02辐射与物质的相互作用

合集下载

第二讲:核辐射与物质相互作用

第二讲:核辐射与物质相互作用
辐射防护与安全培训
辐射防护与安全基础
第二讲 射线与物质相互作用
苏州大学医学部放射医学与公共卫生学院
中华人民共和国环境保护部辐射防护与安全培训
辐射防护与安全基础
射线 Ray
高速运动的粒子和光子
(天然或人工放射性、加速器、反应堆、宇宙射线)
包括: X射线、射线、射线、射线等
本质都是辐射粒子。
物质 Matter 常被称为:靶物质 靶材料
dE dX
ion
1 c 2 ln β 2 1 β Z

z NZ V
2
2
B(V)
电子的静 止质量
相对论修正项
壳层修正项
中华人民共和国环境保护部辐射防护与安全培训
辐射防护与安全基础

dE
dX

z NZ V
2
2
BV
ion
几点结论:
电离损失与入射粒子速度
中华人民共和国环境保护部辐射防护与安全培训
辐射防护与安全基础 主要作用形式有:
电离能量损失 辐射能量损失
多次散射
运动轨迹不再是直线,而是十分曲折
中华人民共和国环境保护部辐射防护与安全培训
辐射防护与安全基础 存在的问题:
β粒子的质量只有α粒子的1/7300,所以具有
相同能量的β粒子和α粒子速度就要相差很多,大 很多,往往接近光速,因此对β粒子相互作用的情 况必须要考虑相对论效应
z 大电离损失大
能量损失越快
z 小电离损失小
穿透本领越弱
速度相同,入射粒子的电荷数越多,
中华人民共和国环境保护部辐射防护与安全培训
辐射防护与安全基础
例如:当α、P以相同的速度入射到相同物质中时

