2019-2020学年高中数学 映射函数教案 新人教版必修1.doc

合集下载

高中数学教案函数映射

高中数学教案函数映射

高中数学教案函数映射
教学目标:
1. 了解函数的定义和基本性质;
2. 熟练掌握函数的表示方法以及函数图像的绘制方法;
3. 能够分析函数的性质,如定义域、值域、奇偶性等;
4. 理解函数之间的映射关系,能够应用函数进行问题求解。

教学内容:
1. 函数的定义和性质;
2. 函数的表示方法和图像绘制;
3. 函数的性质分析;
4. 函数之间的映射关系。

教学过程:
一、引入:
1. 通过实际生活中的例子引入函数的概念,让学生了解函数在现实中的应用;
2. 引导学生思考函数的定义,并讨论函数和非函数的区别。

二、讲解:
1. 讲解函数的定义和基本性质,包括定义域、值域、奇偶性等;
2. 教授函数的表示方法和绘制函数图像的技巧;
3. 分析函数的性质,让学生掌握如何根据函数的表达式确定其性质。

三、练习:
1. 给学生一些简单的函数,让他们分析函数的性质并绘制函数图像;
2. 给学生一些应用题目,让他们应用函数进行求解;
3. 给学生一些函数间的映射关系,让他们进行比较和分析。

四、总结:
1. 总结函数的定义和性质;
2. 引导学生思考函数在生活中的应用,并展示一些相关实例。

五、拓展:
1. 给学生更复杂的函数问题,让他们深入理解函数的概念;
2. 引导学生思考函数之间的复合和反函数的概念。

教学反思:
通过本节课的教学,学生应该能够掌握函数的基本概念和性质,能够应用函数进行问题求解,并理解函数之间的映射关系。

同时,也要引导学生在学习中多思考、多实践,掌握更深层次的数学知识。

2019-2020学年高考数学 专题 映射复习教学案.doc

2019-2020学年高考数学 专题 映射复习教学案.doc

2019-2020学年高考数学专题映射复习教学案学情分析:高一学生已经学习了集合和函数两部分内容,初步具备了简单逻辑思维和抽象概括能力,同时,也存在着思维不够严谨,对抽象问题的理解存在障碍等问题。

因此,在教学中,教师采用了探究教学法,从实际生活出发,师生互动,使学生获得感性知识,从而建立映射的概念.教学目标:知识与技能:(1)会结合简单的“箭头图”,了解生活中不同的对应关系(2)了解映射的概念及表示方法(3)对于不同的对应,会判断哪些是映射(4)了解映射与函数的联系与区别过程与方法:(1)重视基础知识的教学、基本技能的训练和能力的培养(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力情感、态度、价值观:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生实事求是的学习态度和勇于创新的精神教学重点:映射概念的引入.教学难点:如何从各种不同的对应中归纳出映射的定义.教学方法:师生互动探究.教学过程:一、情境引入问题1 看到同学们,感觉很亲切,我先自我介绍下,我姓李,叫李海军,大家说这个名字好不好?其实名字是无所谓好坏的,它只是一个代号,但是确实很重要,当一个人的名字确定以后,那么这个人与名字之间就存在一种对应关系.在座的同学都有名字吧?有没有哪位同学没有名字的,请举手。

