随机优化模型和方法课件
数学建模中的优化模型ppt课件

2
3
4
• 制订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变? 15
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
p(t)w(t) p(t)w(t) 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
13
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
7
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
8
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
均为整数,重新求解. 17
模型求解 整数规划(Integer Programming,简记IP)
数学建模中的随机优化问题

数学建模中的随机优化问题数学建模作为一门提供量化方法解决实际问题的学科,已经广泛应用于各个领域。
在建模过程中,我们经常会遇到各种优化问题,其中涉及到的随机优化问题更是备受关注。
随机优化问题作为一类特殊的优化问题,其考虑了不确定性因素,具有更大的挑战性和实用性。
本文将介绍数学建模中的随机优化问题及其相关方法。
随机优化问题是指在优化问题中,目标函数或约束条件存在随机变量的情况。
这种不确定性往往由于缺乏完整的信息、难以观测或难以建模而引起。
在数学建模中,解决随机优化问题的核心是在不确定性的基础上,寻找最优解或次优解,并对问题的风险和稳定性进行评估。
一种常见的随机优化问题是随机线性规划。
在随机线性规划中,目标函数和/或约束条件包含随机向量或矩阵。
解决这类问题的方法包括随机单纯形法、Monte Carlo仿真、随机内点法等。
随机单纯形法通过适应性地调整单纯形表以降低目标函数值,并通过随机样本来估计约束条件。
Monte Carlo仿真方法通过生成服从某一特定分布的样本,以近似目标函数和约束条件的期望值。
随机内点法则通过引入随机扰动等技术,在保持可行性的同时寻找最优解。
除了随机线性规划,随机非线性规划也是数学建模中常见的问题之一。
与随机线性规划不同,随机非线性规划中的目标函数和约束条件可能包含非线性项。
为解决这类问题,可以采用Stochastic Approximation方法、Evolutionary Algorithms等。
Stochastic Approximation方法通过迭代逼近解的期望,通过随机样本估计目标函数的梯度,从而找到最优解。
Evolutionary Algorithms则通过模拟生物进化的过程,逐步优化解的质量。
另外,随机排队论也是随机优化问题的一种重要应用领域。
在许多实际问题中,涉及到人员或物品的排队等待,且到达和服务时间往往是不确定的。
通过研究和优化排队系统,可以提高服务效率、降低成本,并对供需平衡、资源分配等问题进行建模和优化。
优化模型举例PPT课件

2021/4/17
第19页/共81页
实例2运输问题
设有某物资从m个发点A1,A2,…,Am输送到n个收点B1,B2,…,Bn,
其中每个发点发出量分别为 a1, a2,..., am 每个收点输入量分别
为
b1, b2,...,
bn
,并且满足
m
n
ai bj
i 1
ji
从发点A到收点B的距离(或单位运费)是已知的,设
为cij (i 1,2,..., m, j 1,2,..., n) 。一个调运方案主要由一组从发
点 Ai 到收点 B j 的输送量 xij 来描述。
问题:寻求一个调运方案,使总运输费用达到最小。
2021/4/17
第20页/共81页
收点
发点
B1
B2
…. Bn
A1
X11 X12
….. X1n
a1
A2
s.t.
n k 1
aik
xk
bi , i
1,2,...,n.
xi 0, i 1,2,...,n.
2021/4/17
第11页/共81页
(3)二次规划问题
目标函数为二次函数,约束条件为线性约束
min u
f (x)
n
ci xi
i 1
1n
2
i
,
j
bij
1
xi
x
j
s.t.
n j 1
aij x j
2021/4/17
第16页/共81页
一单位实物 行走时间(分钟) 捕获时间(分钟) 热量(焦耳)
2021/4/17
X
2
2
25
Y
随机优化与随机规划