物质粒子与辐射相互作用原理

物质粒子与辐射相互作用原理

物质粒子与辐射相互作用原理物质粒子与辐射相互作用原理是研究物质与辐射之间相互作用的一门学科。

在这个领域内,我们探讨了粒子与辐射之间的相互作用机制,这有助于我们更好地理解宇宙中的物质和能量如何产生、传播和相互转换。

本文将重点介绍物质粒子与辐射相互作用的基本原理以及应用领域。

首先,让我们简要地回顾一下物质粒子和辐射的定义。

物质粒子是构成物质的基本单位,包括原子、分子、离子等。

而辐射是一种能量传递的过程,可以是电磁波、粒子束等形式。

物质粒子与辐射之间的相互作用涉及能量的传递、转换和吸收等过程。

物质粒子与辐射相互作用的原理可以从电磁相互作用和弱相互作用两个方面进行解释。

电磁相互作用基于电磁力的作用机制,包括电荷与电磁场相互作用以及粒子辐射、吸收和散射等过程。

弱相互作用则是一种在微观尺度上起效的相互作用力,影响着物质粒子的衰变和转换过程。

在物质粒子与辐射相互作用研究领域中,一项重要的应用是核能技术。

核能技术利用了放射性同位素的辐射特性,实现了核燃料的裂变和聚变过程,从而产生了大量的能量。

核能技术在能源领域具有重要的地位,被广泛应用于电力生产、医学影像诊断和治疗以及科研实验等众多方面。

此外,物质粒子与辐射相互作用的研究也对理解宇宙的演化和宇宙学的发展提供了重要的线索。

宇宙中存在着各种天体和高能粒子,它们之间的相互作用和演化过程是宇宙学研究的核心内容。

通过研究物质粒子与辐射相互作用的原理,我们能更好地理解宇宙中星系的形成、恒星演化、黑洞的活动等基本问题。

除此之外,物质粒子与辐射相互作用原理的探索还为研发新型材料和医学影像技术提供了基础。

比如,通过控制粒子与辐射的相互作用,可以实现材料表面的纳米加工和改性,进一步提升材料的性能和功能。

同时,物质粒子与辐射相互作用原理也被应用于医学影像技术,如X射线、CT扫描等,帮助医生进行疾病的诊断和治疗。

总结起来,物质粒子与辐射相互作用原理是研究物质与辐射之间相互作用的重要学科。

辐射和物质的相互作用原理

辐射和物质的相互作用原理

辐射和物质的相互作用原理辐射是指从原子、分子或其他核心体中发射出去的能量。

辐射能量以电磁波的形式传播,包括可见光、紫外线、X射线、伽马射线等。

辐射和物质之间的相互作用是一种很常见的现象,而原子核射线治疗和核能技术、X射线检查等便是基于这种相互作用现象实现的。

辐射和物质的相互作用有很多种形式,其中较为常见的包括光电效应、康普顿效应、光子对撞、电离和激发等。

1. 光电效应光电效应指的是,当一束光照射到某种物质上时,会将其中的电子从原子中扯出来。

只有当光子能量大于某个临界值时,电子才能被释放。

这一现象在真空中气象、电场强度影响电子扰动等情况下都表现得非常明显。

光电效应在太阳能电池、粒子探测器和光电倍增管中都使用到了。

光电倍增管使用的是通过电子扰动向试管中注入能量的方式来产生光电子。

2. 康普顿效应康普顿效应是指辐射与介质(通常指物质)相互作用后,质子或者其他介质粒子可以被辐射能量带走的现象。

当X射线或伽马射线碰撞到物质中的原子核或者电子时,它会失去一部分能量并发生散射。

同时,活动的电子由于吸收了辐射,也有机会离开原子成为自由电子。

康普顿效应在医学上应用非常广泛,例如在肿瘤诊断、辐射治疗和X射线显示等方面都有应用。

3. 光子对撞光子对撞是因辐射和物质相互作用而产生的现象之一,包括光子与电子、光子与原子核、光子与氢原子等的相互作用。

当两个光子碰撞时,它们之间的能量会转移到电子或其他介质的离子中。

光子对撞主要应用于高能粒子的研究中,如对撞型区域全息成像、太阳近端日冕跃迁和黑洞成像等等。

4. 电离和激发当一种物质暴露在辐射中时,可能会电离或激发。

电离与激发是指辐射撞击物质后,物质中的原子分子发生了发射和受到注入能量而离子化的现象。

发生电离和激发的结果会对物质产生不同的作用,如电离现象越强,就会产生较多的自由电子和离子,从而影响物质性质,如聚变反应。

总之,辐射和物质的相互作用的原理是复杂多样的,其中包括光电效应、康普顿效应、光子对撞、电离和激发等。

2射线和物质的相互作用

2射线和物质的相互作用


1 2
中速区尚无合适的理论计算 公式,实际使用时都是一些 实验数据的拟合公式。
原子阻止截面

e
n
单位:每原子eVcm2
电子阻止截面 e
1 dE ( )e N dx
核阻止截面
各种物质对不同能量的质子和粒子的阻止本领、 原子阻止截面,已有详细的实验数据和理论计算 值,应用时可查阅相关资料。
• • •
低速带电粒子入射时 入射粒子速度低于轨道电子的平均速度时,电 荷交换效应变强。 考虑外层电子对核库仑场的屏蔽,得出:
zZ dE 1/ 6 2 z 8e Na0 2 / 3 2 / 3 3/ 2 (z Z ) 0 dx e
与速度成正比
(二)核阻止本领
(一)电离损失或电子阻止本领
——与核外电子的非弹性碰撞过程
入射带电粒子与靶原子的核外电子通过库仑作用,使电 子获得能量而引起原子的电离或激发。入射粒子通过这 种方式损失能量称为电离损失或电子阻止本领。
快速带电粒子入射时 从经典角度出发,假设入射粒子与“静止”的 “自由电子”的弹性碰撞。入射粒子的电荷数 是确定,等于它的核电荷数。
E小,大; Z大,大。 定义: 反散射系数
I I0
低Z的元素。
电子的辐射损失
在单位路程上通过辐射损失的能量叫做辐射损失率:
dE 4 NZ ( Z 1)e 4 2 4 137m0 c dx r
2E 1 E ln 2 m c 3 0
顺序倒了!
对于电子,在低能时,电离损失占优势,在高能 时(尤其在相对论区),辐射损失变得重要。
——与原子核发生弹性碰撞过程
采用与电子本领相类似的步骤,得到核阻止本领 公式为: 2 4