当然,有的同学可能还有小名。

试想:如果没有名字,会怎样?学校没有了名字,老师、同学都没有名字了,想一想,多么的混乱.名字如此的重要,今天这节课我们就从名字谈起.问题2 如果把若干人组成的集合记为A,名字组成的集合记作B,那么人与名字之间就存在一种对应关系,请大家思考,它们存在怎样的对应关系?哪位同学说一说.有可能是一个人对应一个名字,还有其它情形吗?有些人有同一个名字,还有吗?还有的人有多个名字,还有吗?问题3 从元素的对应关系来看,以上几种对应关系各有什么特点?一个元素对应一个元素,一个元素对应多个元素,多个元素对应一个元素一个元素对应0个元素,多个元素对应多个元素.问题4 在现实生活中,与之类似的对应有哪些?你能分别举例吗?给大家2分钟讨论一下:如:①一个学生对应一张桌子(一对一)②多位同学住在同一小区(多对一)③一个人有很多件衣服(一对多)④有的人有一个老婆,有的人没有(一对0)⑤运动会报名:一个人可以报多个项目,多个人也可以报一个项目.(多对多)问题5 以上,针对不同的对应,大家举了很多有趣的例子,我们都很感兴趣.就拿名字来说,国家为了方便交流与管理,规定对于到了法定年龄的公民,必须办理居民身份证,而每个人的身份证上只能有一个名字,与以上哪种对应是符合的?一个人对应一个名字,多个人对应一个名字我们把这两种对应称为单值对应,它反应的是两个非空集合之间的一种对应关系.你能说一说这两种对应各有什么特点吗?对于A中的每一个元素,在集合B中都有唯一的元素与之对应.数学上把这两种对应称为映射,问题6 你能用自己的语言叙述一下映射的定义吗?二、数学建构(1)映射:一般地,设A,B是两个非空的集合,如果按照某种对应法则f,对于A中的每一个元素,在集合B中都有唯一的元素与之对应,那么这样的单值对应,叫做从集合A到集合B的映射,记为f:A→B.问题7 你认为在映射的定义中,有哪些关键的词呢?(2)非空集合 A中的每一个元素 B中的唯一元素从A到B f:A→B问题8 同学们对于映射的定义是不是感到很熟悉?函数是如何定义的?与映射有什么区别?(3)函数:非空数集三要素:定义域、对应法则、值域映射:非空集合 A、f、B大家能举一些映射的例子吗?问题9 如果给大家一些对应,你能找出那些是映射吗?请看例1(1)多对多(2)一对无(3)一对多(4)多对一(5)多对一(6)多对一(7)一对一(4)(5)(6)(7)是从的映射到B A .问题10 从例1中,你能总结出判断映射的方法吗?映射:多对一、一对一,.中可以有剩余中不能有剩余,B A 问题11 请同学们思考,那些对应是从的映射?到A B (2)(7)哪些又既是从的映射到B A 又是从的映射呢?到A B 只有(7),一对一的映射,这说明映射是有方向的. 映射具有方向性.以上是从“形”的方面研究了映射,下面再从数量关系上找一找.例2 下列各组对应中,哪些是从集合A 到集合B 的映射?.12,,)1(+→==x x f R B R A :对应法则.,,)2(的倒数:对应法则x x f R B R A →==[).:,,,0)3(的平方根对应法则x x f R B A →=+∞=.2,,)4(2-→==x x f R B R A :对应法则.)5(面积的集合为所有三角形的成的集合,是平面内所有三角形组B A问题12 在以上的对应中,哪些对应是函数呢? (1)(4)问题13 (5)为什么不是函数?你能总结一下函数与映射的关系吗? (3)函数与映射的关系:函数是一种特殊的映射. 四、课后练习书本47页练习1,2,3,4 五、课堂小结本节课我们学习了哪些知识点? 板书设计。

2019-2020年高中数学 第一教时 映射教案 新人教A版必修1

2019-2020年高中数学 第一教时 映射教案 新人教A版必修1

教材:映射目的:要求学生了解映射和一一映射的概念,为今后在此基础上对函数概念的理解打下基础。

过程:一、复习:以前遇到过的有关“对应”的例子 1看电影时,电影票与座位之间存在者一一对应的关系。

2 对任意实数a ,数轴上都有唯一的一点A 与此相对应。

3 坐标平面内任意一点A 都有唯一的有序数对(x, y )和它对应。

4任意一个三角形,都有唯一的确定的面积与此相对应。

二、提出课题:一种特殊的对应:映射(1) (2) (3) (4) 引导观察,分析以上三个实例。

注意讲清以下几点:1.先讲清对应法则:然后,根据法则,对于集合A 中的每一个元素,在集合B 中都有一个(或几个)元素与此相对应。

2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④) 3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。

4.注意映射是有方向性的。

5.符号:f : AB 集合A 到集合B 的映射。

6.讲解:象与原象定义。

再举例:1A ={1,2,3,4} B ={3,4,5,6,7,8,9} 法则:乘2加1 是映射 2A =N + B ={0,1} 法则:B 中的元素x 除以2得的余数 是映射 3A =ZB =N * 法则:求绝对值 不是映射(A 中没有象) 4A ={0,1,2,4}B ={0,1,4,9,64} 法则:f :a b =(a1)2是映射三、一一映射观察上面的例图(2) 得出两个特点: 1对于集合A 中的不同元素,在集合B 中有不同的象 (单射) 2集合B 中的每一个元素都是集合A 中的每一个元素的象 (满射) 即集合B 中的每一个元素都有原象。

结论:(见P 48) 从而得出一一映射的定义。

例一:A ={a ,b ,c ,d } B ={m ,n ,p ,q } 它是一一映射例二:P 48例三:看上面的图例(2)、(3)、(4)及例1、2、4辨析为什么不是一一映射。

四、练习 P 49五、作业 P 49—50 习题2.1《教学与测试》 P 33—34第16课教材:集合的概念A B A BA BA B 3 3 2 2 1 1 30 45 60 90 12322211 12 23 3开平方 求平方a b c dm n p qA Bf目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

高中数学:1.2.1《映射的概念》教案(新人教A版必修1)

高中数学:1.2.1《映射的概念》教案(新人教A版必修1)

1.2.1 映射的概念教学目标: 1.知识与技能了解映射的概念,掌握象、原象等概念及其简单应用。

2.过程与方法学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

3.情感、态度与价值观树立数学应用的观点,培养学习良好的思维品质。

教学重点:映射的概念。

教学难点:映射的概念。

教学过程: 一、复习引入:1、在初中我们已学过一些对应的例子:(学生思考、讨论、回答) ①看电影时,电影票与座位之间存在者一一对应的关系 ②对任意实数a ,数轴上都有唯一的一点A 与此相对应③坐标平面内任意一点A 都有唯一的有序数对(x, y)和它对应 2、函数的概念本节我们将学习一种特殊的对应—映射。

