运筹学案例分析
运筹学---案例分析

管理运筹学案例分析产品产量预测一、问题的提出2007年,山西潞安矿业集团与哈密煤业集团进行重组,成立了潞安新疆煤化工(集团)有限公司。
潞安新疆公司成立后,大力加快新项目建设。
通过技术改造和加强管理,使煤炭产量、销售收入、利润、职工收入等得到了大幅提高,2007年生产煤炭506万吨,2008年煤炭产量726万吨,2009年煤炭产量956万吨。
三年每月产量见下表,请预测2010年每月产量。
表1 2007—2009年每月产量表单位:万吨二、分析与建立模型1、根据2007—2009年的煤炭产量数据,可做出下图:表2 2007—2009年每月产量折线图由上图可看出,2007—2009年的煤炭产量数据具有明显的季节性因素和总体上升趋势。
因此,我们采取用体现时间序列的趋势和季节因素的预测方法。
(一)、用移动平均法来消除季节因素和不规则因素影响1、取n=12;2、将12个月的平均值作为消除季节和不规则因素影响后受趋势因素影响的数值;3、计算“中心移动平均值”;4、计算每月与不规则因素的指标值。
表3 平均值表5、计算月份指数;6、调整月份指数。
表4 调整(后)的月份指数(二)、去掉时间序列中的月份因素将原来的时间序列的每一个数据值除以相应的月份指数。
表5 消除月份因素后的时间序列表三、计算结果及分析确定消除季节因素后的时间序列的趋势。
求解趋势直线方程。
设直线方程为:T t =b0+b1 tT t为求每t 时期煤炭产量;b0为趋势直线纵轴上的截距;b1为趋势直线的斜率。
求得:四、一点思考新疆的煤矿生产企业产能只是企业要考虑的部分因素,因国家产业政策以及新疆距离内地需经河西走廊,因此,企业不仅要考虑产能,更多的要考虑运输问题,从某种意义上来说,东疆地区煤炭生产企业不是“以销定产”,而是“以运定产”,也就是说,物流运输方案是企业管理人员要认真思考的问题。
本案例可以结合物流运输远近及运输工具的选择作进一步的运筹分析,以使得煤炭生产企业真正实现科学合理决策。
运筹学案例分析

运筹学案例分析报告—一. 案例描述泰康食品公司生产两种点心甲和乙,采用原料A和B。
已知生产每盒产品甲和乙时消耗的原料数,月供应量、及两种点心的批发价(千元/千盒)如下表所示。
据对市场的估计,产品乙月销量不超过2千盒,产品乙销量不会超过产品甲1千盒以上。
(a)要求计算使销售收入最大的计划安排;(b)据一项新的调查,这两种点心的销售最近期内总数可增长25%,相应原料的供应有保障。
围绕如何重新安排计划存在两种意见:意见之一是按(a)中计算出来的产量,相应于甲,乙产品个增长25%;意见之二是由一名学过线性规划的经理人员提出的。
他首先计算得到原料A和B的影子价格(对批发价的单位贡献)分别为3.33千元/t 和13.33千元/t,平均为8.33千元/t。
如按(a)中计算的总批发收入增加25%即31.667千元计,提出原料A和B各增加3.8t,并据此安排增产计划。
试对上述两种意见发表你自己的意法,并提供依据。
二. 案例中关键因素及其关系分析该案例的关键因素是销售量,但是同时我们也应考虑到生产产品所需的原料支出,只有销售量最大化而原料支出最小,才能取得最大的销售收入。
又据市场部门调查预测,两种点心Ⅰ和Ⅱ的销售最近期内总数可增长25%,相应原料的供应有保障。
计算出来的产量,相应于产品Ⅰ,Ⅱ各增长25%,这样可使公司盈余(只考虑批发收入-原料支出)保持最大。
首先计算得到原料A和B的影子价格(对批发价的单位贡献)分别为3.33千元/t和13.33千元/t,平均为8.33千元/t。
并按①中计算的总批发收入增加25%即31.667千元计,提出原料A和B各增加3.8t,并据此安排增产计划。
该问题的关键所在,便是销售量。
而决定批发收入的,则是各个销售量对应的批发收入,所以说,销售量是本问题的核心,即应采取什么样的销售量的分配方案。
三、模型构建1、决策变量设置两种点心Ⅰ和Ⅱ,采用原料A和B,月供应量C,单价P,批发价格N,Ⅰ产品批发价格为30千元,Ⅱ产品的价格为20千元,A原料的单价为9.9千元/t,B原料的单价为6.6千元/t。
运筹学实例 含解析

案例1. 工程项目选择问题某承包企业在同一时期内有八项工程可供选择投标。
其中有五项住宅工程,三项工业车间。
由于这些工程要求同时施工,而企业又没有能力同时承担,企业应根据自身的能力,分析这两类工程的盈利水平,作出正确的投标方案。
