电力系统暂态稳定实验

合集下载

电力系统实验报告 暂态稳定分析实验

电力系统实验报告 暂态稳定分析实验
2、用实验结果说明故障切除时间(角)对系统暂态稳定性的影响。
答:因为a中故障持续时间为0.5s,b中故障持续时间为1.0s,通过表15-7中的a、b两种情况对比可知,b中各种故障类型(两项接地和三相短路)的暂态稳态极限值均小于a中的。所以快速切除故障对于提高电力系统暂态稳定性有决定性的作用。因为快速切除故障减小了加速面积,增加了减速面积,提高了发电机之间并列运行的稳定性。另一方面,快速切除故障也可使负荷中的电动机端电压迅速回升,减小了电动机失速和停顿的危险,提高了负荷的稳定性。
(3)掌握提高电力系统暂态稳定的方法。
二、实验内容
(1)电力系统暂态失稳实验;
(2)故障类型对电力系统暂态稳定的影响;
(3)电力系统暂态稳定的影响因素实验。
三、实验使用工程文件及参数
工程文件名:暂态稳定分析实验,输入参数(如图15-6):
G1:300+j180MVA(PQ节点)
变压器B1:Sn=360MVA,变比=18/242 KV,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;
四、实验方法和步骤
1、电力系统暂态失稳实验
打开名为“暂态稳定分析实验”的工程文件。该工程中有一个双回线网络,并带有一个故障点,模拟电力系统发生故障后的暂态失稳现象。网络结构图如图15-6所示,输入给定参数,完成实验系统建立。
图15-6 带故障点双回路网络结构图
运行仿真,在输出图页上观察故障前系统稳定运行时的电压、电流波形,以及在发生故障后,系统失稳状态的电压、电流波形,并将电压电流波形记录到图15-7和图15-8(仿真时间:15秒;故障时刻:第5秒;故障持续时间:0.5秒;故障距离:50%;故障类型:三相短路)。
图15-9 双回路带故障的结构图

实验五基于PSASP的电力系统暂态稳定计算实验

实验五基于PSASP的电力系统暂态稳定计算实验

实验五基于PSASP的电力系统暂态稳定计算实验一、实验目的:掌握用PSASP进行电力系统暂态稳定计算方法。

二、实验内容:在实验三的基础上进行暂态稳定计算。

同步发电机參数任选,可參见c:\wpsasp\wepri-7\,给出其中一组參数如下:模型:6参数组号:9电抗(p.u):d轴X d: 2.16 X d': 0.265 X d": 0.205q轴X q: 2.16 X q': 0.530 X q": 0.205时间常数(s):TJ:8.0a: 0.9T do': 8.62 T d"0: 0.05 b: 0.00T q'0: 2.2 0 T qo": 0.07 n: 9.0D: 0.000Ra: 0.00X2: 0.205三、实验步骤:(1)点击“编辑模式”: 先双击发电机,再点击“发电机及其调节器” 输入同步机參数;(参见以上数据)(2)关闭“编辑模式”窗口;(3)点击“运行模式” :a、点击“作业”菜单项,执行“暂态稳定”命令,定义作业:输入作业号输入潮流作业点击编辑选择网络故障点击编辑:点击“+”选择I、J侧母线名确定输入故障点位置(如输入50%)输入新增母线名(如输入aa)选择故障方式输入R=0,X=0 输入故障持续时间点击保存;点击“+”选择I、J侧母线名确定输入故障点位置(如输入1%)输入新增母线名(如输入bb)选择故障方式输入R=99999.99999,X=99999.99999 输入故障持续时间点击保存;1 点击“+”选择I、J侧母线名确定输入故障点位置(如输入99%)输入新增母线名(如输入cc)选择故障方式输入R=99999.99999,X=99999.99999 输入故障持续时间点击保存;点击退出点击确定。

b、点击“视图”菜单项,执行“暂态稳定”命令,作业选择。

c、点击“计算”菜单项,执行“暂态稳定”命令;d、点击“报表”菜单项,执行“暂态稳定”命令, 查看计算结果;e、点击发电机功角分析输出,选择输出变量,点击输出,点击确定。