2电离辐射与物质的相互作用

2电离辐射与物质的相互作用

2电离辐射与物质的相互作用电离辐射是指能够将物质中的原子或分子转化为带正电或负电离子的辐射。

这种辐射可以是电子、质子、中子、X射线、γ射线等。

当这些带电粒子通过物质时,它们与物质发生相互作用,引起原子或分子的电离和激发。

这种相互作用的过程对于理解电离辐射的性质和应用非常重要。

在物质中,重带电粒子与原子核和电子发生相互作用。

对于比较重的带正电粒子(如质子和α粒子),主要的相互作用是库仑碰撞和电子抛出。

库仑碰撞是指带正电粒子与原子核进行相互作用,通过库仑力来改变粒子的方向和动能。

这种碰撞过程会造成原子核的激发和电离,而带正电粒子的电荷得到补偿后继续前进。

电子的抛出是指带正电粒子与电子进行相互作用,由于带正电粒子的高能量和靠近距离,会导致电子从原子轨道中被脱离,形成正电离子。

对于带负电粒子(如电子),主要的相互作用是库仑碰撞和电离碰撞。

库仑碰撞是指带负电粒子与原子核进行相互作用,通过库仑力来改变粒子的方向和动能。

不同于质子和α粒子,电子与原子核的库仑碰撞能导致电子的散射和损失能量,而不会引起原子核的激发和电离。

电离碰撞是指带负电粒子与原子中的电子进行相互作用,由于电荷的相反和靠近距离,电子会被带负电粒子的高能量电流所激发和抛出,形成自由电子和正电离子。

总体而言,电离辐射与物质的相互作用是一个复杂的过程,它涉及到带电粒子的能量、动量、电荷和质量等因素,以及物质中原子和分子的结构和特性。

这种相互作用的结果包括电子的激发、电离和损失能量,原子和分子的电离、激发和捕获,以及辐射的发射和吸收等。

电离辐射与物质的相互作用在许多领域具有重要的应用价值。

在核能产生和放射治疗中,电离辐射的相互作用被用于能量的释放和损伤的产生。

在材料科学和半导体工业中,电离辐射被用于改变材料的物理和化学性质。

在空间探测和核物理研究中,电离辐射的相互作用被用于探测和测量粒子的能量和性质。

总之,电离辐射与物质的相互作用是一门复杂而有趣的科学。

辐射与物质的相互作用

辐射与物质的相互作用

辐射在自然界中无处不在,例如 太阳光、地球的天然放射性物质
等。
辐射的分类
电离辐射
具有足够的能量使原子或分子的电子 被剥离,形成带电的离子或激发态的 原子或分子。
非电离辐射
能量较低,不足以引起电离,如无线 电波、微波和可见光等。
辐射的性质
01
02
03
穿透性
某些类型的辐射能够穿过 物质,如X射线或伽马射 线。
分子与辐射的相互作用
要点一
分子吸收辐射
分子可以吸收特定波长的辐射能量,导致分子振动或转动 能级发生变化。
要点二
分子荧光和磷光
当分子吸收能量后,可能会以荧光或磷光的形式释放能量 。
固体与辐射的相互作用
热传导
固体吸收辐射能量后,通过晶格振动将能量 传递给相邻原子或分子。
光催化
某些固体材料在光的作用下可以催化化学反 应的进行,如光解水或光合作用等。
电子对生成
总结词
电子对生成是指高能光子与物质相互作用时,光子的能量被物质吸收,导致物 质中的电子和正电子对产生的现象。
详细描述
当高能光子与物质相互作用时,光子的能量可以被物质吸收。在电子对生成中, 光子的能量足够高时,会导致物质中的电子和正电子对产生。这一过程可以用 来解释高能光子在物质中的吸收和转化等现象。
包括防辐射服、手套、鞋等,用于减少辐射对 人体的伤害。
监测仪器
使用辐射监测仪器,定期检测工作环境和个人 的辐射剂量,以便及时采取防护措施。
培训和教育
加强辐射防护的培训和教育,提高公众对辐射危害的认识和自我保护意识。
THANKS
[ 感谢观看 ]
要意义。
放射性示踪技术
总结词
利用放射性示踪技术可以追踪物质的运动和分布,广泛 应用于环境监测、化学反应研究等领域。

物质与辐射的相互作用

物质与辐射的相互作用

物质与辐射的相互作用物质和辐射是我们日常生活以及自然界中最基本的元素之一。

两者之间的相互作用则是物理学和化学领域中一个非常重要的研究方向。

在本次文章中,我们将深入了解物质与辐射之间的相互作用。

一、物质和辐射的基本概念物质是指构成宇宙万物的实体。

它们具有固体、液体和气体三种基本状态。

在物质中,原子和分子是最基本的构成单位。

辐射是指在空间中传播的能量,它们可以是电磁波、粒子流、声波等。

电磁波包含的频率范围很广,从无线电波到X射线都属于电磁波的一种。

粒子流如α、β、γ射线则是由电离辐射产生的。

声波被定义为机械波,它是由物质振动而产生的。

二、电磁波与物质的相互作用在物质中,电磁波与物质的相互作用不仅取决于辐射的性质,也取决于物质的性质。

物质的电子云对于电磁波的传播是一个重要的参考系。

在电磁波通过物质时,它们被分散、反射或吸收。

几个基本的现象包括反射、透射和折射。

当电磁波被反射时,它们撞击到物质的表面并被弹回。

在透射时,电磁波穿过物质,并沿着原来的方向继续传播。

当电磁波被物质折射时,它们改变传播方向,并使波长变短。

除此之外,因为物质的电子云可以吸收电磁波,所以电磁波的频率和能量也会影响到吸收现象。

像红外线、紫外线和γ射线等密集能量的电磁波可以被物质吸收。

例如,近红外辐射可以被水吸收,紫外线则可以被DNA吸收,这些现象都是基于物质与辐射相互作用的基本原理。

三、粒子流与物质的相互作用粒子流,如α、β、γ射线,是由电离辐射产生的。

因为它们具有更高的能量和较大的质量,所以它们与物质的相互作用也是不同的。

α射线是由α粒子组成的,它们在物质中的相互作用是基于它们的高能量和大质量的。

例如,当α射线穿过物质时,它们与物质中的原子核相撞并转移部分能量。

这些相互作用会导致α射线的离子化,并造成辐射损伤。

β射线具有不同的能量和速度,因此它们与物质的相互作用也具有不同的规律。

在高能β射线通过物质时,它们产生电离并改变了物质中电子的轨道。

核辐射探测复习知识点

核辐射探测复习知识点

第一章辐射与物质的相互作用与物质相互作用:1.带电粒子与靶原子核的核外电子非弹性碰撞(电离,激发)2.带电粒子与靶原子核的非弹性碰撞(辐射损失)3.带电粒子与靶原子核弹性碰撞(核阻止)4.带电粒子与核外电子弹性碰撞电离损失能量:入射带电粒子与核外电子发生非弹性碰撞使靶物质原子电离或激发而损失的能量(电离:核外层电子客服束缚成为自由电子,原子成为正离子激发:使核外电子由低能级跃迁到高能级而使原子处于激发状态)辐射损失能量:入射带电粒子与原子核发生非弹性碰撞以辐射光子损失能量轫致辐射:入射带电粒子与原子核之间的库仑力作用使带电粒子的速度和方向改变,并伴随发射电磁辐射阻止本领:单位路径上的能量损失S=-dE/dx=S ion+S rad重:S=S ion=(1/4πε0)2(4πz2e4/m0v)2NBBethe公式结论:1.电离能了损失率和入射带电粒子速度有关,质量无关2.和电荷数平方z2正比3.S ion随粒子E/n变化曲线:a段:入射粒子能量E较低时, S ion与z2成正比,曲线上升b段(0.03MeV-3000MeV):相对论项作用不显著, S ion与E成反比,曲线下降c段:能量较高时,相对论修正项起作用, S ion与B成正比,曲线上升4.高Z 和ρ物质阻止本领高布拉格曲线:随穿透距离增大而上升,接近径迹末端,由于拾取电荷而下降。