二、讲解新课:看下面的例子:设A ,B 分别是两个集合,为简明起见,设A ,B 分别是两个有限集求平方B B说明:(2)(3)(4)这三个对应的共同特点是:对于左边集合A 中的任何一个元素,在右边集合B 中都有唯一的元素和它对应映射:设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射 记作:B A f →:象、原象:给定一个集合A 到集合B 的映射,且B b A a ∈∈,,如果元素a 和元素b 对应,则元素b 叫做元素a 的象,元素a 叫做元素b 的原象关键字词:(学生思考、讨论、回答,教师整理、强调) ①“A 到B ”:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射,A 到B 是求平方,B 到A 则是开平方,因此映射是有序的; ②“任一”:就是说对集合A 中任何一个元素,集合B 中都有元素和它对应,这是映射的存在性;③“唯一”:对于集合A 中的任何一个元素,集合B 中都是唯一的元素和它对应,这是映射的唯一性;④“在集合B 中”:也就是说A 中元素的象必在集合B 中,这是映射的封闭性. 指出:根据定义,(2)(3)(4)这三个对应都是集合A 到集合B 的映射;注意到其中(2)(4)是一对一,(3)是多对一 思考:(1)为什么不是集合A 到集合B 的映射? 回答:对于(1),在集合A 中的每一个元素,在集合B 中都有两个元素与之相对应,因此,(1)不是集合A 到集合B 的映射思考:如果从对应来说,什么样的对应才是一个映射? 一对一,多对一是映射但一对多显然不是映射 辨析:①任意性:映射中的两个集合A,B 可以是数集、点集或由图形组成的集合等;②有序性:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射; ③存在性:映射中集合A 的每一个元素在集合B 中都有它的象; ④唯一性:映射中集合A 的任一元素在集合B 中的象是唯一的;⑤封闭性:映射中集合A 的任一元素的象都必须是B 中的元素,不要求B 中的每一个元素都有原象,即A 中元素的象集是B 的子集.映射三要素:集合A 、B 以及对应法则f ,缺一不可; 三、例题讲解例1 判断下列对应是否映射?有没有对应法则?a eb fc gd (是) (不是) 例2下列各组映射是否同一映射?a e e eb b fc c g 例3A (1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则12:+→x x f(2)设}1,0{,*==B N A ,对应法则得的余数除以2:x x f →(3)N A =,}2,1,0{=B ,除所得的余数被3:x x f →(4)设}41,31,21,1{},4,3,2,1{==Y X 取倒数x x f →: (5)N B N x x x A =∈>=},,2|{,的最大质数小于x x f →:四、练习:1.设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A 中的元素x 按照对应法则“乘2加1”和集合B 中的元素2x+1对应.这个对应是不是映射?(是)2.设A=N*,B={0,1},集合A 中的元素x 按照对应法则“x 除以2得的余数”和集合B 中的元素对应.这个对应是不是映射?(不是(A 中没有象))3.A=Z ,B=N*,集合A 中的元素x 按照对应法则“求绝对值”和集合B 中的元素对应.这个对应是不是映射? (是)4.A={0,1,2,4},B={0,1,4,9,64},集合A 中的元素x 按照对应法则“f :a τ b=(a -1)2”和集合B 中的元素对应.这个对应是不是映射? (是)5.在从集合A 到集合B 的映射中,下列说法哪一个是正确的? (A )B 中的某一个元素b 的原象可能不止一个;(B )A 中的某一个元素a 的象可能不止一个(C )A 中的两个不同元素所对应的象必不相同; (D )B 中的两个不同元素的原象可能相同 6.下面哪一个说法正确?(A )对于任意两个集合A 与B ,都可以建立一个从集合A 到集合B 的映射 (B )对于两个无限集合A 与B ,一定不能建立一个从集合A 到集合B 的映射(C )如果集合A 中只有一个元素,B 为任一非空集合,那么从集合A 到集合B 只能建立一个映射(D )如果集合B 只有一个元素,A 为任一非空集合,则从集合A 到集合B 只能建立一个映射7.集合A=N ,B={m|m=1212+-n n ,n ∈N},f :x →y=1212+-x x ,x ∈A ,y ∈B.请计算在f 作用下,象119,1311的原象分别是多少.( 5,6 )。