电力系统暂态稳定性研究

电力系统暂态稳定性研究

电力系统暂态稳定性研究随着社会的发展和人民生活的不断改善,电力在现代社会中的作用愈加重要。

然而,电力系统的暂态稳定性问题却是电力工程领域中一个重要而复杂的难题。

本文将探讨电力系统暂态稳定性的研究进展以及相关关键技术。

第一部分:暂态稳定性基本概念暂态稳定性指的是系统在发生扰动(如故障)后,经过一段时间的调节过程后,能回到新的稳定工作状态的能力。

暂态稳定性的研究是电力系统运行和控制的基础,它涉及到电力系统动态响应、稳定边界和稳定控制等关键方面。

第二部分:暂态稳定性研究方法目前,暂态稳定性研究主要采用系统仿真、实验和观测三种方法。

系统仿真是一种基于计算机模型的仿真方法,通过对电力系统的动态行为进行建模和计算,研究系统对不同故障的响应过程。

实验方法则是基于实际电力系统的实验数据,通过设备和设施搭建的实验平台,模拟系统在不同工况下的行为。

观测方法则是通过电力系统运行中的实测数据,对系统的暂态稳定性进行分析和研究。

第三部分:暂态稳定性评估指标暂态稳定性评估指标是对电力系统暂态稳定性进行量化和评估的工具。

常用的指标包括暂态稳定裕度、暂态过电压、暂态电流和角稳定裕度等。

这些指标能够从不同角度反映系统在暂态过程中的行为和稳定性。

第四部分:暂态稳定性改善技术为了提高电力系统的暂态稳定性,研究人员提出了许多相关的改善技术。

例如,调整发电机励磁系统,增强发电机对系统扰动的响应能力;改善电力系统的电容补偿技术,提高电能传输的效率和稳定性;优化系统的控制策略,提高暂态过程中的稳定性等。

第五部分:暂态稳定性研究进展和挑战目前,随着电力系统规模的不断扩大以及电力负荷的增加,电力系统暂态稳定性研究面临着前所未有的挑战。

一方面,电力系统的复杂性和非线性特性使得暂态稳定性研究变得更加复杂和困难。

另一方面,新能源的接入和智能电网的发展给暂态稳定性带来了新的问题和挑战。

总结:电力系统暂态稳定性研究是电力工程领域中一个重要的课题,它关系着电力系统的安全稳定运行。

电力系统暂态稳定性分析

电力系统暂态稳定性分析

电力系统暂态稳定性分析电力系统暂态稳定性分析8、5 简单电力系统暂态稳定性暂态稳定性的概念:指在某个运行情况下突然受到大的干扰后,能否经过暂态过程达到新的稳定运行状态或回复到原来的状态。

大干扰:一般指大型负荷的投入和切除、突然断开线路或发电机、短路故障及切除等。

一般伴随着系统结构的变化。

分析方法:不同于静态稳定问题的分析,不能做线性化处理,暂态稳定问题研究(1)暂态稳定性与按否和原来运行方式及干扰种类有关。

(2)系统暂态稳定过程是一个电磁暂态过程和机电暂态过程汇合在一起的复杂的运动过程,它们互相作用、互相影响。

暂态稳定性分析中的基本假设:(1)发电机采用简化的数学模型采用x d 后的E ' 为发电机的模型。

E ' 与无限大系统母线电压相量之间夹角为δ' ,见图8、2(2)在定量分析中不考虑原动机调速器的作用即 P T =C 认为原动机的输入机械功率为恒定不变。

8、5、1 暂态稳定的物理过程分析分析所用的电力系统:*正常运行时,发电机经由变压器和输电线向无限大系统送电,等值电路如图所示。

假设为状态ⅠG T1 L T2V 发电机与无限大系统的等值电抗为:X I=X d +X T 1+l +X T 2发电机发出的电磁功率为:E ' V P I =sin δ*若在一回输电线始端发生不对称短路(对应状态Ⅱ),按照正序增广网络理论,只需在正序网络(即正常运行状态)的基础上,在故障点接一附加电抗。

