数轴、相反数、绝对值(讲义及答案).

合集下载

【衔接课精选讲义】新初一第2讲 认识数轴、绝对值与相反数(苏科版【含答案】)

【衔接课精选讲义】新初一第2讲 认识数轴、绝对值与相反数(苏科版【含答案】)

课程类型:新授课—衔接课年级:新初一学科:数学课程主题第2讲:认识数轴、绝对值与相反数【要点梳理】1、数轴:规定了原点、正方向和单位长度的直线叫做数轴.注意:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.2、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…注意:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.3、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数例如无理数,比如 .注意:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)一般地,在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】1、(2021七上·海安期末)比-4.3大的负整数有()A. 4个B. 5个C. 6个D. 无数个2、(2021七上·江阴期末)下列算式中,运算结果为负数的是()A. B. C. D.3、(2020七上·溧阳期中)已知两个有理数、,如果 0且a+b 0,那么()A. 0, 0B. 0, 0C. 、同号D. 、异号,且负数的绝对值较大4、在数轴上,位于﹣3和3之间的点有()A. 7个B. 5个C. 4个D. 无数个5、在﹣4,0,﹣1,3这四个数中,最小的数是()A. ﹣4B. 2C. -1D. 36、数轴是一条()A. 直线B. 射线C. 线段D. 不能确定7、下面画的数轴正确的是()A. B. C. D.【同步演练】1、下列一组数:1,4,0,-,﹣3在数轴上表示的点中,不在原点右边的点的个数为()A. 2个B. 3个C. 4个D. 5个2、如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>a>0>cB. a<b<0<cC. b<a<0<cD. a<b<c<03、如图,数轴上的点P、O、Q、R、S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A.P站点与O站点之间B. O站点与Q站点之间C. Q站点与R站点之间D. R站点与S站点之间4、若有理数m在数轴上对应的点为M,且满足|m|>1且m<0,则下列数轴表示正确的是()A. B.C. D.要点2:认识相反数【要点梳理】1、定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.注意:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.3、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .注意:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1、(2021七下·苏州开学考)2021的相反数是()A. -2021B.C. 2021D.2、(2020七上·高新期中)下列各对数中,互为相反数的是()A. -(-3)与B. 与-0.25C. -(+3)与+(-3)D. +(-0.1)与-(- )3、如果a与﹣3互为相反数,那么a等于()A. B. - C. 3 D. -34、下列结论正确的有()①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。

《相反数与绝对值》 讲义

《相反数与绝对值》 讲义

《相反数与绝对值》讲义一、相反数在数学的世界里,相反数是一个非常基础但又十分重要的概念。

那什么是相反数呢?简单来说,相反数就是绝对值相等,符号相反的两个数。

比如 5 和-5 就是一对相反数,再比如-2 和 2 也是相反数。

为了更准确地理解相反数,我们需要知道以下几个要点:1、相反数的特性(1)互为相反数的两个数之和为 0。

例如,3 的相反数是-3,3 +(-3) = 0。

(2)0 的相反数是 0 本身。

这是因为 0 既不是正数也不是负数,它是一个特殊的存在。

2、相反数的表示方法一个数 a 的相反数可以表示为 a。

所以,如果给定一个数 x,那么它的相反数就是 x 。

3、相反数在数轴上的表现在数轴上,互为相反数的两个数位于原点的两侧,并且到原点的距离相等。

比如 4 和-4,它们到原点的距离都是 4 个单位长度。

4、相反数的实际应用相反数在解决实际问题中也有很多用处。

比如,在温度的表示中,零上 5 摄氏度和零下 5 摄氏度就是一对相反数;在盈利和亏损的计算中,盈利 100 元与亏损 100 元也是相反数。

二、绝对值说完相反数,我们再来看看绝对值。

绝对值的定义是:一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。

例如,数字 7 在数轴上对应的点到原点的距离是 7 ,所以 7 的绝对值是 7 ,记作|7| = 7 ;-7 在数轴上对应的点到原点的距离同样是7 ,所以-7 的绝对值也是 7 ,记作|-7 |= 7 。