人教版高中数学必修1映射教案

人教版高中数学必修1映射教案

§2.1.2 一一映射[教学目的]使学生了解一一映射的概念;会判断一些简单对应是否是一一映射.[重点难点]重点:一一映射的概念;难点:判断所给对应是否是一一映射.[教学设想]1.教法:直观演示、引导发现法;2.学法:启发学生观察、思考、分析和讨论;3.课时:1课时.[教学过程]一、复习引入⒈复习从集合A到集合B的映射的概念.然后指出以下两点:⑴映射是特殊的对应,它的特点是:在集合A中的任一元素在集合B中有唯一的元素与它对应;⑵对集合B中的元素,在集合A中可以有几个元素和它对应,即对集合B中的元素,在集合A中的原象没有提出个数上的限定.⒉问题引入:如果f是集合A到B的映射,B中任一元素在A中原象的个数可能有几种情况,举例说明.答:有三种情况:⑴集合B中的某一元素在A中没有原象(如图1);⑵集合B中的任何一个元素在A中都有一个原象(如图2);⑶集合B中的某一元素在A中有两个或两个以上的原象(如图3).f a在B,在A答:就是找出由b求a的对应法则.易知它们的对应法则分别是:“除以2”,“减3”和“开方”.我们记B→A的对应法则为g.再问:g:B→A是不是从B到A的映射,为什么?答:图2中的g:B→A是映射;图1、图3中的g:B→A不是映射.小结:对任一个f:A→B的映射来说,由B到A的对应g都存在,但对应g 有的是映射,有的不是映射.可见要使对应g成为映射,必须对原来的f提出更多的条件.引导学生分析图1、图3两种情况:图1中,g不是映射的原因是因为B中存在元素“5”,它在A中没有原象.图3中,g不是映射的原因是因为B中的元素“1”和“4”,它们在A中有两个原象.从而得出结论:如果f:A→B是映射,要使g:B→A成为映射,必须排除这两种情况,而对映射提出更多的条件.为了排除这两种情况,映射f 还应满足什么条件呢?⑴B 中任何一个元素在A 中都有原象;⑵B 中任何一个元素在A 中都有唯一的原象,换句话说,A 中的不同元素在B 中有不同的象. 我们把满足上述两个条件的映射f :A →B 叫做一一映射.二、学习、讲解新课⒈ 一一映射的概念设A ,B 是两个集合,f :A →B 是从集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射.所以,一一映射是特殊的映射,而且如果f :A →B 是一一映射,那么g :B →A 是映射.⒉ 一一映射的判断⑴有限集合例1 集合A 的元素是a ,集合B 的元素是b ,判断下面的映射是不是从A 到B 的一一映射,为什么?①② 解:①是从A 到B 的一一映射,因它符合定义;②不是,因为它不满足定义中的“对于集合A 中的不同元素在B 中有不同的象”这一条.问:如何作最小的改动,使上述①中的一一映射变为非一一映射?答:只要将B 的元素改成有两个相同,或再加进一个元素,就可使①中的一一映射变为非一一映射.⑵无限集合例2 设M={…,-3,-2,-1,0,1,2,3,…},N={0,1,2,3,…},f 是从M 到N 的对应:x →y=|x|.这个对应是不是映射?是不是一一映射?为什么?答:这个对应是映射,因它满足映射的定义;但它不是一一映射,因为M 中不同的元素在N 中有相同的象.例3 f :R →CR(R-),x →y=x2是不是一一映射,为什么?在对应法则不变的情况下,怎样改动一下,就可以使它成为一一映射?解:f :R →CR(R-),x →y=x2是映射,但不是一一映射,因为R 中的不同元素(如2,-2)在集合CR(R-)中有不同的象(如4).如果将原象集合R 改为CR(R-),则f :CR(R-)→CR(R-),x →y=x2是从CR(R-)到 CR(R-)的一一映射.⑶生活中的例子例4 A={苍梧一中的学生},B={苍梧一中学生的年龄},f :A →B ,a →a 的年龄,是不是从A 到B 的一一映射,为什么?解:不是一一映射,因为不同的学生年龄会相同.⒊目标检测⑴课本P49练习:3.⑵已知A={1,2,3,4},B={2,4,6,8},写出一个A到B上的一一映射.⑶已知A={1,2,3,4},B={1,3,5,7,9},则对应f:A→B,x→y=2x+1,x∈A,y∈B是否是A到B 上的一一映射,为什么?若不是,在不改变对应法则的前提下,把它改写成一个A到B上的一一映射.解:⑴图2-1⑵、⑶、⑷都是集合A到集合B的映射,其中⑵是A到B上的一一映射.⑵ f:A→B,x→y=2x,x∈A,y∈B就是A到B上的一个一一映射.⑶ f:A→B,x→y=2x+1,x∈A,y∈B是A到B上的映射,但不是一一映射;只要将集合B中的元素1去掉,其他条件不变,则它就是一个A到B上的一一映射.三、小结1.一一映射是一种特殊的映射.若一个映射同时满足:⑴A中的不同元素在B中有不同的象;⑵B中任何一个元素在A中都有原象,则这个映射就是一一映射.2. 在映射f:A→B中,若象集合C≠B,则此映射不是一一映射,也就是说,C=B是一一映射的必要条件.3. 如果f:A→B是一一映射,那么g:B→A是映射.四、布置作业(一)复习:课本内容,熟悉巩固有关概念.(二)书面:课本P50习题2.1:3;练习册P24 B组:2.答案:课本P50习题2.1:3:⑴是映射.因为对于左边集合的每一个元素,右边集合都有唯一的元素和它对应;但不是一一映射,因为集合A中不同元素a1,a4有相同的象b1,B中的元素b2在A中没有原象.⑵是映射,理由同第⑴题;是一一映射,因为对于左边集合的不同元素,在右边集合中有不同的象,而且右边集合中每一元素都有原象.⑶不是映射.因为对于左边集合的元素a2,右边集合有两个元素b1,b3和它对应(不唯一).⑷是映射,理由同第⑴题;但不是一一映射,因为对于集合B的元素b5,在集合A中没有原象.练习册P24 B组2:已知A=R,B={y|y∈R,且y≥1},x∈A,对应法则f:x→y=x2-2x+2.问:f:A→B是A到B的映射吗?是一一映射吗?若不是,如何改动集合A(集合B和对应法则不变),使之成为一一映射.解:是映射,但不是一一映射,因为y=(x-1)2+1的对称轴是x=1,所以,若将集合A改为{x|x≥1,x∈R}(或{x|x≤1,x∈R})时,A到B的对应f:x→y=x2-2x+2就是一一映射了.(三)思考题:练习册P24 B组3:设A={1,2,3,m},B={4,7,n4,n2+3n},m,n∈N,a∈A,b∈B,“f:a→b=pa+q”是从A到B的一一映射,又1的象是4,7的原象是2,试求p,q,m,n的值.解:由1→4,2→7得,4=p+q,7=2p+q,解得p=3,q=1;又由f是一一映射,得3→n4且m→n2+3n,或3→n2+3n且m→n4,即n4=3p+q=10且n2+3n=mp+q=3m+1,或n2+3n=3p+q=10且n4= mp+q=3m+1,亦即n4=10且n2+3n=3m+1---①,或n2+3n=10且n4=3m+1---②,∵m,n∈N, ∴①无解;解②得m=5,n=2.∴p=3,q=1, m=5,n=2.(四)预习:课本P50-53 2.2函数.。