有关数据见下表:表1 可供选择投标工程的有关数据统计工程类型 预期利润/元 抹灰量/m 2混凝土量/ m 3砌筑量/ m 3住宅每项 50011 25 000 280 4 200 工业车间每项 80 000480 880 1 800 企业尚有能力108 0003 68013 800试建立此问题的数学模型。
解:设承包商承包X 1项住宅工程,X 2项工业车间工程可获利最高,依题意可建立如下整数模型:目标是获利最高,故得目标函数为21X 80000X 50011z Max +=根据企业工程量能力限制与项目本身特性,有约束:利用WinSQB 建立模型求解:1080002X 4801X 25000≤+3680X 880X 28021≤+13800X 1800X 420021≤+为整数,;,2121X X 3X 5X ≤≤综上,承包商对2项住宅工程,3项车间工程进行投标,可获利最大,目标函数Max z=340022 元。
案例2. 生产计划问题某厂生产四种产品。
每种产品要经过A,B两道工序加工。
设该厂有两种规格的设备能完成A工序,以A1 ,A2表示;有三种规格的设备能完成B工序,以B1 ,B2,B3 表示。
产品D可在A,B任何一种规格的设备上加工。
产品E可在任何规格的A设备上加工,但完成B工序时只能在B1设备上加工。
产品F可在A2及B2 ,B3上加工。
产品G可在任何一种规格的A设备上加工,但完成B工序时只能在B1 ,B2设备上加工。
已知生产单件产品的设备工时,原材料费,及产品单价,各种设备有效台时如下表,要求安排最优的生产计划,使该厂利润最大?设设产品设备有效台时1 2 3 4A1 A2 B1 B2 B357647109812111068108601110000400070004000原料费(元/件)单价(元/件)0.251.250.352.000.502.800.42.4解:设Xia(b)j为i产品在a(b)j设备上的加工数量,i=1,2,3,4;j=1,2,3,得变量列表设备产品设备有效台时Ta(b)j1 2 3 4A1 A2 B1 B2 B3X1a1X1a2X1b1X1b2X1b3X2a1X2a2X2b1X3b2X3b3X3a1X3a2X3b1X3b2X3b3X4a1X4a2X4b1X4b2X4b3601110000400070004000原料费Ci (元/件) 单价Pi (元/件) 0.25 1.25 0.352.00 0.50 2.80 0.4 2.4其中,令X 3a 1,X 3b 1,X 3b 2,X 3b 3,X 4b 3=0 可建立数学模型如下: 目标函数: ∑∑==-=4121)](*[Maxi j iaj Ci Pi X z=1.00*(X 1a 1+X 1a 2)+1.65*(X 2a 1+X 2a 2)+2.30* X 3a 2+2.00*( X 4a 1+X 4a 2)约束条件:利用WinSQB 求解(X1~X4,X5~X8,X9~X12,X13~X17,X18~X20分别表示各行变量):4,3,2,1X21j 31==∑∑==i X j ibjiaj2,1T X 41iaj=<=∑=j Taj i iaj 3,2,141=<=∑=j TbjT Xi ibj ibj2,1;4,3,2,10X iaj ==>=j i 且为整数32,1;4,3,2,10X ibj ,且为整数==>=j i 0X X X X X 4b33b33b23b13a1=====综上,最优生产计划如下:设备产品1 2 3 4A1 A2 B1 B2 B3774235004004008732875目标函数zMax=3495,即最大利润为3495案例3. 高校教职工聘任问题 (建摸)由校方确定的各级决策目标为:P 1 要求教师有一定的学术水平。
运筹学在实际问题中的应用案例分析

运筹学在实际问题中的应用案例分析运筹学作为一门研究如何最优化地解决决策问题的学科,在实际问题中得到了广泛的应用。
本文将通过分析两个实际案例来探讨运筹学在解决复杂问题和优化资源利用方面的应用。
案例一:物流配送优化物流配送是一个典型的运筹学应用领域。
在现代社会,物流配送环节对于企业的运营效率和成本控制至关重要。
如何合理安排车辆路线、调度和配送是一项复杂且具有挑战性的任务。
运筹学可以通过数学建模和优化算法来解决这个问题。
首先,我们可以将物流配送问题建模为一个旅行商问题(Traveling Salesman Problem,TSP)。
