入方式;2. 打开方式的设置菜单,找到移动网络设置,并将方式连接到移动网络;3. 在电脑上安装移动通信调试软件;4. 连接方式和电脑,确保二者之间可以进行数据传输;5. 打开移动通信调试软件,选择方式SIM卡,并进行一系列测试和调试。
4. 实验结果通过实验,我们成功搭建了移动通信实验平台,并使用SIM卡进行通信测试。
在测试过程中,我们可以观察到方式的移动网络信号强度、数据传输速度等指标,并将其记录下来。
实验结果表明,移动通信系统能够正常工作,方式可以成功连接到移动网络,并且数据传输速度较快、信号强度较高。
5. 实验分析从实验结果可以看出,移动通信系统在现实应用中具有良好的稳定性和可靠性。
方式能够稳定连接到移动网络,并且能够以较快的速度进行数据传输。
同时,我们还观察到移动网络信号强度会随着距离的增加而下降。
这是由于移动通信系统的工作原理决定的,信号的传输和接收都会受到距离的限制。
6. 实验总结通过本次实验,我们深入了解了移动通信的基本原理和技术,并成功搭建了实验平台进行测试和调试。
实验结果表明,移动通信系统在现实应用中具有良好的稳定性和可靠性。
在今后的学习和工作中,我们可以根据移动通信技术的原理和特点,开展更多的研究和应用。
移动通信技术已经成为了现代社会不可或缺的一部分,对于我们的生活和工作都起着重要的作用。
通信系统实验网络路由协议配置实验报告

网络路由协议配置实验报告实验目的1.把握RIP动态路由协议的配置和测试方式。
2.把握OSPF路由协议配置和测试方式。
实验原理动态路由协议动态路由是网络中的路由器之间彼此通信,传递路由信息,利用收到的路由信息更新路由器表的进程。
它能实时地适应网络结构的转变。
若是路由更新信息说明发生了网络转变,路由选择软件就会从头计算路由,并发出新的路由更新信息。
这些信息通过各个网络,引发各路由重视新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑转变。
动态路由适用于网络规模大、网络拓扑复杂的网络。
固然,各类动态路由协议会不同程度地占用网络带宽和CPU资源。
依照是不是在一个自治域内部利用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。
那个地址的自治域指一个具有统一治理机构、统一路由策略的网络。
自治域内部采纳的路由选择协议称为内部网关协议,经常使用的有RIP、OSPF;外部网关协议要紧用于多个自治域之间的路由选择,经常使用的是BGP和BGP-4。
RIP1RIP1是一种内部网关协议。
RIP1要紧用在利用同类技术与大小适度的网络。
因此通过速度转变不大的接线连接,RIP1比较适用于简单的校园网和区域网,但并非适用于复杂网络的情形。
RIP1特点:1.仅和相邻的路由器互换信息。
若是两个路由器之间的通信不通过另外一个路由器,那么这两个路由器是相邻的。
RIP1协议规定,不相邻的路由器之间不互换信息。
2.路由器互换的信息是当前本路由器所明白的全数信息。
即自己的路由表。
3.按固按时刻互换路由信息,如,每隔30秒,然后路由器依照收到的路由信息更新路由表。
4. RIP1消息通过广播地址进行发送,利用UDP 协议的520端口。
5. RIP1是一种有类路由协议,不支持不持续子网设计。
RIP1的气宇制度:距离确实是通往目的站点所需通过的链路数,取值为1~15,数值16表示无穷大。
RIP2RIP2由RIP1 而来,属于RIP1 协议的补充协议,具有RIP1协议的大体特性。
数据通信网络技术实验报告一

数据通信网络技术实验一一、实验目的:1.掌握网络设备的基本操作和日常维护;2.了解生成树协议spanning tree protocal的基本概念基本原理,掌握stp的基本配置步骤;3.了解vlan的基本概念和基本原理,掌握vlan的基本配置步骤。