高中数学映射与函数 讲学案人教版必修一A

高中数学映射与函数 讲学案人教版必修一A

映射与函数讲学案
a.观察下列对应
{1,4,9}
A=, {3,2,1,1,2,3}
B=---,对应法则:开平方;
{3,2,1,1,2,3}
A=---,{1,4,9}
B=,对应法则:平方;
{30,45,60} A=︒︒︒,
231
{1,,,}
222
B=
, 对应法则:求正弦;
(对每个对应都要强调对应法则,集合顺序)
问题1:这三个对应的共同特点是什么?
这三个对应的共同特点是:对于左边集合A中的任何一个元素,按照某种对应法则ƒ,在右边集合B中都有唯一的元素和它对应。

b.映射的定义
一般地,设A、B是两个集合,如果按照某种对应法则ƒ,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包
括集合A、B及A到B的对应法则f)叫做集合A到集合B的映射。

记作:f:A
→B
c.象,原象的概念
给定一个集合A到集合B的映射,且a∈A,b∈B。

如果在对应法则f的作用下,元素a和元素b对应,则元素b叫做元素a(在f下)的象,元素a叫做
元素b(在f下)的原象。

注意:(1)映射有三个要素:两个集合,一种对应法则,缺一不可;
(2)A,B可以是数集,也可以是点集或其它集合。

这两个集合具有先后顺序:符号“f:A→B”表示A到B的映射,符号“f:B→A”表示B到A的映射,两者是不同的;
由此有:。

2019—2020年最新高中数学苏教版必修一2.3《映射的概念》教学设计(教案).doc

2019—2020年最新高中数学苏教版必修一2.3《映射的概念》教学设计(教案).doc

§2.3 映射的概念课时目标 1.了解映射的概念.2.了解函数与映射的区别与联系.1.一般地,设A、B是两个非空集合,如果按某种对应法则f,对于A中的________元素,在B中都有______的元素与之对应,那么,这样的__________叫做集合A到集合B的映射,记作________.2.映射与函数由映射的定义可以看出,映射是______概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A,B必须是__________.一、填空题1.设f:A→B是从集合A到集合B的映射,则下面说法正确的是________.(填序号)①A中的每一个元素在B中必有元素与之对应;②B中每一个元素在A中必有元素与之对应;③A中的一个元素在B中可以有多个元素与之对应;④A中不同元素在B中对应的元素必不同.2.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列能表示从P到Q的映射的是________.(填序号)①f:x→y=12x;②f:x→y=13x;③f:x→y=23x;④f:x→y=x.3.下列集合A到集合B的对应中,不能构成映射的是________.(填序号)4.下列集合A,B及对应法则能构成函数的是________.(填序号)①A=B=R,f(x)=|x|;②A=B=R,f(x)=1 x ;③A={1,2,3},B={4,5,6,7},f(x)=x+3;④A={x|x>0},B={1},f(x)=x0.5.给出下列两个集合之间的对应法则,回答问题:①A={你们班的同学},B={体重},f:每个同学对应自己的体重;②M={1,2,3,4},N={2,4,6,8},f:n=2m,n∈N,m∈M;③M=R,N={x|x≥0},f:y=x4;④A={中国,日本,美国,英国},B={北京,东京,华盛顿,伦敦},f:对于集合A中的每一个国家,在集合B 中都有一个首都与它对应.上述四个对应中映射的个数为______,函数的个数为______.6.集合A={1,2,3},B={3,4},从A到B的映射f满足f(3)=3,则这样的映射共有________个.7.设A=Z,B={x|x=2n+1,n∈Z},C=R,且从A到B的映射是x→2x-1,从B到C的映射是y→12y+1,则经过两次映射,A中元素1在C中的对应的元素为________.8.设f,g都是由A到A的映射,其对应法则如下表:映射f的对应法则如下:映射g的对应法则如下:则f[g(1)]的值为________.9.已知f是从集合M到N的映射,其中M={a,b,c},N={-3,0,3},则满足f(a)+f(b)+f(c)=0的映射f的个数是________.二、解答题10.设f:A→B是集合A到集合B的映射,其中A={正实数},B=R,f:x→x2-2x-1,求A中元素1+2在B 中的对应元素和B中元素-1在A中的对应元素.11.