同样能量的入射带电粒子经过一定距离后,各个粒子损失的能量不会完全相同,是随机性的,发生了能量离散,即能量歧离. 射程歧离:单能离子的射程也是涨落的为何峰值上升?因为部分粒子已经停止运动,相当于通道变窄,剩余粒子能量集中,导致峰值上升.沿x方向,能量降低,离散程度变大,峰值降低.射程R带电粒子沿入射方向所行径的最大距离路程:实际轨迹长度解释各种粒子的轨迹:重带电粒子质量大,其与物质原子的轨道电子相互作用基本不会导致运动方向有偏差,径迹几乎是直线:由于次级电离,曲线会有分叉:质子和α粒子粗细差别:能量提高,径迹变细.电子的径迹不是直线,散射大. 射程R正比于m/z21.v同两种粒子同物质R1/R2=m1/m2*(z2/z1)22.v同一种粒子两物质R a/R b=√A a/√A b *(ρb/ρa)α粒子空气射程R0=0.318Eα1.5R=3.2*10-4√A/ρ*R air比电离:带电粒子在穿透单位距离介质时产生的离子对的平均数δ射线:带电粒子在穿透介质时产生的电子-离子对中的具有足够能量可以进一步电离的电子电子S rad/S ion=EZ/800快电子S rad正比于z2E/m2*NZ2屏蔽电子材料:当要吸收、屏蔽β射线时,不宜选用重材料:当要获得强的X射线时,选用重材料做靶.电子反散射及效应:电子由原入射方向的反方向反射回来,从入射表面射出.对于放射源,反散射可以提高产额:对于探测器,会产生测量偏差. When反散射严重:对于同种材料,入射电子能量越低反散射越严重:对同样能量的入射电子,原子序数越高的材料,反散射越严重光电效应:光子把全部能量转移给某个束缚电子,使其发射出去而光子本身消失的过程.是光子和整个原子的作用结果,主要集中在内层电子,还会有俄歇电子或特征X射线.(为何不与自由电子-因为入射光子有部分能量传递给原子,使其发生反冲,否则能量不守恒)采用高Z材料可提高探测效率,有效阻挡γ射线:γ光子能量越高,光电效应截面σph 越小. 入射光子能量低时,光电子趋于垂直方向发射:入射光子能量高时,光电子趋于向前发射.康普顿效应:γ射线和核外电子非弹性碰撞,入射光子一部分能量传递给电子,使之脱离原子成为反冲电子,光子受到散射,运动方向和速度改变,成为散射光子. 散射角θ=180时即入射光子和电子对心碰撞,散射光子沿入射光子反方向射出,反冲电子沿入射方向射出-反散射.能量高的入射光子有强烈的向前散射趋势,低的向前向后散射概率相当.康普顿坪:单能入射光子所产生反冲电子的能量为连续分布,在能量较低处反冲电子数随能量变化小,呈平台状:康普顿边缘:在最大能量处,电子数目最多,呈尖锐的边界.峰值Ee=hν-200keV电子对效应:当入射光子能量较高,从原子核旁边经过时,在库伦场作用下转换成一个正电子和一个负电子.电子对效应出现条件:hν>2m0c2=1.022MeV 电子和正电子沿入射光子方向的前向角度发射,能力越高,角度越前倾. 湮没辐射:正电子湮没放出光子的过程.实验上观测到511kev的湮没辐射为正电子的产生标志单双逃逸峰:发生电子对效应后,正电子湮没放出的两个511keV的γ光子可能会射出探测器,使得γ射线在探测器中沉积的能量减小.低能高Z光电,中能低Z康普顿,高能高Z电子对.线形衰减系数μ=σγN 质量衰减系数μm=μ/ρ质量厚度x m=ρx平均自由程: 表示光子每经过一次相互作用之前,在物质中所穿行的平均厚度λ=1/μ 宽束N=N0Be-μd窄束I(x)=I0e-μx半减弱厚度:射线在物质中强度减弱一半时的厚度D1/2= λ ln2第二章气体探测器信息载流子:气体(电子离子对w=30eV,F=0.2-0.5)闪烁体(第一打拿极收集到的光电子w=300ev,F=1)半导体(电子空穴对w=3ev,F=0.1 )平均电离能:带电粒子在气体中产生一对离子对所平均消耗的能量电子和离子相对运动速度:电子漂移速度为离子1000倍,约106cm/s雪崩:电子在气体中碰撞电离的过程. 条件:足够强的电场和电离产生的自由电子非自持放电:雪崩只发生一次自持放电:通过光子作用和二次电子发射,雪崩持续发展R0C0<<1/n脉冲(电子T-<<R0C0n<<T+、离子R0C0n>>T+)、R0C0>>1/n累计(电流、脉冲束)1.仅当正离子漂移时外回路才有离子电流i+(t)2.正离子从初始位置漂移到负极过程,流过外回路电荷量不是离子自身的电荷量e,而是在正极感应电荷量q1 电子电流i-(t)同理本征电流i(t)=i+(t)+i-(t) q1+q2=e电离室构成:高压极,收集极,保护极和负载电阻工作气体:充满电离室内部的工作介质,应选用电子吸附系数小的气体.圆柱型电子脉冲原理:利用圆柱形电场的特点来减少Q-对入射粒子位置的依赖关系,达到利用”电子脉冲”来测量能量的目的.能量分辨率η=ΔE/E*100%=Δh/h*100%=2.36ΔE能谱半高宽FWHM=ηE=2.36=2.36σ探测效率:入射到脉冲探测器灵敏体积内辐射粒子被记录下的百分比总输出电荷量Q=N*e=E/W*e脉冲电离室饱和特性曲线:饱和区斜率成因:灵敏体积增加,对复合的抑制,对扩散的抑制饱和电压V1-对应90%饱和区的脉冲幅度放电电压V2工作电压V=V1+(V2-V1)/3 坪特性曲线:描绘电离室计数率和工作电压关系成因:甄别阈不同电压小于V1时在符合区,但不是每个粒子都能形成一个电子离子对.