二、实验要求:1.根据实验的任务要求,参考实验指导材料,完成实验,输入操作命令,观察输出结果,详细记录每个步骤的操作结果;2.在两台交换机的相应端口上开启STP,避免环路的出现,记录每个步骤的操作结果;3.两台交换机分别划分两个valn:vlan10、vlan20,要求同vlan能够跨越交换机互通,详细记录每个步骤的操作结果。
三、实验原理:1.STP协议的基本概念和基本原理基本定义:STP(Spanning-Tree Protocol),中文称生成树协议作用是能够发现并自动消除冗余网络拓扑中的环路。
它由规范IEEE 802.1D 规定,是指通过生成树的算法,暂时切断所有冗余的连接,使网络拓扑生成一个树的结构,消除网络循环,即保证从树的一点到其它任何一点只有一条路径。
STP 使用一种称为网桥协议数据单元BPDU (bridge protocol data unit ),它携带一些必要的信息在整个网络中进行多目广播,通过BPDUs的信息,完成生成树。
基本原理:①所有连接的网桥通过多播发送BPDUs,通告自己的网桥ID,找到具有最低网桥ID 网桥,并选举这个网桥为根网桥(Root),即“树干”;②计算非根网桥到根网桥的路径开销(cost),选择与根网桥连接的具有最低开销的端口为根端口(root port );③选择其他网桥到根网桥具有最低路径开销的端口为指定端口(designated port),该网桥为指定网桥(designated bridge ),其他与根网桥相连的端口为非指定端口(Nondesignated port);④设置根端口、指定端口转发数据(forwarding) ,非指定端口阻塞(blocking) 。
通信网实验报告

一、实验目的1. 理解通信网的基本组成和工作原理。
2. 掌握通信网中常见设备的功能和应用。
3. 学习通信网实验平台的操作方法。
4. 分析通信网中数据传输的过程,提高网络性能。
二、实验设备1. 通信网实验平台2. 交换机3. 路由器4. 光纤跳线5. 网络分析仪三、实验内容1. 通信网基本组成- 观察实验平台,了解其组成和功能。
- 分析通信网中各个部分的作用,如交换机、路由器、光纤等。
2. 交换机操作- 学习交换机的配置方法,如VLAN配置、端口镜像等。
- 通过实验,掌握交换机的基本操作,实现网络中的设备互联。
3. 路由器操作- 学习路由器的配置方法,如静态路由、动态路由等。
- 通过实验,掌握路由器的基本操作,实现不同网络之间的数据传输。
4. 光纤跳线操作- 学习光纤跳线的连接方法和注意事项。
- 通过实验,掌握光纤跳线的操作,实现长距离数据传输。
5. 网络分析仪使用- 学习网络分析仪的使用方法,如带宽测试、网络性能分析等。
- 通过实验,掌握网络分析仪的使用,对通信网进行性能测试。
6. 数据传输过程分析- 观察通信网中数据传输的过程,分析数据在网络中的传输路径。
- 学习数据传输过程中的关键因素,如传输速率、延迟、丢包率等。
四、实验步骤1. 搭建实验平台- 根据实验要求,连接交换机、路由器、光纤等设备,搭建通信网实验平台。
2. 配置交换机- 配置VLAN,实现网络中的设备分组。
- 配置端口镜像,观察网络中的数据传输情况。
3. 配置路由器- 配置静态路由,实现不同网络之间的数据传输。
- 配置动态路由,提高网络的可扩展性和可靠性。
4. 光纤跳线连接- 连接光纤跳线,实现长距离数据传输。
5. 网络分析仪测试- 使用网络分析仪测试通信网的带宽、延迟、丢包率等性能指标。
6. 数据传输过程分析- 观察网络中的数据传输过程,分析数据在网络中的传输路径和关键因素。
五、实验结果与分析1. 交换机配置结果- 实验结果显示,通过配置VLAN,成功实现了网络中的设备分组。
测试网络连通实验报告

