模拟信号运算电路.pdf

合集下载

模拟电子技术第7章信号的运算和处理

模拟电子技术第7章信号的运算和处理

(08 分)1.某放大电路如图所示,已知A 1、A 2为理想运算放大器。

(1)当I I I u u u ==21时,证明输出电压o u 与输入电压I u 间的关系式为I o u R R R R u ⎪⎪⎭⎫ ⎝⎛-=31421。

(2)当21=I u V 时,8.1=o u V , 问1R 应取多大?(10 分)2.左下图示放大电路中,A 1、A 2为理想运算放大器,已知5.01=I u mV ,5.02-=I u mV 。

(1)分别写出输出电压01u 、2o u 、o u 的表达式,并求其数值。

(2)若不慎将1R 短路,问输出电压o u =?(06 分)3.右上图示放大电路中,已知A 1、A 2为理想运算放大器。

(1)写出输出电压o u 与输入电压1I u 、2I u 间的关系式。

(2)已知当1I u =1V 时, o u =3V ,问2I u =?(10 分)4.电流-电流变换电路如图所示,A 为理想运算放大器。

(1)写出电流放大倍数SL i I I A =的表达式。

若=S I 10mA ,L I =? (2)若电阻F R 短路,L I =?(10 分)5.电流放大电路如左下图所示,设A 为理想运算放大器。

(1)试写出输电流L I 的表达式。

(2)输入电流源L I 两端电压等于多少?(10 分)6.大电流的电流-电压变换电路如右上图所示,A 为理想运算放大器。

(1)导出输出电压O U 的表达式)(I O I f U =。

若要求电路的变换量程为1A ~5V ,问3R =?(2)当I I =1A 时,集成运放A 的输出电流O I =?(08 分)7.基准电压-电压变换器电路如下图所示,设A 为理想运算放大器。

(1)若要求输出电压U o 的变化范围为4.2~10.2V ,应选电位器R W =?(2)欲使输出电压U o 的极性与前者相反,电路将作何改动?(10 分)8.同相比例运算电路如图所示,已知A 为理想运算放大器,其它参数如图。

模拟电子线路PDF.pdf

模拟电子线路PDF.pdf

模拟电子线路一、单项选择题1、PN结加正向电压时,空间电荷区将( A )。

A.变窄B.不变C.变宽D.不确定2、在杂质半导体中,多数载流子的浓度主要取决于( C )。

A.温度B.掺杂工艺的类型C.杂质浓度D.晶体中的缺陷3、在掺杂半导体中,少子的浓度受( A )的影响很大。

A.温度B.掺杂工艺C.杂质浓度D.晶体缺陷4、N型半导体( C )。

A.带正电B.带负电C.呈中性D.不确定5、半导体二极管的重要特性之一是( B )。

A.温度稳定性B.单向导电性C.放大作用D.滤波特性6、实际二极管与理想二极管的区别之一是反向特性中存在( B )。

A.死区电压B.击穿电压C.门槛电压D.正向电流7、当温度升高时,二极管的反向饱和电流将( C )。

A.基本不变B.明显减小C.明显增加D.不确定变化8、二极管的伏安特性曲线的反向部分在环境温度升高时将( D )。

A.右移B.左移C.上移D.下移9、关于BJT的结构特点说法错误的是( C )。

A.基区很薄且掺杂浓度很低B.发射区的掺杂浓度远大于集电区掺杂浓度C.基区的掺杂浓度远大于集电区掺杂浓度D.集电区面积大于发射区面积10、某三极管各电极对地电位如图所示,由此可判断该三极管工作在( C )。