用此附加电抗区分不同的短路类型。

为求发电机的电磁功率,需要求解E ‘和V 之间的等值电抗XX II =(X d +X T 1) +(+X T 2) +2(X d +X T 1)(+X T 2)P ∏=sin δ* 故障发生后,保护动作跳开故障线路两端的开关,将故障线路切除,等值V X III =X d +X T 1+X l +X T 2 E ' V P III =sin δ上述三种运行状态,显然有:I >P III >P IIa :正常运行状态,在a 点处某一时刻发生不对称故障,等值电抗增大,P E (δ) 变为(II ),由于转子惯性,δ不突变,所以运行点转移到b 点。

电力系统中的电压暂态稳定分析与控制研究

电力系统中的电压暂态稳定分析与控制研究

电力系统中的电压暂态稳定分析与控制研究电力系统的稳定运行是现代社会正常供电的基础,而电压暂态稳定性是电力系统稳定分析与控制中的重要方面。

本文将从电压暂态稳定性的定义、原因以及分析与控制方法等方面展开论述,以期对电力系统中的电压暂态稳定性研究有更深入的了解。

首先,电压暂态稳定性是指系统在发生外部或内部干扰时,电压快速恢复到稳定状态的能力。

这种暂态稳定性的保持对于系统的正常运行至关重要。

电压暂态失稳可能导致电力系统的电压波动、频率偏移甚至系统崩溃,给供电可靠性和电力质量带来风险。

电压暂态失稳的原因多种多样。

外部干扰包括突然的负荷变化、故障电流的突变、冲击负载和电路的短路等。

内部干扰主要来自于电力系统内部元件的失效以及控制系统的误动作。

这些因素会造成电压波动、电压降低和电力系统频率偏移等问题,危及电网稳定运行。

为了确保电压暂态稳定性,研究人员开展了大量的研究工作,提出了多种分析和控制方法。

一种常用的方法是使用传统的电力系统稳定分析工具,如暂态稳定分析软件、模拟器等,来评估系统的暂态稳定性能。

这些工具可以模拟系统在不同工况下的运行情况,帮助工程师预测系统的响应和改进系统设计。

另一种方法是使用现代控制理论和技术来开展电压暂态稳定性的研究。

例如,基于先进控制理论的方法,如模型预测控制、自适应控制等,可以提高电力系统的暂态稳定性。

这些方法利用系统模型和状态变量的测量信息,在实时调节控制器输出,控制系统的响应。

通过优化控制策略和参数,可以提高电力系统的恢复能力和稳定性。

此外,还有一些新兴的研究方向,如智能算法和人工智能技术在电压暂态稳定性研究中的应用。

这些方法利用大数据和机器学习等技术,对电力系统进行智能化、自适应的控制和管理,以提高电压暂态稳定性。

例如,神经网络和遗传算法可以用于优化电力系统的控制策略和参数,从而实现快速稳定性的恢复。

需要注意的是,在电力系统中,电压暂态稳定性的研究不仅仅是技术层面上的问题,还涉及到经济和环境因素。

电力系统稳态与暂态稳定性分析方法的比较评估

电力系统稳态与暂态稳定性分析方法的比较评估

电力系统稳态与暂态稳定性分析方法的比较评估电力系统是现代工业与生活中不可或缺的基础设施之一。

电力系统的可靠性和稳定性是保障供电质量的关键,而稳态与暂态稳定性分析是电力系统研究中的两个重要方面。