随机优化与随机规划随机优化和随机规划是运筹学和数学领域中一类重要的优化问题求解方法。
它们通过引入随机变量来刻画问题中的不确定性信息,进而对问题进行求解和优化。
本文将介绍随机优化和随机规划的基本概念、方法以及应用领域。
一、随机优化的基本概念随机优化是指在优化问题中引入随机变量的方法,将确定性优化问题转化为随机优化问题,从而考虑问题中的不确定性因素。
随机优化的目标是在考虑不确定性条件下,寻找使得目标函数达到最优的解。
随机优化的基本步骤包括:建立模型、制定目标函数、确定约束条件、引入随机变量、建立随机优化模型、求解最优解。
其中,引入随机变量是随机优化的核心步骤,通过引入随机变量来刻画问题中的不确定性信息。
随机优化可以分为两类:随机线性规划和随机非线性规划。
随机线性规划是指目标函数和约束条件都是线性函数的优化问题;随机非线性规划是指目标函数和/或约束条件中存在非线性函数的优化问题。
二、随机规划的基本概念随机规划是指在规划问题中引入随机变量的方法,将确定性规划问题转化为随机规划问题,从而考虑问题中的不确定性因素。
随机规划的目标是在考虑不确定性条件下,制定合理的规划方案。
随机规划的基本步骤包括:建立模型、制定目标函数、确定约束条件、引入随机变量、建立随机规划模型、求解最优解。
与随机优化相似,引入随机变量也是随机规划的核心步骤。
随机规划可以分为两类:随机线性规划和随机非线性规划。
随机线性规划是指目标函数和约束条件都是线性函数的规划问题;随机非线性规划是指目标函数和/或约束条件中存在非线性函数的规划问题。
三、随机优化与随机规划的应用领域随机优化和随机规划在实际应用中具有广泛的应用领域,以下列举几个典型的应用领域:1. 金融风险管理:随机优化和随机规划可以应用于金融领域中的风险管理问题,通过引入随机变量来描述金融市场的不确定性,进而制定合理的投资组合方案和风险控制策略。
2. 生产调度问题:随机优化和随机规划可以应用于生产调度领域中的问题,通过引入随机变量来刻画生产过程中的各种不确定性因素,进而优化生产计划、资源调度和物流管理。
随机优化算法的原理及应用

随机优化算法的原理及应用随机算法是现代计算机科学中非常重要的一类算法,它通过随机性的引入与运用,来解决某些计算复杂度较高或解法不是很显然的问题。
其中,随机优化算法是一种非常经典的随机算法,它通过对搜索空间进行随机搜索和优化,来寻找问题的最优解或次优解。
这种算法因为效率高、便于实现、适用范围广泛,而在众多领域中被广泛应用。
随机优化算法的基本原理随机优化算法是一种基于概率模型的搜索算法,它不依靠具体的解析式或算法,而是通过随机修改问题的解,不断在解空间中“寻找”最优解。
因此,随机优化算法也被称为基于搜索的全局优化算法。
这种算法的具体实现方式主要有以下几种:随机重启优化算法随机重启算法是一种基于多重随机搜索的算法,它通过无数次随机重启,来搜索解的“临界区域”,更容易发现最优解,尤其是对于凸问题。
此算法的基本思路是在一定规定的时间内,多次随机生成解并计算其质量值,最后选出其中的最优解。
而随后,它又可以在新的一个搜索空间内,进行一开始相同的操作,直到找到最优解或时间用完为止。
模拟退火算法模拟退火算法是另外一种基于随机搜索的算法。
它通过模拟实际温度的变化,模拟系统的状态变量,来寻找全局最优解。
此算法的核心思路在于通过温度指数的不断变化,来跳出算法陷入的局部最小值,尤其是对于非凸问题。
此算法常用于最优化问题的求解,尤其是当问题的解空间比较大或需要多目标优化时。
遗传算法遗传算法是一种基于自然界遗传数据的随机优化算法,它能够模拟生物进化过程中的基因变异,交叉和选择等过程,来优化问题的解。
此算法的基本思路是依靠个体的变异和“交配配对”,来产生更有利的基因群体,在群体的不断迭代中最终得到一个最优解。
此算法适用于一些复杂的、多维度优化的问题,例如参数调节、图像处理等。
应用案例1. 电子商务推荐系统推荐系统是如今电子商务网站中的重要组成部分,它可以提高购物效率,为用户提供更符合其需求的商品和优惠信息,产生更多交易额。
随机优化算法在推荐系统中的应用,主要用于个性化推荐,即针对用户的个人喜好和购买记录,提供更具针对性的推荐。
随机优化问题常见方法介绍