8V2.5VA.饱和状态B.截止状态C.放大状态D.击穿状态11、小信号模型分析法不适合用来求解( A )。

A .静态工作点B .电压增益C .输入电阻D .输出电阻12、利用微变等效电路可以计算晶体三极管放大电路的( B )。

A .直流参数C .静态工作点 B .交流参数D .交流和直流参数13、某单管放大器的输入信号波形为,而输出信号的波形为,则该放大器出现了( C )失真。

A .交越B .截止C .饱和D .阻塞性14、交流信号从b 、c 极之间输入,从e 、c 极之间输出,c 极为公共端的放大电路是( D )。

A .共基极放大器B .共模放大器C .共射极放大器D .共集电极放大器15、以下不是共集电极放大电路的是( D )。

第9章 信号的运算与处理电路

第9章 信号的运算与处理电路

R3 u− = u+ = ui 2 R2 + R3
if R1 ii + R2 ui1 + - ui2 -
RF
ii = i f
ui 1 − u− ii = R1 u− − uo if = RF RF R3 RF uo = (1 + ) ui 2 − ui 1 R1 R2 + R3 R1
+ uo R3 -
典型电路
比例运算电路 加法运算电路 减法运算电路 积分运算电路 微分运算电路

电路如图所示。 电路如图所示。设运放是理想的, 设运放是理想的,电 容器C上的初始电压为零。 上的初始电压为零。
300kΩ 100kΩ
ui1
100kΩ
_ ∞ +
A1 +

+
100kΩ
_ ∞ +
A3 +

uo1
uo
100μF
ii + ui -

- + uo -
dui uo = − RC dt
if uC + - C R2 + uo - RF
ui
t ii + ui - uo
t
当输入电压为阶跃信号时, 当输入电压为阶跃信号时,输出电压为尖脉冲。 输出电压为尖脉冲。
小结
集成运算放大器的线性应用 集成运放怎样才能实现线性应用? 集成运放怎样才能实现线性应用? 加负反馈 分析依据? 分析依据? 虚短 虚断
IS -UEE
输入级 要求: 要求: 尽量减小零点漂移,尽量提高 KCMRR , 输入阻抗 ri尽可能大。 尽可能大。
T4 反相端 u-
- +
+UCC uo
T3 T1 T2
T5

第3章 模拟电路设计_2

第3章  模拟电路设计_2

3.3 滤波器设计3.3.1 滤波器的基本特性✓滤波器是一种频域变换电路。

它能让指定频段的信号顺利通过,甚至还能放大,而对非指定频段的信号予以衰减。

✓仅仅采用R、L、C元件组成的滤波器称无源滤波器,含有晶体管或运算放大器的称为有源滤波器,后者的储能元件只用电容器C 。

厦门理工学院电子与电气工程系12厦门理工学院电子与电气工程系3滤波器幅频响应四种理想滤波器的频域与时域特性厦门理工学院电子与电气工程系4滤波器幅频响应3阶Bessel 、Butterworth 、Chebyshev (1dB ripple)滤波器幅频响应3阶Chebyshev、Inverse Chebyshev厦门理工学院电子与电气工程系5滤波器幅频响应3阶椭圆(Elliptic or Cauer)厦门理工学院电子与电气工程系6典型有源滤波器电路Sallen-Key (压控电压源)对运放的要求不高,元件的比值较小。

厦门理工学院电子与电气工程系7厦门理工学院电子与电气工程系8典型有源滤波器电路Multiple feedback (多重反馈)对运放要求较高。

一般使用于低Q的应用中厦门理工学院电子与电气工程系9典型有源滤波器电路KHN (状态变量滤波器)。

对运放的非理想特性有较低的灵敏度。

可以精确地调整参数;可以获得HP 、BP 、LP厦门理工学院电子与电气工程系10典型有源滤波器电路Tow-Thomas (双二阶滤波器)可以精确地调整参数,可以获得BP 、LP 、-LP11厦门理工学院电子与电气工程系12end厦门理工学院电子与电气工程系13end 通带纹波和电压波动百分比的对应关系厦门理工学院电子与电气工程系14有源滤波器设计步骤归一化设计。