测试网络连通实验报告实验目的本实验旨在测试网络连通性,通过检测网络中的主机是否能够相互通信,以及诊断和解决网络通信中的问题。
实验材料- 一台笔记本电脑- 一条网线- 一个交换机实验过程1. 连接设备:首先,将笔记本电脑通过网线与交换机相连。
2. 确认设备配置:打开笔记本电脑的网络设置,确保网络配置正确,包括IP地址、子网掩码和默认网关等。
3. 检测局域网内连通性:使用ping命令测试局域网内其他设备的连通性。
在命令提示符或终端中输入`ping 目标IP地址`,观察是否有响应。
4. 检测跨网段连通性:如果局域网内连通性正常,现在可以测试不同网段之间的连通性。
在命令提示符或终端中输入`ping 目标IP地址`,观察是否能够收到回应。
5. 解决问题:如果在以上步骤中出现了连通性问题,可以尝试以下方法解决:- 检查物理连接:确认网线连接是否牢固,交换机电源是否正常。
- 检查配置:确认网络配置是否正确,包括IP地址、子网掩码和默认网关。
- 检查防火墙设置:防火墙设置可能会阻止网络通信,可以尝试关闭防火墙或修改相关设置。
- 检查路由器设置:如果网络中有路由器,确保路由器的配置正确,包括路由表和NAT设置等。
6. 记录结果:将每一步的测试结果记录下来,包括成功与失败的测试案例。
实验结果通过以上步骤,本次实验得出了以下结果:1. 局域网内连通性测试:所有主机都能够正常互相通信,ping命令的测试结果均为成功。
2. 跨网段连通性测试:不同网段之间的连通性也正常,ping命令的测试结果均为成功。
实验总结本次实验成功测试了网络的连通性,并通过尝试不同的解决方法解决了出现的问题。
在未来的网络配置和故障排除中,我们可以借鉴以下经验:- 确认物理连接是否牢固和设备电源是否正常,很多网络问题都是由于这些简单的问题导致。
- 提前检查设备的网络配置是否正确,包括IP地址、子网掩码和默认网关等。
- 如果出现连通性问题,可以尝试暂时关闭防火墙或修改防火墙设置,以排除防火墙的干扰。
数据通信网络技术实验报告

数据通信网络技术实验报告一、实验目的1.理解数据通信网络技术的基本概念和原理;2.掌握数据通信网络设备的基本操作方法;3.了解常用的数据通信网络协议。
二、实验器材1.一台个人电脑;2.路由器;3.交换机;4.网线。
三、实验内容1.网络拓扑实验在实验室里,搭建一个简单的数据通信网络拓扑结构。
将一台个人电脑连接到路由器上,并连接到互联网。
再连接一个交换机,将多台电脑连接到该交换机上。
通过该拓扑结构,实现多台电脑之间的数据通信和与互联网之间的数据交换。
2.数据通信实验在搭建好的数据通信网络拓扑结构下,通过两台电脑之间进行数据通信实验。
使用ping命令测试两台电脑之间的通信连通性,并观察网络延迟和丢包情况。
3.网络协议实验通过 Wireshark 软件,抓包分析网络数据通信过程中所使用的网络协议。
了解常用的网络协议,如 TCP/IP、HTTP、FTP等,并分析其工作原理。
四、实验步骤1.搭建简单的数据通信网络拓扑结构根据实验要求,将个人电脑连接到路由器上,并通过交换机将多台电脑连接到该交换机上。
2.进行数据通信实验在两台电脑上分别打开命令行窗口,使用ping命令进行相互通信测试。
观察通信情况,记录网络延迟和丢包情况。
3.进行网络协议实验在两台电脑上安装 Wireshark 软件,并打开抓包分析功能。
进行数据通信测试,并观察抓包结果。
分析抓包结果,了解所使用的网络协议和其工作原理。
五、实验结果与分析1.网络拓扑结构搭建成功,多台电脑之间能够正常通信,并与互联网连接良好。
2.数据通信实验结果良好,延迟较低,丢包率较低。
3. 使用 Wireshark 软件抓包分析结果显示,数据通信过程中使用了TCP/IP、HTTP等协议,并且这些协议都能够正常工作。
六、实验总结通过本次实验,我深入了解了数据通信网络技术的基本概念和原理。