粒子群优化算法在处理多峰值、非线性、离散和 连续问题方面具有较好的性能表现。
粒子群优化算法的优缺点
优点
粒子群优化算法简单易实现,收敛速度快,对初值和参数设置不敏感,能够处理 多峰值问题。
缺点
粒子群优化算法容易陷入局部最优解,在处理大规模问题时性能较差,且对参数 设置敏感,需要调整的参数较多。
02
蒙特卡洛模拟法
蒙特卡洛模拟法的原理
蒙特卡洛模拟法是一种基于概率统计的数值计算方法,通过模拟随机过程和随机事 件的结果来求解问题。
该方法的基本思想是通过大量随机抽样,得到一个近似解,随着抽样次数的增加, 近似解逐渐逼近真实最优解。
蒙特卡洛模拟法的精度取决于抽样次数和分布的准确性,精度越高,计算量越大。
03
遗传算法
遗传算法的原理
遗传算法是一种基于生物进化原理的优化算法,通过模拟生 物进化过程中的自然选择、交叉和变异等过程,寻找最优解 。
在遗传算法中,每个解被称为一个“个体”,所有个体组成一 个“种群”。通过不断迭代,种群中的优秀个体被选择出来, 经过交叉和变异操作,产生更优秀的后代,最终得到最优解。
通过从概率分布中采样 来近似随机优化问题, 如蒙特卡洛方法。
通过设计近似算法来求 解随机优化问题,如遗 传算法、粒子群算法等 。
在不确定环境下,寻找 对各种可能出现的状态 都具有较好性能的最优 决策,如鲁棒线性规划 、鲁棒二次规划等。
基于贝叶斯统计理论, 通过构建概率模型来描 述不确定性的分布,并 利用该模型来寻找最优 决策。
随机优化问题的应用领域
金融
如投资组合优化、风险管理等。
物流
优化模型举例课件

03
非线性规划模型
BIG DATA EMPOWERS TO CREATE A NEW
ERA
非线性规划模型的定义
非线性规划模型是一种数学优化模型,用于解决具有非线 性约束和目标函数的优化问题。
它通过寻找一组变量的最优组合,使得目标函数达到最小 或最大值,同时满足一系列非线性约束条件。
非线性规划模型的求解方法
ERA
动态规划模型的定义
动态规划模型是一种通过将原问题分 解为相互重叠的子问题,并存储子问 题的解以避免重复计算,从而高效地 解决优化问题的数学方法。
它通常用于处理具有重叠子问题和最 优子结构的问题,通过将问题分解为 较小的子问题并存储它们的解,以避 免重复计算,从而提高算法的效率。
动态规划模型的求解方法
投资组合优化
利用非线性规划模型对投 资组合进行优化,实现风 险和收益的平衡。
物流配送优化
通过非线性规划模型优化 物流配送路线和车辆调度 ,降低运输成本和提高效 率。
04
整数规划模型
BIG DATA EMPOWERS TO CREATE A NEW
ERA
整数规划模型的定义
整数规划模型是数学优化模型的一种,它要求决策变量取整数值,以实现某种最优 目标。
Ford算法。
背包问题
使用动态规划求解0/1背包问题和 完全背包问题等优化问题。
排班问题
使用动态规划求解医生排班问题和 工厂调度问题等资源分配问题。
THANKS
感谢观看
整数规划模型广泛应用于组合优化、生产计划、资源分配、金融投资等领域。
整数规划模型的一般形式为:min/max (c^T x) s.t. (A x <= b) and (x) is integer 。
数学建模~最优化模型(课件ppt)

