1.3.1有理数的加法(第一课时)教学设计
七年级(人教版)集体备课教学设计:1.3.1《有理数的加法(1)》

七年级(人教版)集体备课教学设计:1.3.1《有理数的加法(1)》一. 教材分析《有理数的加法(1)》是七年级数学的重要内容,主要让学生掌握有理数加法的基本运算方法和规则。
本节课的内容为后续学习有理数的减法、乘法、除法等运算打下基础。
通过学习,学生能够理解有理数加法的概念,掌握加法的运算律,并能够运用加法解决实际问题。
二. 学情分析学生在进入七年级之前,已经学习了整数和分数的知识,对数的运算有一定的基础。
但是,对于有理数的概念和加法的运算规则还不够明确。
因此,在教学过程中,需要引导学生从实际问题出发,理解有理数加法的意义,并通过大量的练习,让学生熟练掌握有理数加法的运算方法。
三. 教学目标1.知识与技能:使学生掌握有理数加法的基本运算方法和规则,能够熟练地进行有理数的加法运算。
2.过程与方法:通过观察、分析、归纳等方法,让学生理解有理数加法的运算律,并能够运用加法解决实际问题。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和团队精神。
四. 教学重难点1.重点:有理数加法的基本运算方法和规则。
2.难点:有理数加法的运算律的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生从实际问题中抽象出有理数加法的问题,让学生理解有理数加法的意义。
2.自主学习法:鼓励学生主动探究有理数加法的运算方法,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论和合作交流,共同解决有理数加法的问题,培养学生的团队协作能力。
六. 教学准备1.教学PPT:制作有关有理数加法的教学PPT,包括导入、讲解、练习等环节。
2.教学素材:准备一些有关有理数加法的实际问题,用于引导学生从实际问题中抽象出有理数加法的问题。
3.学习任务单:设计一份学习任务单,让学生在课堂上完成有理数加法的相关练习。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如购物时找零、温度变化等,引导学生从实际问题中抽象出有理数加法的问题。
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计

人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计一. 教材分析《有理数的加法》是人教版数学七年级上册第一章第三节的第一课时,本节课主要介绍有理数的加法运算。
学生在学习这一节之前,已经掌握了有理数的概念、加法运算的法则,以及绝对值的概念。
本节课的内容为学生以后学习更高级的数学知识打下基础。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识有一定的了解,但还需要进一步的引导和培养。
在学习本节课之前,学生已经掌握了有理数的概念和加法运算的法则,但可能对有理数加法的实质理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生掌握有理数的加法运算方法,理解有理数加法的实质。
2.培养学生运用有理数加法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.教学重点:有理数的加法运算方法,有理数加法的实质。
2.教学难点:有理数加法在实际问题中的应用。
五. 教学方法1.采用讲授法,讲解有理数加法的运算方法和实质。
2.采用案例分析法,分析实际问题中有理数加法的应用。
3.采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
六. 教学准备1.准备相关的教学案例和练习题,用于讲解和巩固有理数加法知识。
2.准备教学PPT,用于展示和讲解有理数加法的运算方法和实质。
3.准备黑板,用于板书和展示例题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生复习有理数的概念和加法运算的法则,为新课的学习做好铺垫。
2.呈现(10分钟)讲解有理数加法的运算方法和实质,结合PPT和板书,让学生清晰地理解有理数加法的运算过程。
3.操练(10分钟)让学生进行一些有关有理数加法的练习题,巩固所学知识。