接下来,我们详细了解一下绝对值的一些重要性质和特点:1、绝对值的非负性绝对值总是非负的,即对于任何实数 a ,都有| a |≥ 0 。

2、正数和 0 的绝对值正数的绝对值是它本身。

比如,| 5 |= 5 。

0 的绝对值是 0 ,即| 0 |= 0 。

3、负数的绝对值负数的绝对值是它的相反数。

例如,|-8 |= 8 。

4、绝对值的运算(1)两个数的和的绝对值与这两个数绝对值的和之间的关系:| a + b |≤ | a |+| b |,当且仅当 a 、 b 同号或者至少有一个为 0 时,等号成立。

沪科版数学七年级上册1-2 数轴、相反数和绝对值

沪科版数学七年级上册1-2 数轴、相反数和绝对值

感悟新知
2.画数轴的步骤
知1-讲
(1)画直线,取原点:在直线上任取一个点表示数 0,
这个点叫做原点 。
(2)标正方向:通常规定直线上从原点向右(或上)为正方
向,从原点向左(或下)为负方向;
感悟新知
知1-讲
(3)选取单位长度,标数: 选取适当的长度为单位长度, 直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3,…;从原点向左,用类似方法依次表示- 1, - 2, - 3,…。
感悟新知
特别警示 在画数轴时常出现以下三种错误:
1.“三要素”不全; 2. 单位长度不统一; 3. 标数时顺序不对 。
知1-练
感悟新知
知识点 2 数轴上的点与有理数的关系
知2-讲
对应关系 都可以用数轴上的点表示
有理数 不都表示有理数
数轴上的点
感悟新知
知2-讲
知识链接 有理数与数轴上的点的对应关系: (1)正有理数可以用数轴上原点右边(或上边)的点表示。 (2)负有理数可以用数轴上原点左边(或下边)的点表示。 (3) 0用原点表示 。
答案:C
感悟新知
知识点 4 绝对值
知4-讲
1. 定义 在数轴上,表示数 a 的点到原点的距离,叫做数 a 的绝对值,记作 | a |,读作“a 的绝对值” 。
感悟新知
2. 性质 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0 的绝对值是 0。
a( a>0), 即: |a|=ቐ 0( a=0),
感悟新知
画法提醒
知2-练
根据给出的数画数轴,关键要把握两点:
(1) 确定原点的位置,一般地,原点居中,若给出的
正数较多,原点靠左边,若给出的负数较多,原

数轴、相反数、绝对值 (讲义及答案)

数轴、相反数、绝对值   (讲义及答案)

