测定普朗克常量的原理
普朗克常量的测定

利用光电效应测定普朗克常量一:实验目的1. 通过实验加深对光的量子性的了解。
2. 通过光电效应实验,验证爱因斯坦方程,并测定普朗克常量。
二:实验仪器智能光电效应仪由汞灯及电源,滤色片,光阑,光电管、智能实验仪构成。
实验仪有手动和自动两种工作模式,具有数据自动采集,存储,实时显示采集数据,动态显示采集曲线(连接计算机),及采集完成后查询数据的功能。
三:实验原理当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。
所产生的电子,称为光电子。
光电效应是光的经典电磁理论所不能解释的。
1905年爱因斯坦依照普朗克的量子假设,提出了光子的概念。
他认为光是一种微粒—光子;频率为v 的光子具有能量ε=hv ,h 为普朗克常量。
根据这一理论,当金属中的电子吸收一个频率为v 的光子时,便获得这光子的全部能量hv ,如果这能量大于电子摆脱金属表面的约束所需要的脱出功W ,电子就会从金属中逸出。
按照能量守恒原理有:+=221m m hv υW (1) 上式称为爱因斯坦方程,其中m 和m υ是光电子的质量和最大速度,1/2m 2m υ是光电子逸出表面后所具有的最大动能。
它说明光子能量hv 小于W 时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率v 0=W/h ,称为光电效应的极限频率(又称红限)。
不同的金属材料有不同的脱出功,因而υ0也是不同的。
我们在实验中将采用“减速电势法”进行测量并求出普朗克常量h 。
实验原理如图图1 图21所示。
当单色光入射到光电管的阴极K 上时,如有光电子逸出,则当阳极A 加正电势,K加负电势时,光电子就被加速;而当K 加正电势,A 加负电势时,光电子就被减速。
当A 、K 之间所加电压(U )足够大时,光电流达到饱和值I m ,当U ≤-U 0,并满足方程eU 0=221m mv (2)时,光电流将为零,此时的U 0称为截止电压。
光电流与所加电压的关系如图2所示。
普朗克常量的测定实验报告

普朗克常量的测定实验报告普朗克常量是物理学中的一个重要常数,通常用h来表示,其数值为6.626×10^-34 J·s。
普朗克常量的测定对于量子力学的研究具有重要意义。
本实验旨在通过光电效应实验测定普朗克常量的值。
实验仪器和原理。
本实验使用的仪器主要包括光电管、光电管支架、汞灯、电压调节器、数字电压表等。
实验原理是利用光电效应使金属表面发射电子,通过改变光照强度和频率,测量在不同光照条件下光电管的阈值电压,从而求得普朗克常量的值。
实验步骤。
1. 将光电管支架固定在光电管上,并将汞灯放置在光电管支架的正前方。
2. 打开电源,调节电压调节器,使汞灯发出的光照射到光电管上。
3. 通过改变电压调节器的电压,观察并记录光电管的阈值电压,同时记录汞灯的频率。
4. 重复步骤3,分别在不同频率下进行实验。
实验数据处理。
通过实验测得的光电管阈值电压和相应的频率数据,利用光电效应的基本公式E=hf-φ,其中E为光子的能量,h为普朗克常量,f为光的频率,φ为逸出功,可以得到普朗克常量的值。
实验结果与分析。
通过实验数据处理,得到普朗克常量的测定值为6.55×10^-34 J·s。
与标准值6.626×10^-34 J·s相比,相对误差为1.2%。
误差较小,说明实验结果较为准确。
结论。
本实验利用光电效应测定了普朗克常量的值,实验结果与标准值较为接近,说明实验方法和数据处理是可靠的。
普朗克常量的测定对于量子力学的研究具有重要意义,本实验为进一步深入研究提供了可靠的实验数据。
总结。
通过本次实验,我对普朗克常量的测定方法有了更深入的了解,实验过程中也学会了如何处理实验数据和分析结果。
在今后的学习和科研中,我将继续努力,不断提高实验操作和数据处理的能力,为科学研究做出更多的贡献。
测定普朗克常数的方法

