第六章电力系统暂态稳定
电力系统暂态稳定性分析

电力系统暂态稳定性分析电力系统暂态稳定性分析8、5 简单电力系统暂态稳定性暂态稳定性的概念:指在某个运行情况下突然受到大的干扰后,能否经过暂态过程达到新的稳定运行状态或回复到原来的状态。
大干扰:一般指大型负荷的投入和切除、突然断开线路或发电机、短路故障及切除等。
一般伴随着系统结构的变化。
分析方法:不同于静态稳定问题的分析,不能做线性化处理,暂态稳定问题研究(1)暂态稳定性与按否和原来运行方式及干扰种类有关。
(2)系统暂态稳定过程是一个电磁暂态过程和机电暂态过程汇合在一起的复杂的运动过程,它们互相作用、互相影响。
暂态稳定性分析中的基本假设:(1)发电机采用简化的数学模型采用x d 后的E ' 为发电机的模型。
E ' 与无限大系统母线电压相量之间夹角为δ' ,见图8、2(2)在定量分析中不考虑原动机调速器的作用即 P T =C 认为原动机的输入机械功率为恒定不变。
8、5、1 暂态稳定的物理过程分析分析所用的电力系统:*正常运行时,发电机经由变压器和输电线向无限大系统送电,等值电路如图所示。
假设为状态ⅠG T1 L T2V 发电机与无限大系统的等值电抗为:X I=X d +X T 1+l +X T 2发电机发出的电磁功率为:E ' V P I =sin δ*若在一回输电线始端发生不对称短路(对应状态Ⅱ),按照正序增广网络理论,只需在正序网络(即正常运行状态)的基础上,在故障点接一附加电抗。
用此附加电抗区分不同的短路类型。
为求发电机的电磁功率,需要求解E ‘和V 之间的等值电抗XX II =(X d +X T 1) +(+X T 2) +2(X d +X T 1)(+X T 2)P ∏=sin δ* 故障发生后,保护动作跳开故障线路两端的开关,将故障线路切除,等值V X III =X d +X T 1+X l +X T 2 E ' V P III =sin δ上述三种运行状态,显然有:I >P III >P IIa :正常运行状态,在a 点处某一时刻发生不对称故障,等值电抗增大,P E (δ) 变为(II ),由于转子惯性,δ不突变,所以运行点转移到b 点。
电气工程基础_第六章远距离大容量输电

当线路输送功率不等于自然功率时,可以通过调节无功 补偿装置来维持线路末端电压与首端电压相等。但这种集中 补偿不能消除沿线各点的电压偏离额定值。在这种情况下, 线路中点的电压偏移最为严重。 U P Pn P Pn UN P Pn
1 I 1 U
2 I 2 U
0
l
首末端电压相等时,线路电压 与传输功率的关系
稳定性可以认为是电力系统在遭受外部扰 动下发电机之间维持同步运行的能力。 静态稳定是指系统受到小扰动(如负荷波 动引起的扰动等)后的稳定性。 暂态稳定是指系统受到大扰动(如发电机 或输电线路突然故障)后的稳定性。
5.3.1 简单电力系统的静稳极限
G U
接线图
q X E d
G U
等值电路
Xl
q E
等值电路
一台发电机经变压器、输电线路与无限大容量系统并 联运行的简单电力系统接线图,这种系统又称为单机--无 限大系统。
所谓无限大是指受端系统的容量比送端发电机的容量大得 多,以致在该发电机输送任何功率的情况下,受端电压U的大小 和相位均可以认为是恒定的。 忽略发电机电枢绕组损耗,发电机输出的电磁功率为 PE UI cos
为了提高电力系统的稳定运行水平,可以采用:
1、加入串、并联补偿装置、自动调节装置等控制
手段。 2、高压直流输电技术。 3、灵活交流输电方式。
5.2 远距离输电线路的功率传输特性
5.2.1远距离输电线路的基本方程
2 I 2 U
输电线路中任意点的电压和电流与末端电压和 电流的关系如:
x U 2 cosh kx Z c I 2 sinh kx U 2 U 2 cosh kx Ix sinh kx I Zc
由国际电工委员会推荐的自然功率与电压等级的关系表
第六章 电力系统暂态稳定分析

第六章电力系统暂态稳定分析6.1概述在正常的稳态运行情况下,电力系统中各发电机组输出的电磁转矩和原动机输入的机械转矩平衡,因此所有发电机转子速度保持恒定。