已知A={1,2,3,m},B={4,7,n4,n2+3n},其中m,n∈N*.若x∈A,y∈B,有对应法则f:x→y=px+q是从集合A到集合B的一个映射,且f(1)=4,f(2)=7,试求p,q,m,n的值.能力提升12.已知集合A=R,B={(x,y)|x,y∈R},f:A→B是从A 到B 的映射,f :x →(x +1,x 2+1),求A 中元素2在B 中的对应元素和B 中元素⎝ ⎛⎭⎪⎫32,54在A 中的对应元素.13.在下列对应法则中,哪些对应法则是集合A 到集合B 的映射?哪些不是.(1)A ={0,1,2,3},B ={1,2,3,4},对应法则f :“加1”; (2)A =(0,+∞),B =R ,对应法则f :“求平方根”; (3)A =N ,B =N ,对应法则f :“3倍”; (4)A =R ,B =R ,对应法则f :“求绝对值”; (5)A =R ,B =R ,对应法则f :“求倒数”.1.映射中的两个集合A 和B 可以是数集、点集或由图形组成的集合等,映射是有方向的,A 到B 的映射与B 到A 的映射往往是不一样的.2.对应、映射、函数三个概念既有区别又有联系,在了解映射概念的基础上,深刻理解函数是一种特殊的映射,而映射又是一种特殊的对应.3.判断一个对应是否是映射,主要看第一个集合A中的每一个元素在对应法则下是否都有对应元素,若有,再看对应元素是否唯一,若惟一则这个对应就是映射.2.1.4 映射的概念知识梳理1.每一个惟一单值对应f:A→B 2.函数非空数集作业设计1.①2.①②④解析如果从P到Q能表示一个映射,根据映射的定义,对P中的任一元素,按照对应法则f在Q中有惟一元素和它对应,选项③中,当x=4时,y=23×4=83∉Q.3.①②③解析①、②中的元素2没有对应的元素;③中1的对应有两个;只有④满足映射的定义.4.①③④解析 在②中f(0)无意义,即A 中的数0在B 中找不到和它对应的数.5.4 2解析 ①、②、③、④都是映射;②、③是函数. 6.4解析 由于要求f(3)=3,因此只需考虑剩下两个元素的对应元素的问题,总共有如图所示的4种可能.7.13解析 A 中元素1在B 中对应的元素为2×1-1=1,而1在C 中对应的元素为12×1+1=13.8.1解析 ∵g(1)=4,∴f[g(1)]=f(4)=1.9.7解析⎩⎪⎨⎪⎧f a 3,f b 0,fc3,⎩⎪⎨⎪⎧f a 3,f b 0,fc3,⎩⎪⎨⎪⎧f a 3,f b 3,fc0,f(a)=f(b)=f(c)=0. 10.解 当x =1+2时,x 2-2x -1=(1+2)2-2×(1+2)-1=0,所以1+2的对应元素是0.当x 2-2x -1=-1时,x =0或x =2. 因为0∉A ,所以-1的对应元素是2. 11.解 由f(1)=4,f(2)=7,列方程组:⎩⎪⎨⎪⎧ p +q =42p +q =7⇒⎩⎪⎨⎪⎧p =3q =1. 故对应法则为f :x →y =3x +1.由此判断出A 中元素3的对应值是n 4或n 2+3n.若n 4=10,因为n ∈N *,不可能成立,所以n 2+3n =10,解得n =2(舍去不满足要求的负值).又当集合A 中的元素m 的对应元素是n 4时,即3m +1=16,解得m =5.当集合A 中的元素m 的对应元素是n 2+3n 时,即3m +1=10,解得m =3.由元素互异性知,舍去m =3.故p =3,q =1,m =5,n =2. 12.解 将x =2代入对应法则,可求出其在B 中的对应元素(2+1,3).由⎩⎪⎨⎪⎧x +1=32,x 2+1=54,得x =12.所以2在B 中的对应元素为(2+1,3),⎝ ⎛⎭⎪⎫32,54在A 中对应元素为12. 13.解 (1)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有唯一的一个元素与之对应,显然,对应法则f 是A 到B 的映射.(2)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有两个元素与之对应,显然对应法则f 不是A 到B 的映射.(3)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有唯一的元素与之对应,故对应法则f 是从A 到B 的映射.(4)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有唯一的元素与之对应,故对应法则f 是从A 到B 的映射.(5)当x =0∈A ,1x无意义,故对应法则f 不是从A 到B 的映射.。