测定普朗克常数的方法普朗克常数(Planck's constant)是量子力学中的基本常数之一,与物质的波粒二象性和能量量子化相关。
测定普朗克常数的方法主要包括黑体辐射法、光电效应法和普朗克系列法等。
下面将详细介绍这些方法。
首先,黑体辐射法是测定普朗克常数的经典方法之一、根据普朗克的理论,黑体辐射的辐射能量服从普朗克分布,即以频率ν的电磁波辐射能量为E的概率密度为B(ν,T)=(8πhν³/c³)/(e^(hν/kT)-1),其中h为普朗克常数,c为光速,k为玻尔兹曼常数,T为黑体的温度。
通过测量黑体辐射的能谱,可以拟合出概率密度函数,从而得到普朗克常数的近似值。
其次,光电效应法也是一种测定普朗克常数的常用方法。
光电效应是电磁辐射与金属或半导体表面相互作用所产生的现象,表现为光照射到金属表面或半导体上时,会使其发射电子。
根据经典的电磁波理论,光电效应是不应该出现的,因为经典理论预测照射强度应足够大即可使电子脱离金属。
然而,实验观察到即使是低频光也能使金属发生光电效应,而高频光也不一定能够产生光电效应。
爱因斯坦独立提出的光量子假设成功解释了这一现象。
根据光电效应公式E=hν-φ,其中E为光电子的能量,h为普朗克常数,ν为光的频率,φ为表面逸出功,通过测量光的频率和光电子的最大能量,可以确定普朗克常数。
最后,普朗克系列法也是一种测定普朗克常数的方法。
普朗克系列是氢原子的光谱线系列,与能级跃迁相关。
根据经典的电磁理论,氢原子的能级应连续分布,然而实验观察到氢原子的光谱线是分立的,即只在特定的频率下才能发生能级跃迁。
根据量子力学理论,能级跃迁与电子的能量差ΔE之间有关系ΔE=hν,其中ΔE为能级的能量差,h为普朗克常数,ν为光的频率。
通过测量氢原子的光谱线频率和能级差,可以计算出普朗克常数的值。
综上所述,测定普朗克常数的方法主要包括黑体辐射法、光电效应法和普朗克系列法等。
这些方法通过实验测量与普朗克常数相关的物理量,结合经典或量子理论,从而得到普朗克常数的数值。
光电效应法测定普朗克常数实验原理

光电效应法测定普朗克常数实验原理光电效应法测定普朗克常数实验原理,听起来好像很高大上,但其实它就是利用光子的性质来测量一个非常小的数值——普朗克常数。
那么,这个实验到底是怎么进行的呢?别着急,让我来给你讲讲。
我们要了解什么是光电效应。
简单来说,光电效应就是当光子与物质相互作用时,会产生一些电子。
这些电子就像是光子的“孩子”,它们会从物质中“出生”,并且带有一些能量。
这个能量就叫做光子的能量。
好了,现在我们知道了光子和电子的关系,那么接下来就要用到普朗克常数了。
普朗克常数是一个非常小的数值,它的名字来源于它的发现者——德国物理学家马克斯·普朗克。
他在研究黑体辐射的时候,发现了一种规律:黑体辐射的能量是按照一定的频率分布的,而不是连续的。
这个规律被称为能量量子化定律。
而普朗克常数就是用来描述这个规律的一个重要参数。
那么,为什么我们需要测定普朗克常数呢?因为普朗克常数与光子的频率有关。
当光子的能量发生变化时,它的频率也会随之改变。
而我们通过测量光子的频率,就可以间接地测量出光子的能量。
这样一来,我们就可以用一种非常巧妙的方法来测定普朗克常数了。
接下来,让我们来看一下实验的具体步骤吧。
我们需要准备一个金属薄片,然后用一个光源照射它。
在照射的过程中,我们可以观察到金属薄片表面出现了一些电子。
这些电子就是由光子产生的。
接着,我们需要测量这些电子的数量以及它们的能量。
这样一来,我们就可以根据能量守恒定律和光电效应的公式,计算出光子的能量以及普朗克常数了。
当然啦,这个实验并不是那么简单就能完成的。
在实际操作过程中,我们还需要考虑很多因素,比如光源的波长、金属薄片的厚度等等。
但是总的来说,只要我们掌握了正确的方法和技巧,就一定能够成功地测定普朗克常数。
好了,现在你已经知道光电效应法测定普朗克常数实验的基本原理了吧?希望这篇文章能够帮助你更好地理解这个实验。
如果你还有什么疑问或者想了解更多关于光电效应的知识,欢迎随时来找我哦!。
测量普朗克常数的方法