仅少数可达到计数阈值h,V0上升至饱和电压后电子离子对N基本不变分辨时间(死时间):能分辨开两个相继入射粒子间的最小时间间隔时滞:入射粒子的入射时刻和输出脉冲产生的时间差累计电离室工作状态要求输出信号的相对均方涨落V I2≈1/nT<<1 V V2≈1/2R0C0n<<1 饱和特性曲线斜率:灵敏体积增大,复合的抑制,漏电流灵敏度η=输出电流或电压值/射粒子流强度(采用多级平行电极系统可提高) why曲线后部分离:部分电子离子对复合,未达到饱和电压,引起输出电流信号偏小正比计数器是一种非自持放电的气体探测器,利用碰撞电荷讲入射粒子直接产生的电离效应进行放大,使得正比计数器的输出信号幅度比脉冲电离室显著增大输出电荷信号主要由正离子漂移贡献r处场强E(r)=V0/rlnb/a V T=ET*alnb/a 只有V0>V T才工作于正比工作区,否则电离室区气体放大倍数A=n(a)/n(r0)A仅于V0V T有关,与入射粒子位置无关气体放大过程(电子雪崩)当电子到打距极丝一定距离r0后,通过碰撞电离过程电子数目不断增加电子与气体分子碰撞过程中碰撞电离,碰撞激发(气体退激发射子外光子,阴极打出次级电子,次级电子碰撞电离) 光子反馈:次级电子在电场加速下发生碰撞电离A t=A/1-γA 光子反馈很快;加入少量多原子分子气体M可以强烈吸收气体分子退激发出的紫外光子变成M*,后来又分解为小分子(超前离解) 气体放大过程中正离子作用:1.停止电子倍增2.再次触发电子倍增(离子反馈)输出信号:1.电流脉冲形状一定,与入射粒子位置无关,电压脉冲为定前沿脉冲2.响应时间快3.R0C0>>T+时,获得最大输出脉冲幅度ANe/C0分辨时间/死时间τD与脉冲宽度正比,τD内产生的脉冲不会被记录造成计数损失,死时间可扩展. m=n/1-nτD m真实n测量时滞:初始电子由产生处漂移到阳极时间时间分辨本领:正比计数器对时间测量的精度正比计数器坪特性曲线斜率:由于负电性气体、末端与管壁效应等,有部分幅度较小的脉冲随工作电压升高而越来越多地被记录下来GM放电过程:1.初始电离和碰撞电离:电子加速发生碰撞电离形成电子潮-雪崩 2.放电传播(光子反馈):Ar*放出紫外光子打到阴极上打出次级电子 3.正离子鞘向阴极漂移,形成离子电流4.离子反馈:正离子在阴极表面电荷中和缺点GM死时间长,仅计数A t=A/1-γA自持放电:阴极新产生电子向阳极漂移引起新的雪崩,从而在外回路形成第二个脉冲,周而复始.-实现自熄:改变工作高压,增加猝熄气体-有机(阻断光子,离子反馈;工作机制:1.电子加速发生碰撞电离形成电子潮-雪崩过程 2.Ar*放出紫外光子被有机气体分子吸收3. 正离子鞘向阴极漂移实现电荷交换4.有机气体离子在阴极电荷中和),卤素(工作机制:1.电离过程靠Ne的亚稳态原子的中介作用形成电子潮2.Ne*退激发出光子在阴极打出电子,或被Br2吸收打出新点子3.正离子鞘Br+向阴极漂移4.Br+在阴极表面与电子中和超前解离)GM管和正比计数器区别:GM输出信号幅度和能量无关,只能计数,死时间非扩展型死时间校正:m=n(mτD+1)GM坪特性曲线坪斜成因:随工作电压增高,正离子鞘电荷量增加,负电性气体电子释放增加,灵敏体积增大,尖端放电增加死时间t d:电子再次在阳极附近雪崩的时间复原时间t e:从死时间到正离子被阴极收集,输出脉冲恢复正常的时间分辨时间t f:从0到第二个脉冲超过甄别阈的时间GM计数管离子对收集数N与工作电压关系图:1.复合区(电压上升,复合减少,曲线上升)2.饱和区(电荷全被收集)3.正比区N=N0M(碰撞电离产生气体放大,总电荷量正比于原电荷量)4.有限正比区N>>N0(M过大,过渡区)5.盖格区(随电压升高形成自持放电,总电离电荷与原电离无关,几条曲线重合)第三章闪烁体探测器优点:1.探测效率高,可测量不带电粒子,对于中子和γ光子可测得能谱2.时间特性好,可实现ns的时间分辨工作过程:射线沉积能量,电离产生荧光,荧光转换为光电子,光电子倍增,信号流经外回路闪烁体探测器组成:闪烁体,光电倍增管,高压电源,低压电源,分压器和前置放大器分类:无机闪烁体(无机盐晶体,玻璃体,纯晶体),有机闪烁体(有机晶体,有机液体闪烁体,塑料闪烁体)气体闪烁体(氩、氙)无机闪烁体发光机制:入射带电粒子可以产生电子空穴对,也可以产生激子(相互转化) 有机闪烁体发光机制:由分子自身激发和跃迁产生激发和发光气体闪烁体发光机制:入射粒子径迹周围部分气体被激发,返回基态时发射出光子产生电子空穴对需要三倍禁带宽度能量光能产额Y ph=n ph/E=4.3*104/MeV 闪烁效率C ph=E ph/E=13%闪烁光子传输和收集通道:反射层,光学耦合剂,光导反射层:把光子反射到窗:镜面反射和漫反射耦合剂(折射系数较大的透明介质,周围介质折射系数n1,闪烁体n0,全反射的临界角θc=sin-1n1/n0):排除空气,减少由全反射造成的闪烁光子损失光导:具有一定形状的光学透明固体材料,连接闪烁体和光电倍增管,有效地把光传输到光电转换器件上:具有较高折射系数,与闪烁体和光电转换器光学接触好. 