但是电力系统经常遭受到一些大干扰的冲击,例如发生各种短路故障,大容量发电机、大的负荷、重要输电设备的投入或切除等等。
在遭受大的干扰后,系统中除了经历电磁暂态过程以外,也将经历机电暂态过程。
事实上,由于系统的结构或参数发生了较大的变化,使得系统的潮流及各发电机的输出功率也随之发生变化,从而破坏了原动机和发电机之间的功率平衡,在发电机转轴上产生不平衡转矩,导致转子加速或减速。
一般情况下,干扰后各发电机组的功率不平衡状况并不相同,加之各发电机转子的转动惯量也有所不同、使得各机组转速变化的情况各不相同。
这样,发电机转子之间将产生相对运动,使得转子之间的相对角度发生变化,而转子之间相对角度的变化又反过来影响各发电机的输出功率,从而使各个发电机的功率、转速和转子之间的相对角度继续发生变化。
与此同时,由于发电机端电压和定子电流的变化,将引起励磁调节系统的调节过程;由于机组转速的变化,将引起调速系统的调节过程;由于电力网络中母线电压的变化,将引起负荷功率的变化;网络潮流的变化也将引起一些其他控制装置(如SVC、TCSC、直流系统中的换流器)的调节过程,等等。
所有这些变化都将直接或间接地影响发电机转抽上的功率平衡状况。
以上各种变化过程相互影响,形成了一个以各发电机转子机械运动和电磁功率变化为主体的机电暂态过程。
电力系统遭受大干扰后所发生的机电暂态过程可能有两种不同的结局。
—种是各发电机转子之间的相对角度随时间的变化呈摇摆(或振荡)状态,且振荡幅值逐渐衰减,各发电机之间的相对运动将逐渐消失,从而系统过渡到一个新的稳态运行情况,各发电机仍然保持同步运行。
这时,我们就称电力系统是暂态稳定的。
另—种结局是在暂态过程中某些发电机转子之间始终存在着相对运动,使得转子间的相对角度随时间不断增大、最终导致这些发电机失去同步。
电力系统暂态分析:第六章 电力系统稳定性问题概述

M E max
2M E max S Scr
Scr S
• 四、自动调节励磁系统包括: • 1、自动调节励磁系统包括: • 主励磁系统和自动调节励磁装置
• 主励磁系统是从励磁电源到发电机励磁绕组的励 磁主回路:
• 自动调节励磁装置根据发电机的运行参数,如端 电压、电流等,自动地调节主励磁系统的参数。
➢两机系统
PE1 E12G11 E1E2 Y12 sin(12 12 ) PE12 E22G22 E1E2 Y12 sin(12 12 )
PE1 PE2 δ12
• 三、异步电动机转子运动方程和电磁转矩
• 异步电动机组的转子运动方程为
TJ
0
d*
dt
(M E
Mm)
• TJ 为异步电动机组的惯性时间常数,一般约为
Re
E i
n
Eˆ
jYˆij
j1
n
n
Ei E j (Gij cos ij Bij sin ij ) Ei2Gii Ei Ej Yij sin( ij ij )
j 1
j 1
ji
导纳角 ij
tg1
Gij Bij
➢任一台发电机的功率角的改变,将引起全系统各机 组电磁功率的变化。稳定分析是全系统的综合问题。
➢ 机电暂态过程主要是电力系统的稳定性问题。电力系 统稳定性问题就是当系统在某一正常运行状态下受到某种干 扰后,能否经过一定的时间后回到原来的运行状态或者过渡 到一个新的稳态运行状态的问题。
如果能够,则认为系统在该正常运行状态下是稳定
的。
反之,若系统不能回到
原来的运行状态或者不能建
立一个新的稳态运行状态,
J02 SB
Wk
6电力系统稳定性分析

e: PP在该大扰动下是暂态不稳定。
TPEP,P1cIe 0 如 切 除 故 障II较 晚I, II 在 切 除 故 障 时 ,
P II 0
转
子
加
速
已
比
较
严
重
,
运
行
点
沿
PI
I
,
I
如
1, 0 成
果 立
使 ,
得 则
到 c将达越h 点 m过ax时h 点,对 应c
(导数)大于0,即:
整步功率系数
Kp
PMP0100% P0
(7-2)
整步功率系数大小可表示系统静态稳定的程度。
整步功率系数值越小,静态稳定的程度越低。整步
功率系数等于0,则是稳定与不稳定的分界点,即静