即将滤波器的截至频率视为1,其它频率除以它进行处理。

1.根据给定的通带频率fc阻带衰减fs计算陡度系数A=fc/fs2.查归一化图表,根据陡峭度、纹波、具体应用要求,查得滤波器阶数。

3.确定电路形式(Sallen Key KHN Two-Thomas)4.如果是二阶滤波器,可以直接计算得到元件的值。

模拟电子技术实验 运放组成积分、微分实验

模拟电子技术实验 运放组成积分、微分实验

实验五 集成运放积分、微分运算电路一、实验目的1、进一步理解运算放大器的基本性质和特点。

2、熟悉集成运放构成的几种运算电路的结构及特点,测定其运算关系。

3、学习区别运算放大器的非线性电路和线性电路,掌握非线性电路的应用。

二、实验原理在自动控制系统中广泛使用比例—积分—微分电路,本实验所涉及的积分运算电路、微分运算电路即是这种电路的基础。

⒈ 积分运算电路基本积分运算电路是以电阻作为输入回路,反馈回路以电容作为积分元件,电路如图5-1所示。

当运算放大器的开环电压增益足够大时,可认为:i C R i =1R v i IR =()td t v d Ci o C −=其中 图5-1 积分运算电路()()()∫+⋅−=01Oio V t d t v RCt v 输入与输出间的关系为:在初始时电容上的电压为零,则 ;当输入信号 是幅度为V 的阶跃电压,则有:()0()t V V i 0=O即:输出电压 是随时间线性减小,见图5-2积分电路的应用时,应注意运算放大器的输入电压和输出电流不允许超过它的额定工作电压U SCM 和工作电流I SCM 。

为了减小输出的直流漂移,若将电容C上并联 一个反馈 图5-2 积分状态图()()t V CR t d V C R t d t V C R t v tti o ⋅−=−=⋅−=∫∫10101111()V t o电阻R F ,电路如图5-4所示。

输入与输出间的关系为:()()∫⋅−≈td t v RCt v io 1由于R F 的加入将对电容产生分流作用,从而导致积分误差。

在考虑克服误差时,一般满足 。

C太小,会加剧积分漂移,C太大,电容漏电也随着增大。

通常取 , 。

CR C R f 11R R f ≥F C 〉〉μ1≥⒉ 微分运算电路微分运算放大电路是对输入信号实现微分运算,它是积分运算的逆运算。

如图5-3所示为基本微分运算电路;其输出电压为:()图5-3 基本微分运算电路()t d t v d t F o ≈CR v i −从上式可以看出:当输入信号 是三角波时,其输出 既是矩形波。

模电课件基本运算电路

模电课件基本运算电路

积分电路应用
总结词
实现模拟信号的积分
详细描述
积分电路能够将输入的模拟信号进 行积分运算,常用于波形生成、控 制系统以及滤波器设计等领域。
总结词
平滑信号波形
详细描述
积分电路可以对输入信号进行平滑处 理,消除信号中的高频噪声和突变, 使输出信号更加平滑。
总结词
波形生成与控制
详细描述
积分电路可以用于波形生成与控制 ,例如在波形发生器中产生三角波 、锯齿波等连续波形。
微分电路应用
总结词:实现模拟信号的微分 总结词:提取信号突变信息 总结词:瞬态分析
详细描述:微分电路能够将输入的模拟信号进行微分运 算,常用于控制系统、瞬态分析以及波形生成等领域。
详细描述:微分电路可以用于提取输入信号中的突变信 息,例如在振动测量、声音分析等场合中提取信号的突 变点。
详细描述:在瞬态分析中,微分电路可以用于测量信号 的瞬时变化率,帮助分析系统的动态特性。
基本运算电路概述 加法电路
总结词
实现模拟信号的微分
详细描述
微分电路是用于实现模拟信号微分的电路。它通常由运算放大器和RC电路构成,通过将输入信号的时间导数乘以 RC电路的时间常数来获得输出信号。微分电路可以用于调节系统的响应速度和稳定性。
03 基本运算电路的工作原理
加法电路工作原理
总结词
实现模拟信号的相加
05 基本运算电路的实验与演 示
加法电路实验与演示
总结词
通过模拟实验,展示加法电路的基本 原理和实现方法。
详细描述
实验中,使用加法电路将两个输入信 号相加,得到输出信号。通过调整输 入信号的幅度和相位,观察输出信号 的变化,理解加法电路的基本原理和 实现方法。

电工电子学实验12 实验报告

电工电子学实验12 实验报告

实验报告课程名称: 电工电子学实验 指导老师: 聂曼 成绩:________________ 实验名称: 集成运算放大器应用(一) ——模拟信号运算电路 实验类型: 设计 同组学生姓名:___ __ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤(必填) 六、实验结果与分析(必填) 七、讨论、心得(必填)一、实验目的1、了解集成运算放大器的基本使用方法和三种输入方式。