光电倍增管PMT:把光信号转换为电信号并放大;由入射窗,光阴极,聚焦电极,电子倍增极(打拿极,次级电子产额δ=发射的次级电子数/入射的初级电子数),阳极和密封玻璃外壳组成.光谱效应:光阴极受到光照射后发射光电子的几率为波长的函数量子效率Q k(λ)=发射电子数/入射光子数光阴极的光照灵敏度S k=i k/F S a=i a/F S a=g c*M*S k第一打拿极的电子收集系数g c=第一打拿极收集到的光电子数/光阴极发出的光电子数PMT的电流放大倍数M=阳极收集到的电子数/第一打拿极收集到的电子数飞行时间(渡越时间)te:一个光电子从光阴极到达阳极的平均时间渡越时间离散Δte为te的分布函数的半宽度闪光照射到光阴极时,阳极输出信号可能不同-原因:1.光阴极的灵敏度在不同位置不同2.光阴极不同位置产生的光电子被第一打拿极收集的效率不同解决:1.改进光阴极均匀性 2.改进光电子收集均匀性 3.利用光导把光电子分散在整个光阴极输出信号:闪烁体发出闪烁光子数n ph=Y ph E 第一打拿极收集到光电子数n e=n ph T 阳极收集到电子数n A=n e M 输出电荷量Q=n A e=Y ph TMe电压脉冲型工作状态R0C0>>τ优:脉冲幅度大缺:脉冲前沿后沿慢电流脉冲型工作状态R0C0<<τ优: 脉冲前沿后沿快缺:脉冲幅度小小尺寸闪烁体:仅吸收次级电子的能量,大尺寸闪烁体:吸收全部次级电子、次级电磁辐射能量中尺寸闪烁体:吸收次级电子能量,可能吸收次级电磁辐射能量;康普顿边沿与全能峰之间连续部分-多次康普顿散射造成-康普顿效应产生的散射光子又发生康普顿效应;单逃逸峰-正电子湮没辐射时产生的两个511keV的湮没光子一个逃逸而另一个被吸收,双逃逸峰-两个光子都逃逸;全能峰-对应γ射线能量的单一能峰第四章半导体探测器本征半导体:理想的纯净半导体,价带填满电子,导带无电子禁带宽度硅300K-1.115ev 0K-1.165ev锗300K-0.665ev 0K-0.746ev 电子空穴密度硅n=p=2*1010/cm3锗n=p=2.4*1013/cm3半导体探测器分类:均匀型,PN结型,PIN结型,高纯锗HPG,化合物半导体,雪崩半导体,位置灵敏半导体半导体探测器的优点:1.非常好的位置分辨率 2.很高的能量分辨率3.很宽的线形范围4.非常快的响应时间Si:适合带电粒子测量,射程短Ge:纯度高,可以做成较大的探测器:可用于γ能谱测量掺有施主杂质的半导体中多数载流子是电子,叫做N型半导体:掺有受主杂质的半导体中多数载流子是空穴,叫P型半导体补偿效应:当p>n,N型转换为P型半导体p=n时完全补偿平均电离能特点:1.近似与入射粒子种类和能量无关,根据电子空穴对可推入射粒子能量 2.入射粒子电离产生的电子与空穴数目相等 3.半导体平均电离能约3eV,远小于气体平均电离能30eV 陷落和复合使载流子减少半导体探测器材料特性:长载流子寿命(保证载流子可被收集),高电阻率(漏电流小,结电容小)PN型半导体:适合测量α粒子这类短射程粒子,不适合测量穿透力强的射线势垒高度V0=eN d W2/2ε宽度W=(2εV0/eN d)1/2=(2εV0ρnμn)1/2PIN半导体:温度升高,Li+漂移变快;Li+形成PN结,Li+与受主杂质中和,实现自动补偿形成I区(完全补偿区,耗尽层,灵敏体积),形成PIN结why半导体PN结可作为灵敏区?1.在PN结区可移动的载流子基本被耗尽,只留下电离了的正负电中心,具有高电阻率 2.PN结上加一定负偏压,耗尽区扩展,可达全耗尽,死层极薄,外加电压几乎全部加到PN结上,形成高电场 3.漏电流小,具有高信噪比高纯锗:一面通过蒸发扩散或加速器离子注入施主杂质形成N区,并形成PN结,另一面蒸金属形成P+作为入射窗,两端引出电极第五章辐射探测中的统计学f(t)=me-mt t=1/m σt2=1/m2第六章核辐射测量方法符合事件:两个或以上在时间上相关的事件真符合:用符合电路选择同时事件反符合:用反符合电路来消除同时事件,当一个测量道没有输入信号时,另一道的信号才能从符合装置输出符合道计数率nc=Aεβεγ偶然符合:在偶然情况下同时达到符合电路的非关联事件引起的符合(偶然计数n rc=2τs n1n2) 电子学分辨时间τe=FWHM/2符合计数n c=n co+n rc 真偶符合比R=n co/n rc=1/2τs A电压工作状态脉冲幅度⎺h=Ne/C0 E=Κ1⎺h+K2=Gx+E0 G0增益E0零截α能量分辨率FWHMs=2.36√FEαW0探测器选择α:金硅面垒半导体探测器、屏栅电离室、带窗正比计数器β:半导体探测器、磁谱仪γ:单晶γ谱仪全能峰E f=Eγ单Es= Eγ-511keV双E d= Eγ-1022keVy(i)=y(I p)exp[-(i-I p)2/2σ2] η=FWHM/I p FWHM=2.36σ峰康比p=全能峰的峰值/康普顿平台的峰值半导体峰总比f p/T=特征峰面积/谱总面积第七章中子探测反应堆周期T:反应堆内中子密度变化e倍所需时间平均每代时间τ:上一代中子的产生到被吸收后又产生新一代中子的平均时间K=堆内一代裂变中子总数/堆内上一代裂变中子总数T=τ/K-1反应堆功率测量系统功能:为反应堆提供工况控制信息(控制方面),为反应堆的安全保护系统提供安全保护信号(安全方面)中子测量方法:核反冲法,核反应法,核裂变法,活化法中子能谱测量方法:核反应法,核反冲法,飞行时间法中子探测器原理:通过中子与核相互作用产生可被探测的次级粒子并记录这些刺激粒子探测过程:1.