本文将从理论、实验方法、应用实践等角度对电力系统稳态与暂态稳定性分析方法进行比较评估。

一、理论比较稳态与暂态稳定性是基于电力系统的动态过程而产生的一些难以预测的不确定性问题。

在理论比较中,我们可以以研究稳态分析和暂态稳定性分析两个方面来对比。

稳态分析方法主要采用潮流方程、节点分析法、因子法、等效网络法等多种数学模型,分析电流、电压、功率等参数,确定电力系统达到稳定状态的条件。

由于稳态稳定性成为电力系统稳性的首要问题,稳态分析方法的应用得到了广泛的认可。

而暂态稳定性分析是指系统在扰动下恢复平衡的能力。

暂态稳定性分析的主要任务是研究整个电力系统电力负荷、发电量、传输容量、负荷复合以及电力负载等问题。

暂态稳定分析方法主要包括故障模拟、等效次啮合模型等。

在理论分析中,稳态分析方法已经有了很大的发展和应用。

然而暂态稳定性分析方法总体来说相对较少,特别是在实际应用过程中还偏重于稳态分析。

二、实验方法比较实验方法将理论模型转化为实际情况,从而解决了理论分析难以解决的问题。

对电力系统的稳态与暂态稳定性分析,实验方法是必不可少的补充手段。

在稳态稳定性分析中,实验方法包括了电力系统模型实验与场景模拟实验两种方法。

电力系统模型实验主要采用仿真技术,通过模型对电力系统的稳定性变化进行模拟。

而场景模拟实验则是将实验环境模拟成实际的电力系统,通过实验对电力系统的稳定性进行测试。

这两种方法是相对独立的,可以根据实验需要灵活应用,以达到最大的实验效果。

在暂态稳定性分析中,实验方法主要通过故障模拟实验和实际场景模拟实验两种方法进行。

电力系统的故障模拟实验是通过制造特定电力系统故障的方式来进行模拟,利用其来检测电力系统暂态稳定性。

而实际场景模拟实验则是在实际的电力系统或者实际电网下进行模拟实验,检测电力系统的暂态稳定性,具有较为实际的可行性。

电力系统电压暂态稳定性分析

电力系统电压暂态稳定性分析

电力系统电压暂态稳定性分析随着电力系统规模的不断扩大和复杂性的增加,电力系统的暂态稳定性问题显得尤为重要。

电力系统的暂态稳定性是指在受到外部扰动时,电力系统能够在较短的时间内恢复到稳态,并保持稳态运行的能力。

电压暂态稳定性是电力系统暂态稳定性的一个重要指标。

当电力系统发生短路故障、大负荷突然变化或其它意外情况时,电网内各节点的电压会发生明显的波动。

如果电网节点的电压过度波动,超出了一定范围,就会导致设备的故障甚至损坏。

因此,对电力系统电压暂态稳定性进行分析和评估,对于保障电网的可靠运行具有重要意义。

电力系统电压暂态稳定性分析主要包括以下几个方面:1. 暂态稳定性分析方法:暂态稳定性分析是通过数学模型和计算方法来模拟电力系统在暂态过程中的电压变化情况。

目前常用的暂态稳定性分析方法包括:暂态稳定性分析程序(Transient Stability Analysis Program,TSAP)、暂态稳定性蒙特卡洛分析方法(Transient Stability Monte Carlo Simulation,TSMCS)等。