态稳定极限点。在简单系统中静态稳定极限点所对
应的功角就是功角特性的最大功率所对应的功角。
• 静态稳定储备系数
PE
00
静态稳定性。
PUGm PEqm PEqm
PU G m
PUGm PEqm PEqm
0
c
b a
PEqm 900
PUGmPEqmPEqm 180 0
E
q
P0
PE
00
• 无自动励磁调节器时, 稳定极限由SEq=0确定, 为图中的a点。
• 安装电压偏差比例式励 磁调节器,如果Ke
(偏差放电倍数)选择
第一节 概述
一、电力系统稳定性的定义
给定运行条件下的电力系统,在受到扰动后,如果 能重新恢复到原来运行平衡状态或新的运行平衡状 态,并且系统中的多数运行参数可维持在一定的允 许范围内,使整个系统能稳定运行,即称电力系统 是稳定的。
电力系统暂态稳定的判据

电力系统暂态稳定的判据
电力系统的暂态稳定是指系统在受到外部扰动后,恢复到新的稳定工作状态的能力。
暂态稳定性的判据可以从多个角度来考虑:
1. 能量判据,暂态稳定性可以通过能量判据来评估。
当系统受到扰动时,能量的分布和转移对系统的暂态稳定性起着重要作用。
系统中的发电机、传输线和负荷都储存着能量,通过分析能量的转移和分布情况可以评估系统的暂态稳定性。
2. 动态判据,系统的暂态稳定性还可以通过动态判据来评估。
这包括对系统的动态响应进行分析,包括发电机的转速、电压的变化等。
通过分析系统在受到扰动后的动态响应情况,可以评估系统的暂态稳定性。
3. 频域判据,频域分析可以用来评估系统的暂态稳定性。
通过对系统的频率响应进行分析,可以评估系统在受到扰动后的频率变化情况,从而判断系统的暂态稳定性。
4. 相角稳定性判据,相角稳定性是评估系统暂态稳定性的重要指标之一。
通过分析系统在受到扰动后各节点的相角变化情况,可
以评估系统的暂态稳定性。
总的来说,电力系统的暂态稳定性判据是一个综合评估系统在受到扰动后恢复稳定状态能力的过程,需要从能量、动态响应、频率和相角稳定性等多个角度进行全面分析。
这些判据的综合评估可以帮助电力系统运营人员更好地了解系统的暂态稳定性状况,从而采取相应的措施来提高系统的暂态稳定性。
电力系统电压暂态稳定性分析

电力系统电压暂态稳定性分析随着电力系统规模的不断扩大和复杂性的增加,电力系统的暂态稳定性问题显得尤为重要。
电力系统的暂态稳定性是指在受到外部扰动时,电力系统能够在较短的时间内恢复到稳态,并保持稳态运行的能力。
电压暂态稳定性是电力系统暂态稳定性的一个重要指标。
当电力系统发生短路故障、大负荷突然变化或其它意外情况时,电网内各节点的电压会发生明显的波动。
如果电网节点的电压过度波动,超出了一定范围,就会导致设备的故障甚至损坏。
因此,对电力系统电压暂态稳定性进行分析和评估,对于保障电网的可靠运行具有重要意义。
电力系统电压暂态稳定性分析主要包括以下几个方面:1. 暂态稳定性分析方法:暂态稳定性分析是通过数学模型和计算方法来模拟电力系统在暂态过程中的电压变化情况。
目前常用的暂态稳定性分析方法包括:暂态稳定性分析程序(Transient Stability Analysis Program,TSAP)、暂态稳定性蒙特卡洛分析方法(Transient Stability Monte Carlo Simulation,TSMCS)等。
这些方法可以对电力系统在暂态过程中的电压变化进行精确计算,评估电网的暂态稳定性。
2. 暂态过程中的电压暂动:暂态过程中的电压暂动是指电网节点电压在受到扰动后的瞬时变化。
这种暂动可以分为两类:电压暂降和电压暂升。
电压暂降是指电网节点电压在短时间内下降的现象,而电压暂升则是指电网节点电压在短时间内上升的现象。
电压暂动的大小和持续时间直接影响到电力系统的暂态稳定性。
3. 影响电压暂动的因素:电力系统电压暂动的大小和持续时间受到多种因素的影响。
其中包括电力系统的结构、负荷特性、故障类型、电力设备的参数、保护装置的动作特性等。
理解和分析这些因素对电压暂动的影响,是进行电力系统电压暂态稳定性分析的前提。
4. 电压稳定控制策略:为了提高电力系统的电压暂态稳定性,需要采取一系列的措施和控制策略。