数轴、相反数、绝对值(讲义)➢课前预习1.为了表示相反意义的量,我们可以把其中一个量规定为正的,用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走5 m可记作+5 m,向西走8 m可记作_____m.(2)一种袋装食品标准净重为200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重205 g记为+5 g,那么食品净重197 g就记为_____g.2.正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5等都是负整数,而-1.5,12-都是负分数.请将下列各数进行分类:3,-2.5,3.14,32-,-9,100,0.其中属于整数的有:__________________________________;其中属于分数的有:__________________________________;其中属于正数的有:__________________________________;其中属于负数的有:__________________________________.3.如图,点A表示小明的家,动物园在小明家西边500米,书店在小明家东边500米,车站在书店东边200米,小明从动物园出发向东走1 000米,到达_________;动物园和书店到小明家的距离都是_______米;小明从家出发,走了500米,可以到达_________________;动物园和车站之间的距离为__________米.DCA1. _______与_______统称为有理数.2. 有理数的分类:有理数_________________________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎨⎪⎧⎪⎨⎪⎩⎪⎩_________________________________________________有理数⎧⎧⎨⎪⎩⎪⎪⎪⎨⎪⎪⎪⎧⎨⎪⎩⎩ 3. 非正数:_________________;非负数:________________. 非正整数:_______________;非负整数:______________. 4. 数轴的定义:规定了_______、________、_________的一条数轴.任何一个______都可以用数轴上的一个点来表示.5.数轴的作用:__________________、___________________、___________________________.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越____,越往左数越_____,右边的总比左边的______.正数_____0,负数_______0,正数________负数.7. 相反数的定义:__________________的两个数,互为相反数.特别地,____________________. 互为相反数的两个数,和为0.8. 绝对值的定义:在________上,一个数所对应的点与原点的__________叫做这个数的绝对值. 9. 绝对值法则:正数的绝对值是_________;___________________________;___________________________.1. 若上升5 m 记作+5 m ,则-8 m 表示__________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作+5℃,那么零下2℃记作___________;太平洋中的马里亚纳海沟深达11 034 m ,可记作海拔-11 034 m (即低于海平面11 034 m ),则比海平面高50 m 的地方,它的高度记作海拔___________,比海平面低30 m 的地方,它的高度记作海拔___________. 2. 选出下列不具有相反意义的量( )A .气温升高4℃与气温为12℃B .胜3局与负4局C .转盘逆时针转4圈与顺时针转6圈D .支出5万元与收入3万元3. 有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2B .-3C .+3D .+44. 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( ) A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.015. 把下列各数填入它所在的集合里:-2,7,32-,0,2 020,0.618,3.14,-1.732,-5,+3.①正数集合:{__________________________________…};②负数集合:{__________________________________…}; ③整数集合:{__________________________________…}; ④非正数集合:{________________________________…}; ⑤非负整数集合:{______________________________…}; ⑥有理数集合:{________________________________…}.6.7. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b0aA .0<a <bB .a <0<bC .b <0<aD .a <b <08. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.9. 在数轴上大于-4.12的负整数有______________________.10. 到原点的距离等于3的数是____________.11. 数轴上,将表示-2的点向左移动两个单位后得到点A ,与点A 距离为3个单位的点对应的数是_________.12. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米13. 填空: 13+的相反数是_____;-3.5的相反数是_____;(1)--的相反数是_____;(2)+-的相反数是_____;0的相反数是_____. 14. A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A .B AB .B AC .B AD .B A15. 下列各组数中,互为相反数的两个数是( )A .-3和+2B .5和15C .-6和6D .13-和1216. 下列化简不正确的是( )A .( 4.9) 4.9--=+B .( 4.9) 4.9-+=-C .[]( 4.9) 4.9-+-=+D .[]( 4.9) 4.9+-+=+ 17. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数18. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b按照从小到大的顺序排列正确的是( )aA .b a a b -<-<<B .b a b a >->->C .b a a b -<<-<D .b b a a -<<-<19. 填空:5.3-=______;21+=_______;5--=_______;若x <0,则x =_______,x -=_______; 若m <n ,则m n -=________. 20. 下列各数:-2,31+,3-,0,2-+,-(-2),2--,其中是正数的有_______________________________. 21. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数22. 下列说法正确的是( )A .一个数的绝对值一定大于它本身B .只有正数的绝对值等于它本身C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 23. 下列说法正确的是( )A .所有的有理数都可以用数轴上的点来表示B .绝对值等于它相反数的数是负数C .如果两个数的绝对值相等,那么这两个数相等D .相反数等于它本身的数是非负数24. 请判断下列说法的正误.(对的打“√”,错的打“×”)(1)所有的有理数都能用数轴上的点表示 ( )(2)符号不同的两个数互为相反数 ( ) (3)有理数分为正数和负数 ( ) (4)最小的正数是1 ( ) (5)最大的负整数是-1 ( ) (6)绝对值最小的数是0 ( ) (7)绝对值等于它本身的数是0和1 ( ) (8)相反数等于它本身的数是0和1 ( )25. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____; (3)53++-=____+____=____; (4)22--+=|_____-_____|=_____; (5)3 6.2-⨯=____×____=_____; (6)21433-÷-=____÷____=____×____=_____.【参考答案】 ➢ 课前预习1. (1)-8 (2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14,32-;其中属于正数的有:3,3.14,100;其中属于负数的有:-2.5,32-,-9.3. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数2.⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数整数0负整数有理数正分数分数负分数 ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数正有理数正分数有理数0负整数负有理数负分数3. 负数和0;正数和0;负整数和0;正整数和04. 原点、单位长度、正方向、直线; 有理数.5. 表示数 比较大小 表示距离6. 大,小;大;大于,小于,大于7. 只有符号不同.0的相反数为0.8. 数轴,距离9.它本身;负数的绝对值是它的相反数;0的绝对值是0(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩右侧框内答案 框2:图略框3:-a ,a ,-a +b框4:正数和0,负数和0➢ 精讲精练1. 下降8 m 收入50元 -2℃+50 m -30 m2. A3. A4.B5.①7,2 019,0.618,3.14,+3;②-2,23-,-1.732,-5③-2,7,0,2 019,-5,+3;④-2,23-,0,-1.732,-5⑤7,0,2 019,+3;⑥-2,7,23-,0,2 020,0.618,3.14,-1.732,-5,+36.212101332-3.5<-<-<<<+图略;7. B8.999.-4,-3,-2,-110.±311.-7或-112.B13.13-;3.5,-1,2,014.D15.C16.D17.B18.C19.3.5 12-5 -x -x-m +n20.13+,3-,-(-2)21.C22.C23.A24.(1)√(2)×(3)×(4)×(5)√(6)√(7)×(8)×25.(1)113 -;(2)4.2 4.2 0;(3)3 5 8;(4)2 2 0;(5)3 6.2 18.6;(6)231432331417.。