2、掌握集成运算放大器构成的比例、加法、减法、积分等运算电路。

二、实验原理集成运算放大器有两个输入端,即同相输入端和反向输入端。

根据输入电路的不同,有同相输入、反向输入和差分输入三种方式。

在实际应用中都必须外界反馈网络构成闭环,用以实现各种模拟信号运算。

各电路图见实验内容。

1.同相输入比例运算电路 图12-1为同相输入比例运算电路,当输入端A 加入信号电压u1时,在理想条件下,输入输出成比例关系。

但输出信号的大小受集成运算放大器的最大输出幅度限制,因此输入输出在一定范围内是保持线性关系。

2.反向输入加法运算电路 图12-2为反向输入加法运算电路,当输入端A 、B 加入u i1、u i2信号时,在理想条件下,u 0=-(R f u i1/R 1 + R f u i2/R 2)加法运算电路在工程测量中可用来对信号电压进行变换和定标,即可将某一范围变化的输入电压变换为另一范围变化的输出电压。

3.差分输入(减法运算)电路 图12-3为差分输入电路,用它可实现减法运算。

当输入端A 、B 通识加入信号电压u i1、u i2时,在理想条件下,且R1=R2、RF=R3,其输出电压u 0=R f (u i2 – u i1)/ R 14.积分运算电路 图12-4为积分运算电路,若输出端A 加一输入信号ui ,在理想条件下,且电容两端的初始电压为零,则输出电压u 0=-U i t/R 1C即输出电压随时间线性变化。

模拟运算电路设计

模拟运算电路设计
电容等。
电路分析方法
01
02
03
04
直流分析
通过分析电路的节点电压和电 流,确定电路的静态工作点。
交流分析
通过分析电路的频率响应和传 递函数,确定电路的性能指标

瞬态分析
通过分析电路在不同时间点的 状态,了解电路的工作过程。
噪声分析
通过分析电路的噪声源和噪声 传递路径,降低电路的噪声干
扰。
电路设计流程
需求分析
明确电路的功能需求和技术指标 。
原理图设计
根据需求分析,设计电路原理图 。
元件选择
根据电路原理图,选择合适的元 件型号和参数。
制作与调试
根据板图制作电路板,并进行调 试和优化。
板图设计
根据仿真测试结果,设计电路板 图。
仿真测试
利用仿真软件对电路进行功能和 性能测试。
03
基本模拟运算电路设计
总结词
噪声和干扰是模拟运算电路设计中常见的问题,需要进 行有效的噪声抑制和干扰处理,以保证电路的稳定性和 可靠性。
详细描述
噪声抑制可以通过在电路中加入滤波器、电容、电感等 元件来实现,以减小噪声对电路的影响。干扰处理可以 采用接地、屏蔽、隔离等措施,减小外界对电路的干扰 。同时,还需要注意减小电路自身产生的干扰,如减小 信号幅度、合理安排信号线等。
对数斜率、线性区范围、精度等。
指数运算电路设计
指数运算类型
基于二极管的指数运算和基于晶体管的指数运算。
设计步骤
确定指数运算的输入和输出范围,选择合适的元 件参数,进行电路设计和仿真验证。
关键参数
指数斜率、线性区范围、精度等。
乘法器设计
乘法器类型
模拟乘法器和数字模拟乘法器。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章模拟信号运算电路典型例题本章习题中的集成运放均为理想运放。

6.1 分别选择“反相”或“同相”填入下列各空内。

(1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。

(2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。

(3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。

(4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。

解:(1)反相,同相(2)同相,反相(3)同相,反相(4)同相,反相6.2填空:(1)运算电路可实现A u>1的放大器。

(2)运算电路可实现A u<0的放大器。

(3)运算电路可将三角波电压转换成方波电压。

(4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。

(5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。

(6)运算电路可实现函数Y=aX2。

解:(1)同相比例(2)反相比例(3)微分(4)同相求和(5)反相求和(6)乘方6.3 电路如图P6.3所示,集成运放输出电压的最大幅值为±14V ,填表。

图P6.3u I /V 0.1 0.5 1.0 1.5 u O 1/V u O 2/V解:u O 1=(-R f /R ) u I =-10 u I ,u O 2=(1+R f /R ) u I =11 u I 。