中子和辐射体发生相互作用产生带电粒子或感生放射性2.在某种探测仪表记录这些带电粒子或放射性中子探测器种类:1.气体探测器(BF3正比计数管,涂硼正比计数管,长计数管,平行板电离室,圆柱形电离室,γ补偿电离室,长中子电离室)2.固体探测器(硫化锌快中子屏,硫化锌慢中子屏,含锂闪烁体,有机闪烁体)堆芯外仪表:核仪表系统(2个源量程测量通道2个中间量程测量通道4个功率量程测量通道),提供信号,提供控制信号,监测功能堆芯内仪表:堆芯裂变电离室,涂硼室,γ温度计.自给能探测器堆芯中子注量率测量系统:驱动装置,组选择器,路选择器,中子探头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22
五、放射性衰变的基本规律
1. 指数衰减规律
dNNd, t
NN0et
N0:t=0时刻的原子核数目 N: t时刻的原子核数目 : 衰变常数,单位时间每个原子核衰变的几率
23
2. 核衰变的时间特性
• 半衰期T1/2:
tT 1/2 时N , 1 2N 0N 0e T 1/2
T1/2
ln2
0.693
放射性原子核数目衰减到一半所需的时间
• 平均寿命:
1, 1
需的时间
t放时 射性原, N 子 核1 e数N 目0衰N 减0到e1/e所
• 能级宽度:粒子处在某一状态有一定的时间范围,
处在该状态的平均时间称为寿命,或称这个能级有一定宽度。
24
3. 放射性活
AdN
dt
NA0et
N-放射性核数 -衰变常数 A0-t=0时刻的放射性活度
12
• 射线产生 1. 处于激发态的原子核向低能级跃迁时发
射射线。对实验室中使用的大多数辐 射源来说,受激核态是在放射性母核经 、衰变过程中形成的,所以射线常 常伴随、射线产生。 2. 正反粒子湮灭发射射线。如正电子与 负电子相遇发生湮灭,发射两个方向相 反的光子, 光子能量为0.511MeV。
13
10
Bi的衰变及Tl的能级
11
三、射线和x射线
• 电磁波,静止质量为0,具有波粒二象性。
• 波长比普通光波短很多, 波长<x 波长, 粒子性更突出,常称光子。
• 能量 E h hc
动量 P h h c
h 普朗克常数,v 振动频率,c 光速, 波长
Ehc1(2 4)(0e0V)1( 2.4)(Ke)V
• 放射性同位素(,n)源
从许多普通放射性核素的直接衰变可以得到
具有相当能量的粒子,所以可以把发射粒子 的同位素与适当的靶物质混和起来,制成小的 自给中子源。
4
2
49B e16C 2 01n
Q=5.17MeV
• 光致中子源 光子能量>10MeV
49B eh 48Be01n Q1.66M 6 eV 1 2Hh 11H01n Q2.22M 6 eV
单位
居里(Ci):3.7×1010衰变 /s,mCi,Ci
贝可勒尔(Bq):1衰变 /s , 1Ci=3.7×1010Bq
KBq,MBq
25
•比放射性活度(比活度,固体适用) 放射性样品中某种放射性核素的活度与样品 质量(或体积)之比,即单位质量的放射性 样品内该核素的活度。其单位是kBq.g-1 、 MBq.g-1等。 •放射性浓度(溶液和气体适用) 对放射性溶液和气体常用放射性浓度来表示 其中所含有的某放射性核素的量,其含意是 单位体积溶液或气体中所含的该核素的活度。 其单位是Bq.L-1、Bq.m-3 、kBq.L-1等。
• 电子加速器 如BES、LEP等,加速后的电子能量可达GeV 量级。
8
9
二、重带电粒子
• 质子 H原子核,mp=938MeV=1836me,带1个正电荷。 • 粒子 He原子核,由2个质子和2个中子组成,带2个正
电荷。
• 衰变 Z AX Z A 4 2Y2 4H(e)
• 核裂片 重核裂变产生两个裂变碎片。根据动量守恒, 每个碎片向相反方向发射。是带多电荷的正离子。
如235U吸收一个慢中子裂变产生两个裂片,质量小的平 均质量数m1=96,总电荷 Q1=20e;质量大的平均质量 数m2=139,总电荷 Q2=72e。 • 重离子 Z>2的离子,核裂片是其中一种,存在与宇宙线 中,也可以通过把原子的核外电子直接剥离产生,一般 用重离子加速器产生并加速,以增加其能量。
7
• 俄歇电子 俄歇电子能量比 粒子和内转换电子能量低。 俄歇效应与x射线发射是互相竞争的两个过程。 原子内壳层失去一个电子出现一个空穴时,外 壳层电子就可能跃迁来填补空穴,同时发射x 射线。若不发射x射线而将能量交给另一个壳 层电子,使其克服结合能而发射出去,这个过 程就是俄歇效应,打出的电子就是俄歇电子。
• 轫致辐射谱是连续的。
16
•特征X射线的产生
处于激发态的原子,内层电子的跃迁使原子恢 复到最低能态或基态,同时以发射特征X射线 的形式释放能量,该特征X射线的能量等于初 态与终态间的能量差。
M
L
K K
K
17
外部辐射激发
特征X射线
入射粒子束