TSP是一个经典的组合优化问题,目标是寻找一条最短路径,使得从一个地点出发经过所有其他地点后回到起点,且路径的总长度最小。
通过运筹学方法,可以利用算法来求解最佳路径并优化物流配送效率。
其次,为了进一步优化物流配送的效率,我们可以引入车辆调度问题。
例如,考虑到不同城市的交通堵塞情况,我们可以使用调度算法将不同城市的订单分配给不同的车辆,以减少整体行程时间和成本。
通过运筹学的应用,一家物流公司可以最大限度地减少行程时间、减少燃料消耗,提高物流配送的效率。
因此,运筹学在物流配送问题中的应用具有重要的意义。
案例二:生产排产优化生产排产是制造业中的一个重要环节,它关系到企业的生产效率、生产能力和订单交付时间。
运筹学在生产排产中的应用可以帮助企业提高生产效率,降低成本并及时交付产品。
在生产排产中,我们通常需要考虑到多个因素,如机器的利用率、工人的工作时间和任务的优先级等。
通过运筹学的方法,可以构建一个数学模型,通过数学规划算法来优化生产排产方案。
例如,假设一个工厂有多个机器和多个订单需要排产,每个订单有不同的完成时间和优先级。
我们可以通过运筹学的方法,将这个问题建模为一个调度问题。
然后,利用调度算法来确定每个订单的完成时间和最优的生产顺序,从而实现生产排产的优化。
通过运筹学的应用,企业可以有效地优化生产排产计划,提高生产效率,减少资源浪费,并保证订单能够及时交付。
运筹学在流程优化中的应用案例分析

运筹学在流程优化中的应用案例分析引言:在当今竞争激烈的商业环境中,流程优化成为了各个组织追求高效运作的关键。
流程优化旨在通过改进和重组组织内部流程,提高效率和质量,降低成本和风险。
与此同时,运筹学作为一门管理科学,通过数学建模和优化算法的应用,为流程优化提供了有力的支持。
本文将通过分析多个运筹学在流程优化中的应用案例,讨论其在实践中的价值和效果。
案例一:生产流程优化在传统的生产流程中,生产车间每个工人都独自完成生产任务,导致工人之间产生很多不必要的等待和浪费。
一家制造公司决定引入运筹学方法,重新优化他们的生产流程。
通过运筹学的方法,公司将生产任务分配给工人组成的小组,使得每个小组内的工人专注于各自的任务,提高工作效率。
此外,通过运筹学的算法,公司确定了最优的任务分配方案,最大程度地减少了等待和浪费的时间。
优化后的生产流程大大提高了生产效率,降低了生产成本。
案例二:物流配送优化一家电子商务公司面临着快速增长的客户需求和复杂的物流系统。
为了满足客户的要求,公司决定引入运筹学的方法对物流配送进行优化。
运筹学模型通过考虑客户需求的分布、仓库的位置和运输成本等因素,确定了最优的配送路径和策略。
通过优化后的物流配送系统,公司能够更精确地安排货物的运输,减少运输时间和成本,提高客户满意度。
同时,通过实时监控和预测,公司能够更好地应对突发情况,并做出相应的调整,提高了物流系统的鲁棒性。
案例三:人力资源调度优化在一个大型医院中,不同科室之间的人力资源分配存在瓶颈和浪费。
为了解决这个问题,医院决定应用运筹学模型来优化人力资源的调度。
通过运筹学的方法,医院能够根据就诊人数的预测和就诊科室的需求来合理安排医生和护士的工作。
通过优化后的人力资源调度,医院能够提高科室的工作效率,减少等待时间,并提供更好的医疗服务。
此外,通过运筹学的优化算法,医院还能够合理安排员工的休假和轮班,提高员工的满意度和工作积极性。
案例四:供应链优化一家零售公司面临着供应链管理的挑战,包括供货商管理、库存管理和订单管理等。
管理运筹学案例分析

【案例1】某厂排气管车间生产计划的优化分析
1.问题的提出 排气管作为发动机的重要部件之一,极大地影响发动机的性能。某
发动机厂排气管车间长期以来,只生产一种四缸及一种六缸发动机的排 气管。由于其产量一直徘徊不前,致使投资较大的排气管生产线,一直 处于吃不饱状态,造成资源的大量浪费,全车间设备开动率不足50%。
税收
15 16 14.8 17 16.5 14.5 15.6 15.5
售价
150 160.1 149 172 166 145.6 157.8 155.8
利润
13.545 14.00114.99 15.56 15.312 12.8735 15.892 13.74
(元)
注:表中售价为含税价。
表C-3 设备加工能力一览表
【案例2】配料问题
某饲料公司生产肉用种鸡配合饲料,每千克饲料所需营养质量要求如表
C-4所示。
表C-4