当集成运放工作到非线性区时,输出电压不是+14V ,就是-14V 。

u I /V 0.1 0.5 1.0 1.5 u O 1/V -1 -5 -10 -14 u O 2/V1.15.511146.4 设计一个比例运算电路, 要求输入电阻R i =20k Ω, 比例系数为-100。

解:可采用反相比例运算电路,电路形式如图P6.3(a)所示。

R =20k Ω,R f =2M Ω。

6.5 电路如图P7.5所示,试求: (1)输入电阻; (2)比例系数。

解:由图可知R i =50k Ω,u M =-2u I 。

342R R R i i i += 即 3OM 4M 2M R u u R u R u −+=−输出电压 I M O 10452u u u −== 图P6.56.6 电路如图P6.5所示,集成运放输出电压的最大幅值为±14V ,u I 为2V 的直流信号。

分别求出下列各种情况下的输出电压。

(1)R 2短路;(2)R 3短路;(3)R 4短路;(4)R 4断路。

解:(1)V 4 2I 13O −=−=−=u R R u (2)V 4 2I 12O −=−=−=u R R u (3)电路无反馈,u O =-14V (4)V 8 4I 132O −=−=+−=u R R R u6.7 电路如图P6.7所示,T 1、T 2和T 3的特性完全相同,填空: (1)I 1≈ mA ,I 2≈ mA ;(2)若I 3≈0.2mA ,则R 3≈ k Ω。

图P6.7解:(1)1,0.4;(2)10。

6.8 试求图P6.8所示各电路输出电压与输入电压的运算关系式。

图P6.8解:在图示各电路中,集成运放的同相输入端和反相输入端所接总电阻均相等。

各电路的运算关系式分析如下:(a )13I2I1I33f I22f I11f O 522u u u u R Ru R R u R R u +−−=⋅+⋅−⋅−= (b )13I2I1I33f I22f I11f O 1010u u u u R Ru R R u R R u ++−=⋅+⋅+⋅−= (c ))( 8)(I1I2I1I21fO u u u u R R u −=−=(d )I44f I33f I22f I11f O u R Ru R R u R R u R R u ⋅+⋅+⋅−⋅−= 1413I2I1402020u u u u ++−−=6.9 在图P6.8所示各电路中,是否对集成运放的共模抑制比要求较高,为什么?解:因为均有共模输入信号,所以均要求用具有高共模抑制比的集成运放。

6.10 在图P6.8所示各电路中,集成运放的共模信号分别为多少?要求写出表达式。

解:因为集成运放同相输入端和反相输入端之间净输入电压为零,所以它们的电位就是集成运放的共模输入电压。

图示各电路中集成运放的共模信号分别为(a )I3IC u u = (b )I3I2I3322I2323IC 1111110u u u R R R u R R R u +=⋅++⋅+=(c )I2I2f 1f IC 98u u R R R u =⋅+=(d )I4I3I4433I3434IC 4114140u u u R R R u R R R u +=⋅++⋅+=6.11 图P6.11所示为恒流源电路,已知稳压管工作在稳压状态,试求负载电阻中的电流。

图P6.11解:6.02Z 2P L ===R U R u I mA6.12 电路如图P6.12所示。

(1)写出u O 与u I 1、u I 2的运算关系式;(2)当R W 的滑动端在最上端时,若u I 1=10mV ,u I 2=20mV ,则u O =? (3)若u O 的最大幅值为±14V ,输入电压最大值 u I 1m a x =10mV ,u I 2m a x =20mV ,最小值均为0V ,则为了保证集成运放工作在线性区,R 2的最大值为多少?图P6.12解:(1)A 2同相输入端电位 )( 10)(I1I2I1I2fN2P2u u u u RR u u −=−== 输出电压 ))(1(10)1(I1I212P212O u u R Ru R R u −+=⋅+= 或 )(10I1I21WO u u R R u −⋅⋅= (2)将u I 1=10mV ,u I 2=20mV 代入上式,得u O =100mV(3)根据题目所给参数,)(I1I2u u −的最大值为20mV 。