教师在这个过程中要引导学生正确进行运算,并及时给予反馈。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数加法知识解决问题。
教师要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
人教版七年级数学上册1.3.1.1《有理数的加法(1)》说课稿

人教版七年级数学上册1.3.1.1《有理数的加法(1)》说课稿一. 教材分析《有理数的加法(1)》是人教版七年级数学上册第一章第三节的第一课时,本节课的内容是有理数的加法运算。
学生在学习本节课之前,已经掌握了有理数的概念、性质以及简单的运算规则。
本节课的内容为学生提供了有理数运算的基础,对于学生进一步学习有理数的减法、乘法、除法等运算具有重要的意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,但是对于有理数的加法运算可能还存在一些困惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际情况进行针对性的教学。
三. 说教学目标1.知识与技能目标:使学生掌握有理数的加法运算方法,能够正确进行有理数的加法运算。
2.过程与方法目标:通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:有理数的加法运算方法。
2.教学难点:理解并掌握有理数加法运算的规律,能够灵活运用。
五. 说教学方法与手段在本节课的教学过程中,我将采用以下教学方法与手段:1.情境教学法:通过生活实例引入有理数的加法运算,使学生能够更好地理解和掌握知识。
2.小组合作学习:学生进行小组讨论和交流,培养学生的合作意识和团队精神。
3.启发式教学:引导学生通过自主探究、发现问题、解决问题的方式,培养学生的自主学习能力。
4.利用多媒体教学手段:通过PPT、教学视频等多媒体教学手段,丰富教学形式,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过生活实例,如购物时找零等,引入有理数的加法运算。
2.自主探究:让学生自主尝试进行有理数的加法运算,总结运算规律。
3.小组交流:学生进行小组讨论,分享自己的运算方法和经验,互相学习,共同进步。
4.讲解与演示:教师对学生的运算方法进行点评,讲解有理数加法运算的规律,并通过PPT或板书进行演示。
1-3-1 有理数的加法(第一课时)(教学设计)-(人教版)

1.3.1 有理数的加法(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.3.1 有理数的加法(第一课时),内容包括:有理数加法法则、运用法则进行有理数的加法运算.2.内容解析有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一.熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础.有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践.就本章而言,有理数的加法是本章的重点之一.学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
基于以上分析,确定本节课的教学重点为:(1)了解有理数加法的意义,理解有理数加法法则的合理性.(2)能运用该法则准确进行有理数的加法运算.二、目标和目标解析1.目标(1)了解有理数加法的意义,理解有理数加法法则的合理性.(几何直观)(2)能运用该法则准确进行有理数的加法运算.(运算能力)(3)经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.(几何直观)2.目标解析通过情景了解有理数加法的意义;经历探索有理数加法法则的过程,理解并掌握有理数加法的法则;运用有理数加法法则正确进行运算(主要是整数的运算)。