这些方法可以对电力系统在暂态过程中的电压变化进行精确计算,评估电网的暂态稳定性。

2. 暂态过程中的电压暂动:暂态过程中的电压暂动是指电网节点电压在受到扰动后的瞬时变化。

这种暂动可以分为两类:电压暂降和电压暂升。

电压暂降是指电网节点电压在短时间内下降的现象,而电压暂升则是指电网节点电压在短时间内上升的现象。

电压暂动的大小和持续时间直接影响到电力系统的暂态稳定性。

3. 影响电压暂动的因素:电力系统电压暂动的大小和持续时间受到多种因素的影响。

其中包括电力系统的结构、负荷特性、故障类型、电力设备的参数、保护装置的动作特性等。

理解和分析这些因素对电压暂动的影响,是进行电力系统电压暂态稳定性分析的前提。

4. 电压稳定控制策略:为了提高电力系统的电压暂态稳定性,需要采取一系列的措施和控制策略。

常见的电压稳定控制策略包括发电机励磁控制、无功补偿装置的投入、线路电压补偿等。

电力系统暂态稳定性试验

电力系统暂态稳定性试验

电力系统暂态稳定性实验
发电机。发电机的励磁系统可以用外加直流电源通过手动来调 节,也可以切换到台上的微机励磁调节器来实现自动调节。实 验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗 值满足相似条件。“无穷大”母线就直接用实验室的交流电源, 因为它是由实际电力系统供电的,因此,它基本上符合“无穷 大”母线的条件。 四)原始计算数据、所应用的公式 电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各 发电机能否继续保持同步运行的问题 正常运行时发电机功率特性为:P1=(Eo×Uo)×sinδ1/X1 短路运行时发电机功率特性为:P2=(Eo×Uo)×sinδ2/X2 故障切除时发电机功率特性为:P3=(Eo×Uo)×sinδ3/X3
若短路类型拨码开关打到“瞬时”位,按“三相短路”及“两相短 路”按钮的时间应超过保护动作时间0.5s;若打到“永久”位,只需 按一下短路按钮即可,但注意应在保护跳闸后重新打到“瞬时”位!
谢 谢!
(kW)
双回线运行方式 0.45
最大短路电流(A) 2.7
单回线运行方式 0.45
2.3
(kW)
双回线运行方式 0.45 单回线运行方式 0.45
最大短路电流 (A)
3.26
2.68
电力系统暂态稳定性实验
七)实验结果和实验现象的分析讨论
如右图示之,假定发电机功率特性的初始 工作点在曲线1的a点,短路发生后过渡到 功率特性曲线3的b点,由于惯性的作用, 发电机转速此时维持不变,功角δ仍为δ0, 其后因为输出的电磁功率减小,即由P1 变至P3,因而发电机转子开始加速,对 应功角δ开始增大;当功角δ增大δ1时故 障切除,功角特性由曲线3的c点过渡到功 率特性曲线2的e点,虽然输出的电磁功率 增大,即由P3变至P2,但由于惯性的作 用,发电机转速依然继续增加,直至沿着 功率特性曲线2加速到f点,对应功角δ增 大到δ2。由于此时输出的电磁功率大于原 动机的输入(机械)功率,发电机功角再 沿着功率特性曲线2回调减速,经过反复 振荡,最后稳定在功率特性曲线2的g点。 发电机的暂态稳定性起决于加速面积 Sabcd是否小于或等于减速面积Sefd;显 然,当故障发生后切除较慢时,δ1将增大, 加速面积Sabcd将增大,如果形成加速面 积Sabcd大于减速面积Sefd,将产生加速 倍增,整个机组将失去稳定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统暂态稳定实验一、实验目的1 •通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。

2•学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施3•用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。

二、原理与说明电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。

在各种扰动中以短路故障的扰动最为严重。

正常运行时发电机功率特性为:P1=( Eo x Uo)x sin S i/X1 ;短路运行时发电机功率特性为:P2=( Eo x Uo)x sin S 2X2 ;故障切除发电机功率特性为:P3 =( Eo x Uo)x sin S 3/X3 ;对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。

而系统保持稳定条件是切除故障角S c小于S max S max可由等面积原则计算出来。

本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,S max也不同,使对故障切除的时间要求也不同。

同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使S max增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重合闸,使系统进入正常工作状态。

这二种方法都有利于提高系统的稳定性。

三、实验项目与方法(一)短路对电力系统暂态稳定的影响1 •短路类型对暂态稳定的影响本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接地短路和三相短路试验。

固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。

短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。

在手动励磁方式下通过调速器的增 (减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。

将实验结果与理论分析结果进行分析比较。

P max为系统可以稳定输出的极限,注意观察有功表的读数,当系统出于振荡临界状态时,记录有功表读数,最大电流读数可以从YHB-川型微机保护装置读出,具体显示为:GL- 三相过流值GA- A相过流值微机保护装置的整定值代码如下:0102 03 0405过流保护动作延迟时间 重合闸动作延迟时间 过电流整定值 过流保护投切选择 重合闸投切选择另外,短路时间T D 由面板上“短路时间”继电器整定,具体整定参数为表 5-1。