营养成分 肉用种鸡国家标准 肉用种鸡公司标准
产蛋鸡标准
代谢能
2.7~2.8Mcal/kg
≥2.7Mcal/kg
≥2.65Mcal/kg
粗蛋白
135 ~145g/kg
135 ~145g/kg
≥151g/kg
x6 菜饼 0.32 1.62 360 113 8.1 7.1 5.3 8.4
x7 鱼粉 1.54 2.80 450 0 29.1 11.8 63 27
x8 槐叶粉 0.38 1.61 170 108 10.6 2.2 4.0 4.0
x9 DL-met 23.0
980
x10 骨粉 0.56
300 140
8.摇臂钻床 4.1 4.0 4.0 4.3 4.2 3.8 4.3 4.3
运筹学实例分析及lingo求解讲解

运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。
各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。
解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。
ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。
目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai; Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000 C( W1, V7) 5.000000 0.000000C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000 X( W1, V3) 0.000000 5.000000X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000 X( W6, V7) 3.000000 0.000000Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。
生活中运筹学案例分析

生活中运筹学案例分析
运筹学是一门研究如何做出最优决策的学科,它在生活中有着广泛的应用。
从
日常生活中的购物决策到企业的生产计划,都可以看到运筹学的影子。
在本文中,我们将通过一些生活中的案例来分析运筹学的应用。
首先,让我们来看一个购物决策的案例。
假设你需要购买一件衣服,而且你有
多个选择。
每件衣服的价格、品质、风格都不同,你需要在这些选择中做出最优的决策。
这时,你可以运用运筹学的方法,比如成本效益分析、决策树分析等,来帮助你做出最佳选择,从而在有限的预算内获得最大的满意度。
其次,让我们来看一个企业生产计划的案例。
假设一个工厂需要生产多种产品,并且有限的资源,比如人力、原材料、机器等。
在这种情况下,工厂需要合理安排生产计划,以最大化产出并降低成本。
这就需要运用运筹学的方法,比如线性规划、排程算法等,来优化生产计划,使得工厂能够以最有效的方式进行生产。
此外,运筹学还可以应用于交通运输、物流配送、金融投资等方面。
比如,在
交通运输中,如何合理安排车辆的路线,以最小化时间和成本;在物流配送中,如何优化仓储和配送流程,以提高效率和降低成本;在金融投资中,如何构建最佳的投资组合,以最大化收益和降低风险。
综上所述,运筹学在生活中有着广泛的应用,可以帮助我们在各种决策中做出
最优选择。
通过分析一些生活中的案例,我们可以更好地理解和应用运筹学的方法,从而提高我们的决策能力和生活质量。
希望本文能够对读者有所启发,让大家在生活中更加注重运筹学的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
皮革厂租用厂库安排
刘梦瑶
12211222
一、研究目的及问题表述
(一)研究目的:在生活中,厂商通常面临货物存储问题,有时便需要租借仓库进行货物存储,而租金也会随着租借时间的长短而有所改变。
这时我们就可以运用运筹学算出最优的租借方案,使租金最小,减少存储成本。
(二)1、问题表述:广东黄埔区的某皮革代理商需要寻租可存储采购到的皮革的仓库,并在广州58同城网上找到了位于黄埔区中心地带的具有6000平方米的高标准仓库。
出租商原定价1.2元/平方米/天,后经协商,双方同意如下:租期为两个月可打九折,3个月打八折,4个月打七折,5个月打6.5折。