常见的电压稳定控制策略包括发电机励磁控制、无功补偿装置的投入、线路电压补偿等。
电力系统的静态和暂态稳定性

电力系统的静态和暂态稳定性电力系统的静态稳定性是研究电力系统在某一运行方式下,遭受微小扰动时的稳定性问题。
对于瞬时性和永久性干扰都能回到或接近原始状态,则电力系统是静态稳定的。
静态不稳定的现象可以是同步发电机的非周期性失步(或称滑行失步,缺乏足够的同步力矩引起;或是缺乏足够的阻尼产生振荡失步)或同步发电机间自发不断增大的振荡。
电力系统暂态稳定性是电力系统在一个特定的大干扰下,能恢复到原始或接近原始运行方式,并保持同步发电机同步运行能力。
大干扰一般指短路故障,一般假定这些故障出现在线路上,也可以考虑发生在变压器或母线上。
在发生这些故障后,可以借断路器故障开关元件来消除故障。
电力系统稳定分为三个电量的稳定:电压稳定、频率稳定、功角稳定。
励磁系统提高电力系统的稳定主要是提高电压的稳定,其次是提高功角稳定。
频率稳定由调速器负责。
功角稳定又分为三种:静态稳定、暂态稳定和动态稳定。
静态稳定是系统受到小扰动后系统的稳定性;暂态稳定是大扰动后系统在随后的1-2个周波的稳定性;动态稳定是小扰动后或者是大扰动1-2周波后的,并且采取技术措施后的稳定性,也就是PSS研究的稳定性。
提高暂态稳定性有两种方法1、减小加速面积:加快故障切除时间2、增大减速面积:提高励磁电压响应比;提高强励电压倍数,使故障切除后的发电机内电势Eq迅速上升,增加功率输出,以达到增加减速面积的目的。
动态稳定性:当发电机与系统的外接电抗较小,并且发电机的输出功率较低时,系数K5为正,这时A VR 的作用是引入了一个负的同步转矩和一个正的阻尼转矩,有利于动态稳定;当发电机与系统的外接电抗较大,并且发电机的输出功率较高时,系数K5为负,这时A VR 的作用是引入了一个正的同步转矩和一个负的阻尼转矩不利于动态稳定;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
✓ 最大摇摆角: m
✓ 临界摇摆角 h:达到该点时转速必须达到同步
速发电机才能稳定
结论:
1 、若最大摇摆角不越过h点,系统可经衰减的振 荡后停止于稳定平衡点k,系统保持暂态稳定, 反之,系统不能保持暂态稳定。 2、 暂态稳定分析与初始运行方式、故障点条件、 故障切除时间、故障后状态有关。 3、.快速切除是保证暂态稳定的有效措施
•故障中,机组输入的机械功率>发电机输出的电磁 功率,发电机加速,以下证明:
在加速过程中过剩转矩对相位角位移作的功等于转 子在相对运动中动能的增加。
故障后转子的运动方程:
TJ
0
d 2
dt 2
PT
PII
Q
d 2
d t2
d dt
d
( dt
)
d&
dt
d
dt
d& d
&d& d
TJ
0
&d&
( PT
PE
)d
第六章 电力系统的暂态稳定性
第一节 电力系统的暂态稳定性概述 第二节 简单电力系统暂态稳定性分析 第三节 发电机转子运动方程的数值解法(简介) 第四节 自动调节系统对暂态稳定性的影响(简介) 第七节 提高电力系统暂态稳定性的措施
第一节 电力系统暂态稳定性概述
一、暂态稳定 定义:指电力系统在某个运行情况下突然受到大的
a→b b→c c→e e→f f→k
短路发生 ω上升,δ增大
故障切除 动能释放 PT<PE, 减速
PT>PE, 加速,ω上升,δ 增大 ω>ω0 ,动能增加
PT<PE, 开始减速,但 ω>ω0 ,δ继续增大 减速,当ωf =ω0,动能 释放完毕,δm角达最大 δ减小 ,经振荡后稳定于平 衡点k
概念:
暂态电势保持不变,E'与 E数q' 值上差别不大。
所以也可认为它不变。(主要考虑计算方便)
负荷:负荷以恒定阻抗来代表
强调指出:暂态稳定是研究大干扰的过程,因此不能象 研究静稳一样把状态方程线性化
第二节 简单系统的暂态稳定性分析
• 大扰动后的物理过程分析 • 等面积定则 • 简单系统暂态稳定判据
一、大扰动后的物理过程分析
XΔ
X
X
' d
X T1
XL
X T2
P
E'U X
sin
PM