在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力. 在探索过程中感受数形结合和分类讨论的数学思想.渗透由特殊到一般的数学思想.通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质.让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识.培养学生合作意识,体验成功,树立学习自信心.三、教学问题诊断分析七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索的问题充满好奇,又刚从小学升上初中,人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以"问题串"引领整个课堂,请同学们通过动脑、计算分析得出结论,并利用小组合作帮助学生理解法则,运用法则.基于以上学情分析,确定本节课的教学难点为:经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.四、教学过程设计(一)情境引入在小学,我们学过正数及0的加法运算. 引入负数后,怎样进行加法运算呢?实际问题中,有时也会遇到与负数有关的加法运算. 例如,在本章引言中,把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.(二)自学导航思考1:小学学过的加法是正数与正数相加、正数与0相加. 引入负数后,加法有哪几种情况?思考2:结合上表思考,有理数的加法可以统一划分成几类?【结论】共三种类型.(1)同号两个数相加;(2)异号两个数相加;(3)一个数与0相加.(三)合作探究某校举行数学知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,没有作答得0分.问题1:先锋队第一题答对了,第二题答错了,则该队两题过后得多少分?我们可以把赢一个球记为+1,输一个球记为-1,此时该队的净胜球数为:(+1)+(-1)=0如果我们用1个表示+1,用1个表示-1,那么就表示0.问题2:先锋队第一题答错了,第二题答对了,则该队两题过后得多少分?我们可以把答对一题记为+1,答错一题记为-1,此时该队的得分为:(-1)+(+1)=0如果我们用1个表示+1,用1个表示-1,那么也表示0.探究1:计算 5+3 即(+5)+(+3)因此 5+3=8我们也可以利用数轴来表示加法运算过程. 以原点为起点,规定向东的方向为正方向,向西的方向为负方向.因此 5+3=8探究2:计算 (-5)+(-3)因此 (-5)+(-3)=-8【归纳】从算式5+3=8、(-5)+(-3)=-8可以看出:符号相同的两个数相加,结果的符号不变,绝对值相加.(+5)+(+13)=____ 8+5=____ (+7)+4=____(-4)+(-1)=____ (-12)+(-5)=____ (-3)+(-13)=____探究3:计算 (-3)+5因此 (-3)+5=2探究4:计算 3+(-5)因此 3+(-5)=-2【归纳】从算式(-3)+5=2、3+(-5)=-2可以看出:符号相反的两个数相加,结果的符号与绝对值较大的加数的符号相同,并用较大的绝对值减去较小的绝对值.(-9)+(+13)=____ 5+(-8)=____ (-7)+2=____(+4)+(-1)=____ 12+(-5)=____ 3+(-13)=____探究5:计算 5+(-5)因此 5+(-5)=0互为相反数的两个数相加,结果为0.思考:一个数同0相加,结果如何?仍得这个数5+0=____,(-5)+0=____.【归纳】有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.(四)考点解析例1.计算:(1)(+15)+(+7); (2)(-10.3)+(-3.8); (3)(-15)+(+7);(4)(+23)+(-13); (5)(-6.6)+(+6.6); (6)(-12)+0.(2)原式=-(10.3+3.8)=-14.1;(4)原式=+(23-13)= 10;(5)原式=0;(6)原式=-12.【总结提升】【迁移应用】1.计算:5+( -7)=( )A.2B.-2C.12D.-122.比-3大5的数是( )A.-2B.-8C.2D.83.有理数a,b在数轴上的对应点的位置如图所示,则a+b的值为( )A.正数B.负数C.0D.非负数4.计算:(1)(-51)+(-37); (2)(-3)+0; (3)12+(-12); (4)(-1.2)+0.7; (5)34+(-23). 解: (1)原式=-(51+37)=-88; (2)原式=-3; (3)原式=0; (4)原式=-(1.2-0.7)=-0.5; (5)原式=+(34-23)=112.例2.计算:(1)(-123)+(+56); (2)(+18)+(-0.125); (3)(-215)+(+0.8).解: (1)原式=-(53-56)=-56; (2)原式=(+18)+(-18)=0; (3)原式=+(45-215)=1015=23. 