表5-1微机保护装置的整定方法如下:按压“画面切换”按钮,当数码管显示『 PA —』时,按压触摸按钮“ + ”或“―”输入密码,待密码输入后,按下按键“△”,如果输入密码正确,就会进入整定值修改画面。

进入整定 值修改画面后,通过“先选01整定项目,再按压触摸按钮“ + ”或“―”选择当保护时间(s );通过“选 03整定项目,再按压触摸按钮“ + ”或“―”选择当过电流保护值;通过“△”“▽”选 04整定项目,再按压触摸按钮“ + ”或“―”选择当过电流保护投切 ON 通过“△”“▽”选 05整定项目,再按压触摸按钮“ + ”或“-”选择重合闸投切为 OFF 。

(详细操作方法 WD —m 综合自动化试验台使用说明书。

) 表5-2(0:表示对应线路开关断开状态1:表示对应线路开关闭合状态)(二)研究提高暂态稳定的措施1 •强行励磁在微机励磁方式下短路故障发生后,微机将自动投入强励以提高发电机电势。

观察它对提高暂态稳定的作 用。

2 •单相重合闸GB-B 相过流值 GC-C 相过流值在电力系统的故障中大多数是送电线路(特别是架空线路)的“瞬时性”故障,除此之外也有“永久性故障”。

在电力系统中采用重合闸的技术经济效果,主要可归纳如下:①大提高供电可靠性;②高电力系统并列运行的稳定性;③对继电保护误动作而引起的误跳闸,也能起到纠正的作用。

对瞬时性故障,微机保护装置切除故障线路后,经过延时一定时间将自动重合原线路,从而恢复全相供电,提高了故障切除后的功率特性曲线。

同样通过对操作台上的短路按钮组合,选择不同的故障相。

通过调速器的增(减)速按钮调节发电机向电网的出力,观察它对提高暂态稳定的作用,观察它对提高暂态稳定的作用。

其故障的切除时间在微机保护装置中进行修改,同时要设定进行重合闸投切,并设定其重合闸时间。

其操作步骤同上,不同的是在05整定项目时,按压触摸按钮“ + ”或“―”选择投合闸投切on,并选02整定项目时,按压触摸按钮“ + ”或“一”设定重合闸动作延时时间。

瞬时故障时间由操作台上的短路时间继电器设定,当瞬时故障时间小于保护动作时间时保护不会动作;当瞬时故障时间大于保护动作时间而小于重合闸时间,能保证重合闸成功,当瞬时故障时间大于重合闸时间,重合闸后则认为线路为永久性故障加速跳开整条线路。

表5-7(三)异步运行和再同步的研究1 •在发电机稳定异步运行时,观察并分析功率,发电机的转差,振荡周期及各表的读数变化的特点。

2•在不切除发电机的情况下,研究调节原动机功率,调节发电机励磁对振荡周期,发电机转差的影响,并牵入再同步。

注意事项:1 •在做单相重合闸实验时,进行单相故障操作的时间应该在接触器合闸10秒之后进行,否则,在故障发生时会跳三相,微机保护装置会显示“GL- ”,且不会进行重合闸操作。

2 •实验结束后,通过励磁装置使无功至零,通过调速器使有功至零,解列之后按下调速器的停机按钮使发电机转速至零。

跳开操作台所有开关之后,方可关断操作台上的电源关断开关,并断开其他电源开关。

3 •对失步处理的方法如下:通过励磁调节器增磁按钮,使发电机的电压增大;如系统没处于短路状态,且线路有处于断开状态的,可并入该线路减小系统阻抗;通过调速器的减速按钮减小原动机的输入功率。