我掌握了数据通信网络设备的基本操作方法,并了解了常用的数据通信网络协议。
通过实验,我成功搭建了一个简单的数据通信网络拓扑结构,并进行了数据通信实验和网络协议实验。
计算机网络与通信实验报告

计算机网络与通信实验报告专业:信息安全学号:100410428姓名:谢宇奇哈尔滨工业大学(威海)图1-1图1-2图1-3 -t 不停地向目标主机发送数据图1-4 -a 以IP地址格式来显示目标主机的网络地址图1-5 指定count=6次图1-6 -l 3 指定发送到目标主机的数据包的大小。
图1-7 Tracert命令的使用图1-8 Netstat命令图1-9 -s显示每个协议的统计。
图1-10 -e 显示以太网统计。
此选项可以与 -s 选项结合使用。
图1-11 -r显示路由表。
图1-12 -e 显示以太网统计。
此选项可以与 -s 选项结合使用。
图1-13 -n 以数字形式显示地址和端口号。
图1-14 -t 显示当前连接卸载状态。
图1-15 -o显示拥有的与每个连接关联的进程 ID。
图1-16 -p proto 显示 proto 指定的协议的连接;proto 可以是下列任何一个: TCP、UDP、TCPv6 或 UDPv6。
图1-17 all 显示现时所有网络连接的设置图1-18释放某一个网络上的IP位置图1-19 renew 更新某一个网络上的IP位置图1-20 flushdns 把DNS解析器的暂存内容全数删除图1-21 -a[ InetAddr] [ -N IfaceAddr] 显示所有接口的当前 ARP 缓存表。
图1-22 使用arp -s IP MAC 命令来绑定物理地址图1-23 arp指令的帮助图1-24 route –n查看路由信息图1-25 查看本机路由表信息图1-26 route 添加路由表图1-27 删除路由表图1-28 打印Windows 路由表图2-1 到根名称服务器上查找能解析.com的顶级域的域名实验结果图2-2 到顶级域名称服务器上查找能解析的顶级域的子域域名图2-3 到顶级域名称服务器查找能解析权威名称服务器的域名图2-4 到权威名称服务器上查找的A类型(对应的IP)图2-5 验证的IP映射图2-6利用TELNET进行SMTP的邮件发送。
通信实验报告范文

通信实验报告范文实验报告:通信实验引言:通信技术在现代社会中起着至关重要的作用。
无论是人与人之间的交流,还是不同设备之间的互联,通信技术都是必不可少的。
本次实验旨在通过搭建一个简单的通信系统,探究通信原理以及了解一些常用的通信设备。
实验目的:1.了解通信的基本原理和概念。
2.学习通信设备的基本使用方法。
3.探究不同通信设备之间的数据传输速率。
实验材料和仪器:1.两台电脑2.一个路由器3.一根以太网线4.一根网线直连线实验步骤:1.首先,将一台电脑与路由器连接,通过以太网线将电脑的网卡和路由器的LAN口连接起来。
确保连接正常。
2.然后,在另一台电脑上连接路由器的WAN口,同样使用以太网线连接。
3.确认两台电脑和路由器的连接正常后,打开电脑上的网络设置,将两台电脑设置为同一局域网。
4.接下来,进行通信测试。
在一台电脑上打开终端程序,并通过ping命令向另一台电脑发送数据包。
观察数据包的传输速率和延迟情况。
5.进行下一步实验之前,先断开路由器与第二台电脑的连接,然后使用直连线将两台电脑的网卡连接起来。
6.重复第4步的测试,观察直连线下数据包的传输速率和延迟情况。
实验结果:在第4步的测试中,通过路由器连接的两台电脑之间的数据传输速率较高,延迟较低。
而在第6步的测试中,通过直连线连接的两台电脑之间的数据传输速率较低,延迟较高。
可以说明路由器在数据传输中起到了很重要的作用,它可以提高数据传输的速率和稳定性。
讨论和结论:本次实验通过搭建一个简单的通信系统,对通信原理进行了实际的验证。
路由器的加入可以提高数据传输速率和稳定性,使两台电脑之间的通信更加高效。