【迁移应用】1.下列计算错误的是( )A.(-214)+0.25=-2 B.(-3)+(-3)=6 C.(-11)+0=-11 D.(-1.75)+(-214)=-42.计算:(1)(+314)+(-2.25); (2)(-323)+(-213);解: (1)原式=+(3.25-2.25)=1; (2)原式=-(323+213)=-6.例3.下列说法正确的是( )A.两个有理数的和一定大于任何一个加数B.若两个有理数的和为0,则这两个有理数一定互为相反数C.若两个有理数的和为负数,则这两个有理数一定都是负数D.若a ≠0,b ≠0,则a+b ≠0【迁移应用】1.若两个有理数的和为正数,则下列说法正确的是( )A.两个数一定都是正数B.两个数都不为0C.两个数中至少有一个为正数D.两个数中至少有一个为负数2.如果a+b<0且b>0,那么以下判断不正确的是( )A.|a|+b>0B.a+|b|<0C.(-a)+|b|<0D.(-a)+(-b)>03.已知有理数a,b,c在数轴上的对应点的位置如图所示,根据有理数的加法法则判断下列各式的符号:(1)a+b; (2)a+c; (3)b+c; (4)a+(-b).解:根据数轴上点的位置得c<b<0<a,且|a|<|b|<|c|,所以,(1)a+b<0;(2)a+c<0;(3)b+c<0;(4)a+(-b)>0.例4.若|x|=2,|y|=5,且x>y,求x+y的值.解:因为|x|=2,所以x=2或-2.因为|y|=5,所以y=5或-5.因为x>y,y=5时, x不可能大于y.所以x=2,y=-5或x=-2,y=-5.①当x=2,y=-5时,x+y=2+(-5)=-3;②当x=-2,y=-5时,x+y=(-2)+(-5)=-7.综上所述,x+y的值为-3或-7.【迁移应用】1.已知|x|=11,|y|=9,且x<y,则x+y的值为___________.【解析】因为|x|=11,|y|=9,且x<y,所以x=-11,y=9或x=-ll,y=-9,所以x+y=-11+9=-2或x+y=-11+(-9)=-20.所以x+y的值为-2或-20.2.已知|x|=8,|y|=3, |x+y|=x+y,则x+y=__________.【解析】因为|x|=8,|y|=3,所以x=8或-8,y=3或-3.因为|x+y|=x+y,所以x+y大于或等于0,所以x=8,y=3或x=8,y=-3.当x=8,y=3时,x+y= 11;当x=8,y=-3时,x+y=5.所以x+y的值为11或5.例5.去年6月小黄到银行开户,存入了3000元钱,以后的每月都根据家里的收支情况存入一笔钱,如表为小黄去年从7月到12月的存款情况:(1)从7月到12月中,哪个月存入的钱最多?哪个月最少?(2)截止到12月,存折上共有多少元存款?分析:(1)依次求出7月到12月每个月存入的钱,并进行比较;(2)存款总数=6月到12月存入钱的总和.解:(1)7月存入3000+(-400)=2600(元);8月存入2600+(-100)=2500(元),9月存入2500+(+500)=3000(元),10月存入3000+(+300)=3300(元) ,11月存入3300+(+100)=3400(元),12月存入3400+(-500)=2900(元).因为2500<2600<2900<3000<3300<3400,所以11月存入的钱最多,8月存入的钱最少.(2)截止到12月,存折.上共有:3000+2600+2500+3000+3300+3400+2900=20700(元).【迁移应用】下表记录的是长江流域某站点某一周6天内的水位变化情况(正号表示水位比前一天上升,负号表示水位比前一天下降),上周日的水位已达到警戒水位33m.这6天哪一天的水位最高?位于警戒水位之上还是之下?解:星期一水位:33+(+0.2)=33.2(m),星期二水位:33.2+(+0.8)=34(m),星期三水位:34+(-0.4)=33.6(m),星期四水位:33.6+(+0.2)=33.8(m),星期五水位:33.8+(+0.3)=34.1(m),星期六水位:34.1+(-0.2)=33.9(m).因为33.2<33.6<33.8<33.9<34<34.1,所以星期五水位最高,位于警戒水位之上.五、教学反思。
【人教版 七年级数学 上册 第一章】1.3.1 第1课时《 有理数的加法法则》教学设计1

【人教版七年级数学上册第一章】1.3.1 第1课时《有理数的加法法则》教学设计1一. 教材分析人教版七年级数学上册第一章1.3.1节主要介绍了有理数的加法法则。