若R 1为最小值,则为保证集成运放工作在线性区, )(I1I2u u −=20mV 时集成运放的输出电压应为+14V ,写成表达式为14201010)(10m in1I1I2m in 1W O =⋅⋅=−⋅⋅=R u u R R u 故 R 1m i n ≈143ΩR 2m a x =R W -R 1m i n ≈(10-0.143)k Ω≈9.86 k Ω6.13 分别求解图P6.13所示各电路的运算关系。

图P6.13解:图(a )所示为反相求和运算电路;图(b )所示的A 1组成同相比例运算电路,A 2组成加减运算电路;图(c )所示的A 1、A 2、A 3均组成为电压跟随器电路,A 4组成反相求和运算电路。

(a )设R 3、R 4、R 5的节点为M ,则))(( )(2I21I15434344M O 5M2I21I15342I21I13M R u R u R R R R R R i u u R u R u R u i i i R u R u R u R R R R +++−=−=−+=−=+−=(b )先求解u O 1,再求解u O 。

))(1()1()1()1()1(I1I245I245I11345I245O145OI113O1uuRRuRRuRRRRuRRuRRuuRRu−+=+++−=++−=+=(c)A1、A2、A3的输出电压分别为u I1、u I2、u I3。

由于在A4组成的反相求和运算电路中反相输入端和同相输入端外接电阻阻值相等,所以)(10)(I3I2I1I3I2I114OuuuuuuRRu++=++=6.14在图P6.14(a)所示电路中,已知输入电压u I的波形如图(b)所示,当t=0时u O=0。

试画出输出电压u O的波形。

图P6.14解:输出电压的表达式为)(d11OIO21tutuRCu tt+−=⎰当u I为常量时)()(100)()(10101)()(11O12I1O12I75112IOtuttututtututtuRCuO+−=+−⨯−=+−−=−-若t=0时u O=0,则t=5ms时u O=-100×5×5×10-3V=-2.5V。

当t=15mS时u O=[-100×(-5)×10×10-3+(-2.5)]V=2.5V。

因此输出波形如解图P6.14所示。

解图P6.146.15已知图P6.15所示电路输入电压u I的波形如图P7.4(b)所示,且当t=0时u O=0。

试画出输出电压u O的波形。

图P6.15解图P6.15解:输出电压与输入电压的运算关系为u O=100u I(t2-t1)+u I-u C(t1),波形如解图P7.15所示。

6.16 试分别求解图P6.16所示各电路的运算关系。

图P6.16解:利用节点电流法,可解出各电路的运算关系分别为: (a ) t u u t u CR u R R u d 100d 1I I I 1I 12O ⎰⎰−−=−−= (b ) I I 3I 21I 1O 2d d 10d d u tuu C C t u RC u −−=−−=− (c ) t u t u RCu d 10d 1I 3I O ⎰⎰==(d ) t u u t R u R u C u d )5.0(100d )(1I2I12I21I1O +−=+−=⎰⎰6.17 在图P6.17所示电路中,已知R 1=R =R '=100k Ω,R 2=R f =100kΩ,C =1μF 。

图P6.17(1)试求出u O 与 u I 的运算关系。

(2)设t =0时u O =0,且u I 由零跃变为-1V ,试求输出电压由零上升到+6V 所需要的时间。

解:(1)因为A 1的同相输入端和反相输入端所接电阻相等,电容上的电压u C =u O ,所以其输出电压I O O 2f I 1f O1u u u R R u R R u −=⋅+⋅−= 电容的电流R u R u u i I O O1C −=−=因此,输出电压t u t u RC t i C u d 10d 1d 1I I C O ⎰⎰⎰−=−== (2)u O =-10u I t 1=[-10×(-1)×t 1]V =6V ,故t 1=0.6S 。

即经0.6秒输出电压达到6V 。

6.18 试求出图P6.18所示电路的运算关系。

图P6.18解:设A2的输出为u O2。

因为R1的电流等于C的电流,又因为A2组成以u O为输入的同相比例运算电路,所以⎰⎰⎰−==+=−=−=tuuuuRRututuCRud2)1(d2d1IOOO32O2II1O26.19在图P6.19所示电路中,已知u I1=4V,u I2=1V。

相关文档
最新文档