2019-2020学年高中数学《2.1.3 映射与函数》教案 新人教B版必修1.doc

2019-2020学年高中数学《2.1.3 映射与函数》教案 新人教B版必修1.doc

2019-2020学年高中数学《2.1.3 映射与函数》教案 新人教B 版必修1【预习】教材第34~37页,了解: 1、映射的定义。

2、区间的概念。

第二部分 走进课堂【复 习】1、初中函数的定义2、高中函数的定义。

【探索新知】一、映射的定义 例子:1、{}是平面内三角形x x A |=,{}是平面内的圆x x |B= :f 画三角形的外接圆。

2、{}是平面内三角形x x A |=,R =B:f 求三角形的面积。

3、{}是平面内的点P P A |=,{}R y R x y x ∈∈=,|)B ,( :f 在平面直角坐标系下找点P 的坐标。

4、{}是我们班级内的学生x x A |= {}是我们班级内的椅子x x |B = :f 每位同学坐一把椅子。

下列例子是映射吗?B f:取倒数 (1) (2)f:开平方 Bf:平方Bf:乘2f:平方B二、区间的概念请在下列空白处填写集合的区间表示。

①{}b x a x <<|__________ ②{}b x a x ≤≤|___________③{}b x a x <≤|__________ ④{}b x a x ≤<|__________⑤{}a x x >| __________ ⑥{}a x x ≥| ____________ ⑦{}a x x <| __________ ⑧{}a x x ≤| _____________ 三、注意)(a f 的意义例1、已知253)(2+-=x x x f ,求)3(f ,)2(-f ,)1(+a f例2、已知18)(+=x x f ,x x x g +=2)(求))((x g f ,)2)((+x g f ,))((x f g ,)20)3((-f g例3、已知)(x f =⎪⎩⎪⎨⎧+--10122x x 000<=>x x x ,求)1)1((-f f , )3)2((+-f f例4、已知⎩⎨⎧++=)1(12)(x f x x f 11<≥x x ,求)2(-f例5、已知19)(+=x x f ,2)(x x g =,)2)(())((-=x f g x g f ,求x例6、已知⎩⎨⎧-=2)1(2)(x xx f 11<≥x x(1)若4)(0=x f ,求0x(2)若4)(0≥x f ,求0x 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学 映射函数教案 新人教版必修1一、教学目标1.映射,一一映射 2.函数二、考点、热点回顾 1.映射、一一映射(1)集合A 到集合B 的映射有三个要素,即集合A 、集合B 和对应法则f .其中集合A 和集合是有先后顺序的,因为一般情况下A 到B 的映射和B 到A 的映射是不同的映射.而对于集合A 和集合B 的元素是什么,映射的定义未对此作具体要求,它们的元素可以是数,可以是点,也可以是其他对象.(2)一个对应要满足下面两个条件才能称为集合A 到集合B 的映射:①集合A 中的每一个...元素(一个不漏地)在集合B 中都有象(但集合B 中的每一个元素不一定都有原象);②集合A 中的每一个元素在集合B 中的象只有唯一..的一个(集合B 中的元素在集合A 中的原象可能不止一个).也就是说,图1和图2所示的两种对应不能称为映射.(3)对于上述映射,如果加上一个条件,要求集合B 中的每一个元素在集合A 中都有原象,则这样的映射称为“集合A 到集合B 上.的映射”.如果在此基础上再加上一个条件,要求集合B 中的每一个元素在集合A 中的原象只有唯一的一个,则这样的映射称为“集合A 到集合B 上的一一..映射”.例1 如图3,集合A={1、2、3、4、5},B={a 、b 、c 、d 、e }.判断下列对应中,(1)哪些是集合A 到集合B 的映射;(2)哪些是集合A 到集合B 上的映射;(3)哪些是集合A 到集合B 上的一一映射.图3①B A ②③B A ④图1 图2例2 已知集合A={30≤≤x x },B={10≤≤y y }.判断下列各对应f 是否是集合A 到集合B 的映射?一一映射?并说明理由. (1)f :x y x 31=→; (2) f :x y x 41=→;(3) f :2)2(-=→x y x ; (4) f :291x y x =→;(5)f :2)1(41-=→x y x2.函数(1)函数的定义.在初中学过的函数概念是从运动变化的角度出发,用变量来定义的,习惯上称为传统定义.传统定义由研究变量的物理意义而产生,反映了两个变量之间变化的相依关系.由于受变量物理意义的限制,对某些函数难以进行研究,因为有些函数从物理的角度不好解释.因此高中学习函数时重新引进了用映射刻划函数的近代定义,它更具有一般性.当然,两种定义的本质是一样的. 集合A 到集合B 的映射f :B A →要成为函数,还必须满足两个条件:①集合A 、B 都是非空集合;②集合A 、B 都是数的集合.其中集合A 就是函数的定义域,而集合B 不一定是值域.一般地说,值域C 是集合B 的子集,即B C ⊆.(若集合B C =,则这个映射就成为集合A 到集合B 上的映射).(2)函数的三要素.定义域A ,值域C 和定义域A 到值域C 的对应法则f,构成了函数的三个要素.当且仅当这三个要素完全相同时,两个函数才是同一个函数. 