测量普朗克常数的方法
测量普朗克常数的方法有多种,下面列举几种常用的方法:
1. 光电效应法:利用光电效应原理,测量光子的能量与光电子的动能之间的关系,通过测量电子动能以及光子频率,可以反推出普朗克常数。
2. 满井法:利用黑体辐射定律,通过测量黑体辐射的强度与频率之间的关系,以及测量黑体温度,可以计算出普朗克常数。
3. 输运电子法:利用金属阻热电阻和金属阻府尔电阻之间的关系,测量电阻与温度的关系,通过测量金属电阻的变化可以计算出普朗克常数。
4. 气体阴极放电法:通过对气体阴极放电过程中的电流-电压特性曲线进行测量,可以计算出阴极电流阈值和普朗克常数之间的关系,从而测量普朗克常数。
上述方法中,使用光电效应和满井法是目前最常用的测量普朗克常数的方法。
普朗克常数的实验原理及方法

普朗克常数的实验原理及方法摘要:一、普朗克常数的定义及意义二、实验原理1.量子化现象2.黑体辐射3.能量子概念的提出三、实验方法1.基本实验装置2.实验数据的处理与分析3.普朗克常数的测定四、实验成果与应用1.量子力学的建立2.普朗克常数在现代科学研究中的重要性五、总结与展望正文:普朗克常数是一个物理学基本常数,它对于量子力学的发展具有重要意义。
本文将从普朗克常数的定义及意义、实验原理、实验方法、实验成果与应用等方面进行详细阐述。
首先,普朗克常数(Planck constant)是由德国物理学家马克斯·普朗克在1900年提出的一个物理常数,用符号h表示。
它代表了量子化的最小能量单位,即能量量子(energy quanta)。
普朗克常数的发现,标志着量子时代的来临,为量子力学的发展奠定了基础。
实验原理方面,普朗克常数的测定与量子化现象、黑体辐射等现象密切相关。
量子化现象是指物质微观世界的能量传递与转化是以最小能量单位(能量子)进行的。
黑体辐射实验则揭示了电磁辐射的能量分布规律,从而为普朗克常数的提出提供了实验依据。
在实验方法方面,研究人员设计了一种基本实验装置,用于测量不同频率光子的能量。
通过测量光子能量与频率之间的关系,可以得到普朗克常数的值。
实验数据的处理与分析过程中,科学家们采用了多种方法,如迈克尔逊-莫雷干涉仪、光电效应等,以提高实验精度。
实验成果方面,普朗克常数的测定对于量子力学的建立具有重要意义。
量子力学是一个描述微观世界规律的物理学分支,它改变了人们对物质的认识。
普朗克常数在现代科学研究中具有广泛的应用,例如在激光、半导体、核物理等领域。
总之,普朗克常数是一个具有重要意义的物理常数,它的发现与测定揭示了量子世界的奥秘。
随着科学技术的不断发展,普朗克常数在未来的科学研究中将继续发挥重要作用。
普朗克常量的测定实验报告

普朗克常量的测定实验报告一、实验目的1、了解光电效应的基本规律。
2、学习用光电效应法测定普朗克常量。
二、实验原理1、光电效应当光照射在金属表面时,金属中的电子会吸收光子的能量。
如果光子的能量足够大,电子就能够克服金属表面的束缚而逸出,形成光电流。
2、爱因斯坦光电方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 之间的关系可以表示为:$E_{k} =hν W$其中,$h$ 是普朗克常量,$W$ 是金属的逸出功。
3、截止电压当光电流为零时,所加的反向电压称为截止电压$U_{0}$。
此时有:$eU_{0} = E_{k}$将上式代入爱因斯坦光电方程可得:$U_{0} =\frac{hν}{e} \frac{W}{e}$通过测量不同频率光的截止电压,可以得到$U_{0}$与$ν$ 的关系曲线,然后通过直线拟合求出普朗克常量$h$。
三、实验仪器光电管、汞灯、滤光片、微电流测量仪、直流电源等。
四、实验步骤1、仪器连接将光电管、微电流测量仪和直流电源按照正确的方式连接起来。
2、预热仪器打开汞灯和微电流测量仪,预热一段时间,使其达到稳定工作状态。
3、测量截止电压(1)依次换上不同波长的滤光片,分别测量对应波长光的截止电压。
(2)调节直流电源的电压,使光电流逐渐减小至零,记录此时的电压值即为截止电压。
4、数据记录将测量得到的不同波长光的截止电压记录在表格中。
五、实验数据及处理|波长(nm)|频率(×10^14 Hz)|截止电压(V)||||||365|821| -128||405|741| -102||436|688| -087||546|549| -057||577|519| -048|根据上述数据,以频率$ν$ 为横坐标,截止电压$U_{0}$为纵坐标,绘制$U_{0} ν$ 关系曲线。
通过对曲线进行线性拟合,得到直线方程:$U_{0} =kν + b$其中,斜率$k =\frac{h}{e}$则普朗克常量$h = ke$已知电子电荷量$e = 160×10^{-19} C$,通过计算可得普朗克常量$h$ 的值。
测量普朗克常量的方法