四、实验数据分析1 •整理不同短路类型下获得实验数据,通过对比,对不同短路类型进行定性分析,详细说明不同短路类型和短路点对系统的稳定性的影响。

答:通过对比,我们可以看出同样的短路故障切除时间在不同短路类型下对系统稳定性的影响不一样,不对称短路时,根据正序等效定则,相当于在正常等值电路中的短路点接入了一个附加阻抗,改变系统阻抗,影响系统输出功率,使之与正常运行情况下的输出有差别,影响功角,进而影响系统的稳定性。

由于不同短路情况下的附加电抗不一样,所以影响也不一样。

单相接地时附加电抗为负序电抗和零序电抗之和,两相短路时附加电抗为负序电抗,两相接地短路时附加电抗附加电抗为负序电抗与零序电抗并联。

2•通过试验中观察到的现象,说明二种提高暂态稳定的措施对系统稳定性作用机理。

答:系统发生短路故障时,发电机输出的电磁功率骤然降低,而原动机的机械输出功率来不及变化,两者失去平衡,发电机转子将加速。

强行励磁可以提高发电机的电势,增加发电机的输出功率,即可使原动机输出与发电机输出功率平衡,可以有效地减小失步引起的不利影响。

且强行励磁的速度越快、强励倍数越大,效果越好。

电力系统中的短路故障大多是由网络放电造成的,是暂时性的,在切断线路经过一段电弧熄灭和空气去游离的时间轴,短路故障便完全消除了。

这时,如果再把线路重新投入系统,它便能继续正常工作。

所以采用自动重合闸装置,用微机保护装置切除故障线路后,经过延时一定时间将自动重合原线路,从而恢复全相供电,即可提高了故障切除后的功率特性曲线,即提高系统的暂态稳定性。

五、思考题1 •不同短路状态下对系统阻抗产生影响的机理是什么?不对称短路时,根据正序等效定则,相当于在正常等值电路中的短路点接入了一个附加阻抗,改变了系统阻抗:(1)单相接地短路:以A相短路为例,由边界条件Ua=0 lb=O、lc=O,将它们用对称分量法分解,得到各序分量之间表示的边界条件,采用复合序网或结合各序等效电路分析,便可以得到其附加电抗X A =X2+X0(2)两相相间短路:以BC两相间短路为例,其边界条件为Ub=Uc lb+lc=0、la=O,得到其附加电抗为X A =X2; (3)两相接地短路:以BC两相接地短路为例,其边界条件为la=0、Ub=0Uc=O,得到其附加电抗为X A =X2//X0。

2 .提高电力系统暂态稳定的措施有哪些?答:(1 )快速切除故障;(2)采用自动重合闸;(3)发电机快速强励磁;(4)发电机电气制动;(5 )变压器中性点经小电阻接地;(6 )快速关闭汽门;(7)切发电机和切负荷;(8)设置中间开关站;(9)输电线路强行串联补偿。

3 •对失步处理的方法(注意事项3中提到)的理论根据是什么?答:改变发电机的机端电压或者系统阻抗,进而改变功角,来改变发电机转速;直接调整原动机的输入功率,改变发电机转速,来调节输出功率的频率。

4 .自动重合闸装置对系统暂态稳定的影响是什么?答:自动重合闸装置是将被非正常操作跳开的断路器重新自动投入的一种自动装置。

线路采用自动重合闸装置后,如果瞬时性故障时,保护动作切除故障后,重合闸动作能够成功,恢复线路的供电。

作用:1)提高输电线路供电可靠性,减少因瞬时性故障停电造成的损失。

(2 )对于双端供电的高压输电线路,可提高系统并列运行的稳定性,从而提高线路的输送容量。

(3)可以纠正由于断路器本身机构不良,或继电保护误动作而引起的误跳闸。

注意:重合闸时间必须大于潜供电弧熄灭时间,否则线路再次受到短路故障的冲击,可能会大大恶化系统的暂态稳定性甚至破坏整个系统的稳定。

相关文档
最新文档