这部分内容是有理数运算的基础,对于学生理解和掌握有理数的概念、性质以及运算规律具有重要意义。
本节课的内容将为后续的乘法、除法、减法运算打下基础。
二. 学情分析七年级的学生已经初步掌握了有理数的概念和性质,对加法运算有一定的了解。
但学生在运算过程中,可能对符号的判断和运算顺序的掌握还不够熟练。
因此,在教学过程中,需要帮助学生巩固有理数的概念,提高运算速度和准确性。
三. 教学目标1.理解有理数的加法法则,能够熟练地进行有理数的加法运算。
2.培养学生的运算能力,提高学生解决实际问题的能力。
3.培养学生的合作交流意识,提高学生的逻辑思维能力。
四. 教学重难点1.教学重点:掌握有理数的加法法则,能熟练进行有理数的加法运算。
2.教学难点:符号的判断和运算顺序的掌握。
五. 教学方法采用情境教学法、合作学习法和激励评价法进行教学。
通过设置生活情境,激发学生的学习兴趣;学生进行小组讨论,培养学生的合作交流意识;运用激励评价,提高学生的自信心和积极性。
六. 教学准备1.准备教学课件,包括例题、练习题等。
2.准备黑板、粉笔等教学工具。
3.准备相关的生活情境案例。
七. 教学过程1.导入(5分钟)利用生活情境案例,引入本节课的主题。
例如,小红购买了3个苹果,小蓝购买了2个苹果,他们一共购买了多少个苹果?让学生思考并回答,引出有理数的加法运算。
2.呈现(10分钟)通过课件呈现有理数的加法法则,引导学生观察和思考。
讲解加法法则的内涵,让学生理解并掌握加法运算的规律。
3.操练(10分钟)让学生进行有理数的加法运算练习,教师及时给予指导和反馈。
可设置一些具有挑战性的题目,激发学生的学习兴趣。
4.巩固(10分钟)学生进行小组讨论,分享各自的解题心得。
教师引导学生总结加法运算的注意事项,巩固所学知识。
人教版七年级数学上册:1.3.1《有理数的加法》教学设计3

人教版七年级数学上册:1.3.1《有理数的加法》教学设计3一. 教材分析《有理数的加法》是人教版七年级数学上册第一章第三节的第一课时,本节课的主要内容是让学生掌握有理数的加法法则,并能够熟练地进行有理数的加法运算。
教材通过引入日常生活中借贷的概念,让学生感受正负数的加法运算,从而引出有理数的加法法则。
通过本节课的学习,为学生后续学习有理数的减法、乘法和除法打下基础。
二. 学情分析学生在进入七年级之前,已经学习了整数和分数的加减法运算,对于加法的概念和运算规则有一定的了解。
但是,对于有理数的加法,学生可能还存在着一定的困惑,特别是在理解正负数的加法运算时。
因此,在教学过程中,需要引导学生从日常生活中熟悉的概念出发,逐步过渡到有理数的加法运算。
三. 教学目标1.理解有理数的加法概念,掌握有理数的加法法则。
2.能够熟练地进行有理数的加法运算。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:有理数的加法法则,有理数的加法运算。
2.教学难点:理解正负数的加法运算,掌握有理数的加法法则。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过引入日常生活中借贷的概念,让学生感受正负数的加法运算,从而引出有理数的加法法则。
同时,通过设计丰富的例题和练习题,让学生在实践中掌握有理数的加法运算。
在教学过程中,鼓励学生积极参与,进行小组讨论,培养学生的团队合作能力。
六. 教学准备1.教学课件:制作精美的教学课件,内容包括教材中的重点知识点、例题和练习题。
2.教学素材:准备一些与生活相关的实例,如购物、存钱等,用于引导学生理解有理数的加法。
3.练习题:准备一些有梯度的练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)利用课件展示一些与生活相关的实例,如购物、存钱等,引导学生思考这些实例中涉及的加法运算。
通过与学生互动,引出有理数的加法概念。
2.呈现(10分钟)利用课件呈现有理数的加法法则,引导学生理解并记忆这些法则。
有理数的加法第一课时教学案例

借助数轴,直 观教学,让学 生通过实践 操作,用运动 的情境感受 “数形结合” 的思想,使学 生进一步体 会有理数加 法的意义和 法则的运用 过程,体现化 归思想。
引导学生用 准确的语言 描述法则,使 学生加深对 法则的理解, 培养学生的 语言表达能 力和归纳能 力。
情境三 强化理解 总结步骤 例 1 计算下列各题 (1)(-3)+(-9) (2)(-4.7)+3.9 解: (-3)+(-9)= -(3+9) = - 12
算式
法的必要性, 激发学生探 究新知的兴 趣.