《绝对值》 讲义

《绝对值》 讲义

《绝对值》讲义一、什么是绝对值在数学中,绝对值是一个非常重要的概念。

简单来说,绝对值表示一个数在数轴上离原点的距离。

例如,数字 5 在数轴上距离原点 5 个单位长度,所以 5 的绝对值是5;而-5 在数轴上同样距离原点 5 个单位长度,所以-5 的绝对值也是 5。

用数学符号表示,|5| = 5,|-5| = 5。

绝对值的定义可以表述为:对于任意实数 a,当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a 。

这意味着,绝对值总是非负的,即|a| ≥ 0 。

二、绝对值的性质1、非负性绝对值的最基本性质就是非负性,也就是说,任何数的绝对值都大于或等于零。

这是因为距离不能是负数。

2、对称性|a| =|a| ,即一个数和它的相反数的绝对值相等。

例如,|3|=|-3| 。

3、自反性|a| = 0 当且仅当 a = 0 。

4、三角不等式对于任意实数 a 和 b ,有|a +b| ≤ |a| +|b| 。

当且仅当ab ≥ 0 时,等号成立。

例如,当 a = 2 ,b = 3 时,|2 + 3| = 5 ,|2| +|3| = 5 ,此时等式成立。

但当 a =-2 ,b = 3 时,|-2 + 3| = 1 ,而|-2| +|3| =5 ,此时不等式成立。

三、绝对值的运算1、简单计算计算一个数的绝对值,只需要判断这个数是正数、负数还是零。

如果是正数或零,绝对值就是它本身;如果是负数,绝对值是它的相反数。

例如,|7| = 7 ,|-8| = 8 。

2、含有绝对值的加减法当进行含有绝对值的加减法运算时,需要先根据绝对值的定义去掉绝对值符号,然后再进行运算。

例如,计算|3 5| ,先计算 3 5 =-2 ,因为-2 < 0 ,所以|3 5| =|-2| = 2 。

3、含有绝对值的乘除法对于两个数的乘积或商的绝对值,有|ab| =|a| |b| ,|a / b| =|a| /|b| (b ≠ 0 )。

例如,|-2 × 3| =|-6| = 6 ,|-6 / 3| =|-2| = 2 。

人教版七年级上册数学《绝对值》专题讲义(含答案)

人教版七年级上册数学《绝对值》专题讲义(含答案)

绝对值1. 掌握绝对值的概念与化简 2. 绝对值的几何意义3. 分类讨论思想在绝对值中的应用模块一 绝对值的意义及其化简1. 绝对值的几何意义:一个数a 的绝对值就是数轴上表示a 的点与原点的距离。