而直连线则不能提供相同的效果,数据传输速率较低,延迟较高。
因此,在实际网络中,人们更倾向于使用路由器进行数据传输。
实验中可能存在的误差:1.实验中使用的设备和网络环境可能会对实际结果产生一定的影响。
2.实验中的数据传输速率和延迟可能受到网络负载和其他因素的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一隐终端和暴露终端问题分析
一、实验目的
结合仿真实验分析载波检测无线网络中的隐终端问题和暴露终端问题。
二、实验设定与结果
基本参数配置:仿真时长100s;随机数种子1;仿真区域2000x2000;节点数4。
节点位置配置:本实验用[1] 、[2]、[3] 、[4]共两对节点验证隐终端问题。
节点[1]、[2]距离为200m,节点[3]、[4]距离为200m,节点[2]、[3]距离为370m。
1234
业务流配置:业务类型为恒定比特流CBR。
[1]给[2]发,发包间隔为0.01s,发包大小为512bytes;[3]给[4]发,发包间隔为0.01s,发包大小为512bytes。
实验结果:
Node: 1, Layer: AppCbrClient, (0) Server address: 2
Node: 1, Layer: AppCbrClient, (0) Total number of bytes sent: 5120000
Node: 1, Layer: AppCbrClient, (0) Total number of packets sent: 10000
Node: 2, Layer: AppCbrServer, (0) Client address: 1
Node: 2, Layer: AppCbrServer, (0) Total number of bytes received: 4975616
Node: 2, Layer: AppCbrServer, (0) Total number of packets received: 9718
Node: 3, Layer: AppCbrClient, (0) Server address: 4
Node: 3, Layer: AppCbrClient, (0) Total number of bytes sent: 5120000
Node: 3, Layer: AppCbrClient, (0) Total number of packets sent: 10000
Node: 4, Layer: AppCbrServer, (0) Client address: 3
Node: 4, Layer: AppCbrServer, (0) Total number of bytes received: 5120000
Node: 4, Layer: AppCbrServer, (0) Total number of packets received: 10000
结果分析
通过仿真结果可以看出,节点[2]无法收到数据。
由于节点[3]是节点[1]的一个隐终端,节点[1]无法通过物理载波检测侦听到节点[3]的发送,且节点[3]在节点[2]的传输范围外,节点[3]无法通过虚拟载波检测延迟发送,所以在节点[1]传输数据的过程中,节点[3]完成退避发送时将引起冲突。
三、课后思考
1、RTS/CTS能完全解决隐终端问题吗?如果不能,请说明理由。
答:能。
对于隐发送终端问题,[2]和[3]使用控制报文进行握手(RTS-CTS),听到回应握手信号的[3]知道自己是隐终端,便能延迟发送;对于隐接受终端问题,在多信道的情况下,[3]给[4]回送CTS告诉[4]它是隐终端,现在不能发送报文,以避免[4]收不到[3]的应答而超时重发浪费带宽。
2、如何设计仿真场景来验证暴露终端问题?