【师生活动】 1、师 PPT 课件出示问题,学 生进行猜想,讨论。 2 、创设情境,猜想验证。师 给出问题情境及表格,学生根据提 示和要求填表。 3 、学生汇报填表结果,师对 学生回答给予肯定和鼓励,并完成 表格。 4 、验证猜想:学生观察表格 小组讨论归纳出有理数加法有正 数加正数,负数加负数,正数加负 数,负数加正数,一个数和 0 相加 这五种情况。此时教师进一步引导 学生把这五类情况分为: 正数加正数 数 负数加负数 正数加负数 负数加正数 相反数相加 符号不相 同的两数 相加 符号相同 两数相加
教学方法
学法指导
教学资源
教学评价
教学流程
活动一 设疑激趣,导入新课 课件显示: 1、 零下 3 摄氏度可记为 , 7 摄氏度可记为 ,零下 10 摄 氏度可记为 。-3、7、-10 的绝对值分别是什么?它们的相 反数又是多少呢? 它们的大小 关系又是怎样的? 2、问题:气象局预报: (1) 旬阳 2007 年 2 月 3 日 6 点气
↓ ↓ ↓
同号两 数相加
取相同 符号
通过绝 对值化 归为算 术数的 加法
1、学生根据法则尝试完成,师指 名汇报结果,并要求说出运算步骤 和方法。 2、学生思考讨论,师引导总结出 有理数加法运算的一般步骤: (1)分类型; (2)确定和的符号; (3)确定和的绝对值。
新人教版七年级数学上册1.3.1《有理数的加法(一)》教学设计1

新人教版七年级数学上册1.3.1《有理数的加法(一)》教学设计1一. 教材分析新人教版七年级数学上册1.3.1《有理数的加法(一)》是学生在掌握了有理数的概念和分类之后,进一步学习有理数运算的第一节内容。
本节课主要介绍有理数的加法运算规则,包括同号相加、异号相加以及绝对值不等的异号相加。
通过本节课的学习,学生能够掌握有理数加法的基本运算方法,并能够熟练运用到实际问题中。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和分类有了初步的了解。
但在运算方面,部分学生可能还对符号的运算规则不够熟悉,对有理数加法的实际应用能力有待提高。
因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行引导和辅导。
三. 教学目标1.理解有理数加法的运算规则,掌握同号相加、异号相加以及绝对值不等的异号相加的计算方法。
2.能够运用有理数加法解决实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维能力,提高学生对数学运算的兴趣。
四. 教学重难点1.教学重点:掌握有理数加法的运算规则,能够熟练计算同号相加、异号相加以及绝对值不等的异号相加。
2.教学难点:理解并掌握绝对值不等的异号相加的运算方法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过生活实例引入有理数加法,激发学生的学习兴趣,提高学生的实际应用能力。
2.讲授法:讲解有理数加法的运算规则,引导学生理解和掌握。
3.小组合作学习:让学生在小组内进行讨论和实践,培养学生的团队协作能力。
4.练习法:通过大量练习,巩固学生对有理数加法的掌握程度。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示教学内容。
2.练习题:准备一定量的练习题,用于课堂练习和课后巩固。
3.教学道具:准备一些教学道具,如卡片、小黑板等,用于展示和演示。
七. 教学过程1.导入(5分钟)通过一个生活实例,如购物时找零,引出有理数加法的概念,激发学生的学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
D
让学生自己解决,不会时再以小组讨论方式进行,目的让学生规范计算过程,并对同号相加以及异号相加有更深一步了解
这些题目先让学生自己练习,对于不会的可以以小组合作方式共同解决,期中1、2题主要练习计算,3、4主要练习学生对加法法则的深度理解能力,能够帮助学生对本节课只是更好的吸收和消化
2、如果自己不清楚的话,请同学们小组之间互助解决以下问题:
(1)如果是同号两数相加,符号如何决定,和的绝对值和绝对值的和又有什么关系?