2、皮革代理商根据经验预测租赁期间所需仓库大小,其预测结果如下:
第一个月2000平方米;第二个月3000平方米
第三个月2500平方米;第四个月3500平方米
第五个月1600平方米
将租赁合同设为每月初办理,每月签订合同份数不限,每份所选租期不限。
求租金最小。
3、将各方条件汇表如下
(三)数据来源:在58同城网上找到相关的仓库租赁信息,其中发现位于黄埔区中心地带,107国道旁有高标准仓库招租,并标明其有6000平方米的仓库可供出租,1.2元/平方米/天。
经过在网上联系该出租商,了解到其出租价格为按天数算的短期出租,若存储时间长,可另外折扣。
于是我便假定租期为两个月可打九折,3个月打八折,4个月打七折,5个月打6.5折。
而由于能力有限,尚未查出有公司或厂商具体需要租借仓库并有具体租借时长与租借大小的数据资料,于是按照课本题目例子,假定了如上的皮革代理商与其的租借要求。
二、方法选择及结果分析
(一)方法选择:该问题的目标能为求租金最小,可用线性函数描述该目标的要求,且有多个方案可选。
达到目标具有一定的约束条件,且这些条件可用
线性不等式描述,所以可选用线性规划模型求解。
(二)1、解:设Xij为第i个月签订的是租期为j个月的合同面积,可建立如下模型:
minz=3600(x11+x21+x31+x41+x51)+6480(x12+x22+x32+x42)
+8640(x13+x23+x33) +10080(x14+x24)+11700x15
st x11+x12+x13+x14+x15>20
x12+x13+x14+x15+x21+x22+x23+x24>30
x13+x14+x15+x22+x23+x24+x31+x32+x33>25
x14+x15+x23+x24+x32+x33+x41+x42>35
x15+x24+x33+x42+x51>16
xij>0
2、(1) 在lindo软件中输入模型如下:
(2)点击“solve”键下拉子菜单的“solve”,在弹出的方框中点击“ok”即可得到如下结果
3、根据软件输出结果可知当 x21=5, x41=10 , x14=9 , x24=5 , x15=11 , 而其它变量均为0时,目标函数值最小为323820。
已知租地面积单位为100平方米米,可将结果整理制表如下:
minz=3600(5+10)+10080(9+5)+11700×11=323820,即最少租金为32382元。
第i 个月 租期(月)
1 2 3 4 5 1 0 5百平方米
0 10百平方米
0 2 0 0 0 3 0 0 4 9百平方米 5百平方米
5
11百平方米
结果分析:
在现实生活中,有很多组合可供选择,特别是公司和企业在管理投资等方面,需要提高效益的同时降低成本。
运筹学为各个企业提供了很多方法,便于企业在决策时选出最优或是接近最优的方案,为企业能更好地运行并收取更大的利益带来了巨大的帮助。
如在本例中,如果按照一般的思维,在每个月初分别签订租期为1、2、3、4、5个月的合同,那么计算公式则为20×3600+30×6480+25×8640+35×10080+16×11700=1022400(元),相对于经过线性规划求解的结果323820元竟多出了698580元之多!由此可见在生产管理过程中结合实际将问题抽象简化后,正确合理地使用相应的数学工具是多么的重要,它能给企业节省一大笔费用,使企业利润最大化,让企业更具竞争力。
Lindo给出的结果除了最优解和最佳目标函数值之外,还给出了相应的灵敏度分析,即各数据在什么范围内变化时问题的最优解不变。
模型中的各数据一般是由企业根据以往经验来进行预测的,而在现实生活中,预测出来的数据很多情况下并不百分百的准确,所以灵敏度分析使企业应对事物的变化更有信心。
在lindo给出的数据中,CURRENT COEF 表示目标函数中变量的系数,ALLOWABLE INCREASE 表示该相应系数允许增加的值,ALLOWABLE DECREASE 表示该系数允许减少的值。
如x11目标函数中的系数为3600,则当3600增至无穷大或减少1980时(其它数值保持不变)对最优解是没有影响的。
CURRENT RHS 表示约束条件右端项的数值,如在本例第一个约束中其右端项为20,当其增加5或减少11时(其它数值保持不变)最优解也不变。
了解其数值允许的变化范围之后,可更好得对实际情况实行掌控,真正做到运用运筹学解决实际问题。