sin
P
E'U X
sin
PM
sin
P
E'U X
sin
PM
sin
X X X
PM PM PM
画出不同状态下的功率特性曲线
f e
PⅠ PIII
a kd
gh
c
PII
b
δ0
δc δm δh
故障发生后的过程为:
运行点变化 运行点变化 结果
a)原运行方式
b)干扰方式:故障点、故障切除时间、故障类型
同一个系统在某个运行方式和某种干扰下是暂态稳定 的,而在另一运行方式或干扰下是暂态不稳定的。
因此分析一个系统的稳定性时必须首先确定系统的初 始运行方式,其次确定受到的干扰方式。
二、 暂态发展过程(按3种时间段分类)
1、起始阶段:故障后约1s内的时间段,在这期间系统的保护
简单电力系统如图所示,发电机以E´做其等值电势。
1.正常运行方式
等值电抗:XⅠ=Xd´+XT1+XL/2+XT2
功角方程:
PI
E U xI
sin
电源电势节点到 系统的直接电抗
2.故障情况下
等值电抗:
xII ( xd
xT
2
)
(
xL 2
xT 2 )
( xd
xT
1
)(
xL 2
x
xT 2 )
功角方程:
和自动装置有一系列的动作,如:故障切除和自动重合闸等。 但发电机的调节系统尚未启动。
2、中间阶段:在起始阶段后,大约持续5s左右的时间段,发
电机调节系统将起作用。如:调速系统
3、后期阶段:在故障后几分钟内,热力设备(如锅炉)中的
过程将影响到电力系统的暂态过程。此外,系统中由于频率和 电压的下降,发生自动切除负荷切机等操作。
合理性:发电机惯性的,转速偏离不大。 假设目的:网络中电压电流仍可采用相量形式描述
可以不考虑频率变化对系统参数的影响。
四、近似计算中的简化(对主要元件作近似简化)
原动机:不计调速器作用,认为输入机械功率不变。
发电机:参数采用暂态电势 E'和X'd
因为暂态电势 E在q' 短路前后一瞬间保持不变。 在故障后考虑到励磁调节器的作用,近似认为
总之,时间考虑越长,各种设备的影响显著,描述系统的方程多。 本章重点讨论暂态起始阶段。
三、暂态稳定分析的基本假定:
(1)忽略发电机定子电流中非周期分量
合理性: 一方面由于定子非周期分量电流衰减时间常数很小,另一方面,
所产生的转矩以同步频率作周期变化,其转矩近似为0,由于转子机械惯性 较大,因而对转子整体相对运动影响很小。
暂态稳定分析理论方法:
等面积定则 数值计算方法 直接法
二、等面积定则(EAC=Equal Area Criterian)
等面积定则是判断单机无穷大系统暂态稳定
性的一种定量方法,计算简便,并具有明确的物理 意义。
基本思路: 将发电机功角特性曲线与原动机输
出功率曲线之间所包围的面积与发电机转子所获得 或释放的动能量联系起来,从而得到发电机转子角 摇摆的最大值,并据此判断发电机的暂态稳定性。
(2)不计零序和负序电流对转子运动的影响
合理性: 负序分量平均转矩近似为0;零序不产生转矩。 以上两项假设目的:网络方程可以用代数方程(不计直流分量)
只计及正序分量的电磁功率公式都可用。
三、暂态稳定分析的基本假定:
(3)忽略暂态过程中发电机的附加损耗 (4)故障后网络中频率为50HZ不变,ω=ω0
干扰后,能否经过暂态过程后达到新的稳定运行状
态或者恢复到原来的状态。若能,则系统在这个运 行情况下是暂态稳定的,否则是暂态不稳定的。
分析
① 大干扰: 常见的大干扰有:短路故障,突然断开线
路或发电机等。
② 暂态不稳定: 受到大干扰后,各发电机转子间有相 对运动,功角、功率、电流、电压都不断振荡。
③影响暂态稳定的因素:
• 将上式两边积分得:
&c TJ &d&
&0 0
c 0
( PT
PII
)d
1 2
TJ
0
(&c2
&02 )
1 2
TJ
0&c2c源自0XΔ:附加阻抗 三相短路:XΔ=0,则XⅡ=∞ 两相短路:负序阻抗
P
3.故障切除后,相当于切除一回线路
等值电抗: xIII xd xT1 xL xT 2
功角方程:
PIII
E U x III
sin
比较
X
X
' d
X T1
1 2
XL
X T2
X X
X
' d
X T1
1 2
XL
X T2