(2)如果是异号两数相加,符号如何决定,其绝对值之间又存在什么关系?
(3)互为相反数两数相加结果又是什么?
(4)一个数同0相加结果又是什么?
1、只有符号不同的两个数叫做互为相反数;
培养学生主动探索的良好学习习惯.
二、教材分析:
重点:有理数的加法法则的理解和运用.
难点:异号两数相加.
3、教学过程
教学过程
教师活动
学生活动
设计意图
知识回顾
5分钟
新知讲解
8分钟
15分钟
1、什么叫相反数?
什么叫绝对值?
2、-5的相反数和绝对值分别是什么?
0的相反数和绝对值分别是什么?
激趣
请大家帮老师算一算:
小明昨天借了老师十元钱买文具,今天又借了老师八元钱,请问他还欠我钱吗?
如果欠钱的话又欠我多少呢?
你能用数学算式表示出来吗?
如果小明今天还给老师八元钱又该怎么计算呢?
如果小明今天还给老师十元钱又该如何计算?
如果小明说今天没带钱,那他又欠我多少呢?
自主探究
1、请同学们自己阅读教材P16到P18,并结合刚才说的看看你自己理解了多少?还有那些不理解的我们共同解决;
C 两个有理数和的绝对值等于这两个有理数绝对值的和
D 异号两数相加,和的符号取绝对值较大的数的符号
请同学们回顾一下有理数加法法则;
互相交流下自己到底学会了多少,还有那些不会?
(-3)+(-9)=-(3+9)=-12;
(-4.7)+3.9=-(4.7-3.9)=0.8
-33
-12
-(-5)+(-18)
布置作业
必做题:课本P24习题1.3第1题,第2题
选做题:
-98×201+99×202=______
教学反思
1、本节课在刚开始引入时以学生熟悉的金钱方面入手,让大家不会对本节课的知识有陌生感,同学自己学习以及前面的引入,学生在总结有理数加法时不会感觉那么突兀,而且能够更好的理解有理数加法法则;
2、结合学生的实际情况,在本节课没有设置比较难的题目,目的是增加大家的学习兴趣以及树立学生的自信心。
2、列式计算
(1)-5的相反数与-18的和;
(2)一个数比-6大1,另一个数比-10大4,求这两个数的和。
3、如两个有理数之和为正,则两数中( )
A 同为正数 B 同为负数
C 一正一负 D 至少有一个为正数
4、下列说法中正确的是( )
A 两数的和必须大于每一个加数
B 两数和为负数,则一个数为正数,另 一个数为负数
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
例:(-3)+5=2;
3+(-5)=-2
互为相反数两数相加得0
例:5+(-5)=0;
-10+10=0
一个数同0相加,仍的这个数
例:-10+0=-10;
5+0=5
回顾相反数与绝对值的概念为本节课能准确理解有理数加法法则打下基础
3、对个别成绩好的课后要另外增加难度
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值
2、-5的相反数是5,绝对值也是5;
0的相反数和绝对值都是0
欠老师-10+(-8)=-18(元);
-10+8=-2(元);
-10+10=0(元);
-10+0=-10
同号两数相加,取相同的符号,并把绝对值相加;
例:5+3=8;
(-5)+(-3)=-8
让学生通过生活中熟悉的例子体会数学在期中的应用,为我们后面总结有理数加法法则打下基础
通过提问,边总结边结合实例进行讲解,让学生对法则有更深的理解
例题讲解5分钟
巩固练习
10分钟
知识小结
2分钟
例1计算(-3)+(-9);
(-4.7)+3.9.
(1)()+(+21)= -12
(2)ቤተ መጻሕፍቲ ባይዱ10+()=-22
1、请在括号内填写适当的有理数并说出其中的法则:
课题:1.3.1 有理数的加法(第一课时)
教材:新课标人教版
八宝学校罗帮
一、教学目标:
1、知识与技能
理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.
2、过程与方法
引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.
3、情感态度与价值观