在判断两个函数是否同一函数时,主要观察它们的定义域和对应法则是否相同. (3)区间设a 、R b ∈,且b a <.用闭区间[b a ,]表示集合{b x a x ≤≤},用开区间),(b a 表示集合{b x a x <<},用半开半闭区间],(b a 表示集合{b x a x ≤<},用半开半闭区间),[b a 表示集合{b x a x <≤}.(4)函数的表示法.函数常用的表示法有:解析法,列表法及图像法,三种表示法各有其长处. 要搞清符号)(x f 和)(a f (a 为常数)的区别.一般情况下,)(x f 是一个随自变量x 的变化而变化的变量,而)(a f 是当自变量a x =时函数的值,是一个确定的量.与初中接触到的函数不一样,这里的函数可以是在不同区间中(或不同条件下)表达式不同的分段函数,因此函数的图像也不一定是一条平滑曲线,它可能是一些孤立的点,一些线段,或一些曲线. 例3 判断下列各对函数是否是同一个函数,并说明理由. (1) 2)(x x f = , 2)()(x x g = ;(2).)(33x x f = , x x g =)( ;(3)11)(2+-=x x x f , 1)(-=x x g ; (4)1)(-=x x f , ⎩⎨⎧<->-=);1(,1),1(,1)(x x x x x g (5)2)(x x f = , x x g =)( ;(6) 21)(x x f -= , 21)(t t g -= .例4 已知32)(-=x x f , 12)(2+=x x g ,求 )]([x g f 和 )]([x f g .例5 (1)已知=)(x f ⎪⎩⎪⎨⎧-,12,2,02x,)1(-f ,)]0([f f ,)]22([-f f ; (2)已知 ⎪⎪⎩⎪⎪⎨⎧≥-<<--≤+=),2(,23),21(,),1(,32)(2x x x x x x x g 且3)(=t g , 求t .例6 (1)画出函数342+-=x x y 的图像;(2)画出函数342+-=x x y的图像;(3)已知函数)(x f y =的图像如图4,写出)(x f 的解析式.例7 求下列函数的定义域: (1) 2312+-=x x y ; (2)xy 2111++= ;(3)7522--=x x y .例8 已知函数)(x f y =的定义域为[-1,2],求函数)1()1()(-++=x f x f x g 的定义域.例9 (1)已知11)11(2-=+xx f ,求)(x f ;(2)已知函数)(x f 的定义域是),0()0,(∞-∞ ,且x xf x f 4)1(2)(3=+,求)(x f ;(3)已知32)2(+=-x x f ,求)(x f .例10 设⎩⎨⎧≥<-=),0(,,1),0(,1)(x x x f 画出函数)1(-=x f y 的图像.(快速五分钟,稳准建奇功)1.设f是从集合A 到集合B 的映射,下列四个说法:①集合A 中的每一个元素在集合B 中都有象;②集合B 中的每一个元素在集合A 中都有原象;③集合A 中不同的元素在集合B 中的象也不同;④集合B 中不同的元素在集合A 中的原象也不同,其中正确的是 ( )A .①和②B .②和③C .③和④D .①和④2.已知集合A={}60≤≤x x ,B={}30≤≤y y ,则下列对应关系f 中,不能看成是从集合A 到集合B 的映射的是 ( )A .f :x y x 21=→ B .f:x y x 31=→C .f :x y x =→ D .f:x y x 61=→3.下列三个命题:①函数是从定义域到值域的一一映射;②函数的定义域和值域可能是数集,也可能不是数集;③函数的定义域和值域都不能是空集.其中真命题是 ( )A .①B .②C .③D .①和③4.下列各组函数:①2)(+=x x f ,44)(2++=x x x g ;②11)(2+-=x x x f ,1)(-=x x g ;③x x f =)(,xx x g =)(;④1)(+=x x f ,⎩⎨⎧<--≥+=)0(,1)0(,1)(x x x x x g .其中)(x f 和)(x g 表示同一个函数的是 ( )A .①B .①和②C .③D .④5.函数xx y -=1的定义域是 ( )A .),0()0,(+∞-∞B .),1()1,0()0,(+∞-∞C .)0,1()1,(---∞D .)0,(-∞6.已知函数)(x f 的定义域是)1,0(,则函数)1(2-x f 的定义域为 ( )A .)2,1( B .)2,1()1,2( --C .)0,1(-D .)1,0()0,1( - 7.已知),(y x 在映射f 下的象是)2,2(y x y x -+,则)3,1(在f下的原象是 。

8.函数xx x x f -+1)(2的定义域是 。

9.已知⎪⎩⎪⎨⎧<=>=)0(,0)0(,2)0(,)(3x x x x x f 则=)2(f ,=-)2(f ,=-)]6([f f .10.已知x x x f =+-)11(,则=)(x f . 11.求下列函数的定义域:(1)x x xxy -+-+=21;(2)5262-+--=x x x y .12.若13:+=x y f 是从集合A=},3,2,1{k 到集合B=}3,,7,4{24a a a +的一个映射,求自然数a和k 的值及集合A 和B.13.若函数343123++-=mx mx xy 的定义域为R ,求实数m 的取值范围.14.已知32)(2-+=x x x f ,作函数2)()()(x f x f x g +=的图像.。

相关文档
最新文档