答:只需更改业务流配置:业务类型为恒定比特流CBR。
[2]给[1]发,发包间隔为0.01s,发包大小为512bytes;[3]给[4]发,发包间隔为0.01s,发包大小为512bytes。
观察在[2]给[1]发送数据的同时,[3]给[4] 发送数据会不会被影响。
3、如何设计协议使暴露终端场景下的流实现并发?
答:至少要使用两个信道资源,在数据信道上进行RTS-CTS握手,在数据信道上发送数据报文。
在[2]给[1]发送数据报文时,[3]也想向[4]发送数据报文,通过控制信道向[4]发送RTS,[4]也从控制信道向[3]回送CTS,这样[3]就不会因为[2]的数据信号和[4]的回应信号产生碰撞而听不到[4]的回应了。
这样就可以实现并发了。
实验三动态源路由协议路由选择验证
一、实验目的
1、理解DSR路由协议中路由发现过程和路由维护过程。
2、掌握DSR路由协议性能的仿真分析方法。
二、实验设定与结果
基本参数配置:仿真时长100S;随机数种子1;仿真区域2000x2000;节点数5。
节点位置配置:用节点[1]-[5]来验证DSR路由协议的路由发现过程。
[1]和[2]、[2]和[3]、[3]和[4]、[3]和[5]、[4]和[6]、[5]和[6]之间距离为200m。
设置业务流:[1]给[2]发,发包间隔0.01s,发包大小512Bytes。
设置节点移动性:节点[1]为移动节点,仿真过程中绕网格拓扑转一圈。
实验结果:
Time(s): 1.000001000, Node: 1, Route path: 2
┇┇┇┇┇
Time(s): 7.000001000, Node: 1, Route path: 2
Time(s): 8.000001000, Node: 1, Route path: 4-2
┇┇┇┇┇
Time(s): 37.000001000, Node: 1, Route path: 4-2
Time(s): 38.000001000, Node: 1, Route path: 5-4-2
┇┇┇┇┇
Time(s): 67.000001000, Node: 1, Route path: 5-4-2
Time(s): 68.000001000, Node: 1, Route path: 3-2
┇┇┇┇┇
Time(s): 92.000001000, Node: 1, Route path: 3-2
Time(s): 93.000001000, Node: 1, Route path: 2
┇┇┇┇┇
Time(s): 99.000001000, Node: 1, Route path: 2
结果分析:
仿真过程中路由表变化:2,4-2,5-4-2,3-2,2。
当节点[1]在节点[2]的传输范围内时,节点[1]和[2]之间直接通信,不需要中间节点。
随着节点[1]的移动,节点[1]离开节点[2]的传输范围并渐渐远离,最后又逐渐靠近。
在节点[1]离开节点[2]的传输范围,节点[1]和[2]需要通过中间节点来通信,而且节点[1]离节点[2]越远,需要的中间节点越多。
三、课后思考
1、由实验中的网络拓扑能够反映出DSR路由协议的路由维护过程吗?如果能,说明怎么验证?如果不能,请说明理由。
答:能。
因为源节点使用路由维护机制可以检测出因为拓扑变化不能使用的路由,当路由维护指出一条源路由已经中断而不再起作用的时候,为了将随后的数据分组传输到目的节点,源节点能够尽力使用一条偶然获知的到达目的节点的路由,或者重新调用路由寻找机制找到一条新路由。
而该实验中随着源节点[1]的移动,源路由不断中断,比如路由信息从4-2转到5-4-2就是因为源节点[1]到节点[4]的链接已经中断,源节点才通过节点[5]来寻找到一条新路由。
2、为什么仿真过程中路由表变化为5-4-2而不是5-3-2?
答:节点[5]会同时给节点[3]和[4]转发路由请求,但节点[4]路由缓存中可以找到的那条从节点[4]到路由请求目的节点[2]的路由信息(即4-2),节点[4]就直接给发起节点回送路由应答,而不再转发该路由请求。
而节点[3]中没有该缓存。
3、设计一个16网格拓扑的仿真场景来验证动态源路由路由发现的过程。
答:。