测量普朗克常量的方法测量普朗克常量是一个极其复杂和精密的任务,因为其值与微观世界的量子物理现象相关。
普朗克常量(h)是一个基本常量,它在量子力学中用于描述能量的离散性和辐射的特性。
在计算普朗克常量的值时,实验方法通常涉及到一些与光子相关的现象,例如光的辐射频率、能量及粒子数量的计数等。
下面将介绍几种用于测量普朗克常量的常见实验方法:1. 光电效应法:光电效应是描述光和金属之间相互作用的现象。
根据爱因斯坦的光电方程(E = h ν- Φ),其中E是光电子的能量,h为普朗克常量,ν为光的频率,Φ为光电子的逸出功。
通过测量光的频率和光电子的能量,可以得到普朗克常量的值。
2. 涡流衰减法:涡流衰减法(Eddy current damping method)利用了涡流现象的特性。
涡流是指当金属材料或导体中有变化的磁场时,会产生感应电流。
根据感应电流大小的衰减情况,可以计算得到普朗克常量的值。
3. 基于约瑟夫森效应的荧光检测法:约瑟夫森效应是描述被束缚在两个高身势电子之间的原子发生共振跃迁的现象。
这种共振跃迁会导致发射光子的能量有离散的特性。
通过测量共振频率和发射光子的能量,可以得到普朗克常量的值。
4. 基于量子霍尔效应的电阻计量法:量子霍尔效应是指在二维电子系统中,当施加磁场时,电子的霍尔电阻呈现为量子化的现象。
通过测量霍尔电阻的量子化值和磁场强度,可以计算得到普朗克常量的值。
5. X射线研究法:利用X射线的特性和普朗克常量的关系,可以通过测量X射线的特性参数,如频率和能量,来计算普朗克常量的值。
以上只是一些测量普朗克常量的常见实验方法,每种方法都需要使用非常精密和复杂的实验仪器,以及高度精确的数据处理和分析。
此外,为了减小误差,通常需要采用多种方法的组合来测量普朗克常量的值,并对多次实验结果进行平均处理。
值得注意的是,测量普朗克常量的方法需要依赖激光技术、高精度光学仪器以及精确的实验设计和探测技术等。
由于普朗克常量的精确测量对于精确的物理研究具有重要意义,因此,科学界一直致力于推动测量方法的改进和精确度的提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测定普朗克常量的实验原理
光电效应规律有两条:
1.在光谱成分不变的情况下,光电流的大小与入射光的强度成正比。
2.光电子的最大初动能,随入射光频率的增加而增加,与入射光的强度无关。
爱因斯坦提出:光是由一些能量为E=hv的粒子组成的粒子流,这些粒子称为光子。
光的强弱决定于粒子的多少。
故光电流与入射光的强度成正比。
又因金属中的自由电子通常只能吸收一个光子的能量hv,所以电子获得的能量与光强无关,而只与频率成正比,爱因斯坦描述此现象的方程为:
(1)
h称为普朗克常量,
v为入射光频率,
是光电子飞出金属表面后所具有的最大动能,
W是电子从金属内部逸出表面所需的逸出功。
本实验采用锑铯光电管、用减速电位法求电子动能的最大值。
当光电管内的阴极和阳极之间电压等于零时,被光激发出的电子也可以到达阳极;如果在光电管的阴极和阳极之间加以反向电压。
当反向电压增大到U0时,光电流等于零,即光电子都回到阴极面上,测出截止电压U0并根据能量守恒定律,就可以求出电子动能的最大值:
(2)
改变光强度时,截止电压不变化,这表明电子的动能不变化。
只有改变光的频率.才能使截止电压变化而与光电子的动能的最大值成正比。
对比(1)、(2)式可得
eU0=hv-W (3)
改变入射光的频率v,可测得不同的截止电压。
作U0-v图象,可得图5.13-3直线,此直线的斜率:
(4)
将(4)式变形得
(5)
将[实验方法]后面的表中数据代入,可计算出普朗克常量。
(4)实验仪器的结构原理如图5.13-1所示。