入射粒子能量必须大于预期由靶发出的 最大X射线能量, X射线谱为连续谱, 特征X射线能量是单一的,各向同性发射。
•轻子—不参与强相互作用的,自旋为1/2的粒子, 如:电子,子,子,各类中微子,……
•场量子—自旋为1,传递相互作用的粒子, 它们是光子,胶子,W、Z中间玻色子。
3
一些纯电子源
6
• 内转换电子 能量从keV 到MeV,为单能。 处于激发态的原 子核通过把能量交给核外电子退激发,核外电子把获得能量 的一部分用以克服结合能,其余作为电子的动能脱离原子。
第六章
辐射与物质的相互作用
1
主要内容
• 0、微观粒子的基本性质 • 1、辐射与物质相互作用概述 • 2、重带电粒子与物质的相互作用 • 3、快电子与物质的相互作用 • 4、电磁辐射与物质的相互作用 • 5、其他
2
6.0 微观粒子的基本性质
一、粒子的分类及主要性质 按粒子参与相互作用的情况来分类
•强子—参与强相互作用的粒子 重子—自旋为1/2和半整数的强子,是费米子, 服从费米-狄拉克统计规律。如:质子、 中子、各类超子。 介子—自旋为整数的强子,是玻色子,服从玻色 -爱因斯坦统计规律。如:,k,……
18
用于激发特征X射线的粒子源
19
四、中子
• 中子性质:电中性,自旋1/2,mn=940MeV, 束缚在原子核内的中子是稳定的,自由中子是 不稳定的。平均寿命 =16.9分。
npe~e
• 中子的产生 1. 许多超铀重核素具有自发裂变几率,每次裂
变时发射几个快中子。最常见的源是252Cf 。
20
21
14
3. 伴随核反应产生的 射线
4
2
49B e16C 2*01n
生成的 12 C处于激发态,向低能级跃迁时 产生能量为4.44MeV的 射线。
15
4. 轫致辐射(x射线)
• 当快电子与物质相互作用时,其部分能量转换 成轫致辐射形式的电磁辐射。
• 转换成轫致辐射的电子能量的份额随入射电子 能量的增加而增加,也随吸收物质的原子序数 的增加而增加。
相关文档
最新文档