用Matlab编程求解程序如下:
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) f = -[10 5]; A = [0.3 0.4;0.5 0.2]; B = [9;8];
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b)
X= 10.0000
2
建立无约束优化模型为:min y =- ( 3 2 x ) x , 0< x <1.5
2
先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval
控制,计划聘请两种不同水平的检验员.一级检验员的标准为: 速度25件/小时,正确率98%,计时工资4元/小时;二级检验员 的标准为:速度15件/小时,正确率95%,计时工资3元/小时.检 验员每错检一次,工厂要损失2元.为使总检验费用最省,该工 厂应聘一级、二级检验员各几名?
解 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
综上得,
函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f ( x )
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习交流PPT
1
模型
水库优化调度的目标通常有三个方面:安全、可 靠和经济。
安全:防洪、灌溉等综合利用部门对水库水位 (存水量)的限制
水电站设备容量约束
Vk Vk Vk
Nk Nk Nk ,
Q k
Qk
Qk ,
学习交流PPT
2
可靠:
令
nk
可靠性要求为
1, Nk 0, Nk
策运行到最后可得到的总发电效益期望值。
学习交流PPT
5
则状态转移方程为
V k V k 1 (Ik Q k(u k) )tk P { Ik 1 x j|Ik x i} p i(k j ),j 1 ,2 , ,m .
动态规划递推方程
Rk(Vk1-,Ik xi)um kka{Bxk(Vk1,Ik,uk)
Nf Nf
1 n
经济:k时段的发E电(n效k益1 nk
)
Pf
经济性要求可B 表k 示B k 为(N k) B k(V k 1 ,Ik,Q k)
n
maxE[Bk ] k 1
学习交流PPT
3
在满足安全、可靠性条件的前提下,使年发电效 益的期望值最大:
n
maxE[Bk ] k 1
s.u tk . k,k1 ,2 , ,n
j
mn1 0
Pf m0(V0,I1)/n.
可靠性
完成一年计算后,进行初始条件转换
Rn1(Vn,In1)R1(V0,I1),
继续计m 算n,1(V直n,I到n1)调度m1规(V0则,I1函).数稳定为止。
统计保证率,若达到设计保证率要求,则得到最 优调度规则,否则,加大惩罚,直到达到设计 保证率要求为止。
初始条件 P{Ik1xj |Ik xi}Rk1(Vk,xj)}
j
Rn1 0
学习交流PPT
6
保证率统计
定义mk(Vk-1,Ik)表示在k时段,水库存水为Vk-1, 来水 为Ik条件下,按最优决策运行到最后,正常运行
时段数的期望值,并定义
则有
nk(uk*)
10,,NNkk
Nf Nf
m k ( V k 1 ,- i) x n k ( u k * ) P { I k 1 x j|I k x i } m k 1 ( V k ,x j)
学习交流PPT
9
考法虑:可靠性约束E的(1n一kn个1 n行k) 之P有f 效的方法是罚函数
Bk Bk Pk
Pk 0,(Nf
Nk Nf Nk),Nk Nf
学习交流PPT
4
动态规划递推方程
加入惩罚项后,模型变成:
n
maxE[Bk ] k 1
s.u tk . k,k1 ,2 , ,n
在k时段初,水库存水Vk-1已知,时段平均入库流 量Ik由预报可得。反应水库的运行情况,可作为 状态变量;决策uk可取泄水流量或时段平均出 力;定义最优值函数Rk(Vk-1,Ik) (余留效益函 数),表示在k时段水库状态为Vk-1,Ik时,按最优决
计算示意图
1 n 1
Rk(Vk-1,Ik)
B k k
k+1
nk
R k 1
n
m k 1
mk(Vk-1,Ik)
学习交流PPT
8
随机动态规划方法的特点
理论完善,符合径流随机性的实际; 能得到最优调度规则 uk*(Vk1,Ik).
使用条件概率,需要大量的历史径流资料,才能 保证条件概率的准确性。
每个水库两个状态变量,由于动态规划的“维数 灾”,使得对多库问题的计算变得不可能。