数a 的绝对值记作a2. 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3. 绝对值的性质:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩,②(0)(0)a a a a a ≥⎧=⎨-<⎩或(0)(0)a a a a a >⎧=⎨-≤⎩4. 绝对值其他的重要性质:①任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥且a a ≥- ②若a b =,则a b =或a b =- ③a b a b ⋅=⋅,a ab b=(0b ≠) ④222a a a ==☞绝对值的意义【例1】 在数轴上表示数a 的点到原点的距离是13,那么a = 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】13a =±【巩固】绝对值等于2的数有 个,是 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】2个,2±例题精讲重难点【巩固】绝对值不大于7且大于4的整数有 个,是 【难度】2星【解析】绝对值的代数意义,几何意义 【答案】6个,5±、6±、7±☞绝对值化简【例2】 计算:3π-= ,若23x -=,则x = 【难度】1星 【解析】绝对值化简 【答案】3π-,5x =或1-【巩固】若220x x -+-=,则x 的取值范围是 【难度】2星 【解析】绝对值化简 【答案】2x ≤【巩固】已知:①52a b ==,,且a b <;分别求a b ,的值 【难度】3星 【解析】绝对值化简【答案】解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±【例3】 如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【难度】3星 【解析】绝对值化简【答案】解:如图所示,得0a b <<,01c <<∴0a b +<,10b -<,0a c -<,10c ->∴原式=()(1)()(1)a b b a c c -++-+---=11a b b a c c --+-+--+=2-【巩固】已知00x z xy y z x <<>>>,,,那么x z y z x y +++--= 【难度】3星 【解析】绝对值化简【答案】解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y -> ∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=【巩固】数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--【难度】3星 【解析】绝对值化简【答案】解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=【例4】 设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+- 【难度】3星 【解析】绝对值化简【答案】解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b < ∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=【巩固】已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 【难度】3星 【解析】绝对值化简【答案】解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+模块二 绝对值的非负性1. 非负性:若有几个非负数的和为0,那么这几个非负数均为02. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c =【例5】 若42a b -=-+,则_______a b +=【难度】2星【解析】绝对值的非负性【答案】解:∵42a b -=-+ ∴420a b -++=∵40a -≥,20b +≥ ∴40a -=,20b += 则4a =,2b =-【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【难度】2星【解析】绝对值的非负性 【答案】解:∵30m +≥,702n -≥,210p -≥ ∴30m +=,702n -=,210p -= 则3m =-,72n =,12p = ∴3232p n m ++=-【例6】 设a 、b 同时满足①2(2)|1|1a b b b -++=+;②|3|0a b +-=.那么ab = 【难度】3星【解析】绝对值化简与非负性【答案】解:∵2(2)0a b -≥,10b +≥,且2(2)|1|1a b b b -++=+∴10b +≥ ∴2(2)11a b b b -++=+ 则2(2)0a b -= ∴2a b =∵30a b +-= ∴230b b +-= 则1b =,2a = ∴2ab =【巩固】已知2()55a b b b +++=+,且210a b --=,那么ab =_______【难度】3星【解析】绝对值化简与非负性【答案】解:∵2()0a b +≥,50b +≥,且2()55a b b b +++=+∴50b +≥ ∴2()55a b b b +++=+ 则2()0a b += ∴a b =-∵210a b --= ∴210b b ---= ∴13b =-,13a = 则19ab =-模块三 零点分段法1. 零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.【例7】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【难度】3星 【解析】零点分段法【答案】解:⑴令20x +=,40x -=,则2x =-,4x =⑵零点为2x =-,4x =,则可分三段进行讨论:2x <-,24x -≤<,4x ≥ ①当2x <-时,则20x +<,40x -<∴2(2)2x x x +=-+=--,4(4)4x x x -=--=-+ ∴原式=24x x ---+=22x -+②当24x -≤<时,则20x +≥,40x -< ∴22x x +=+,4(4)4x x x -=--=-+ ∴原式=24x x +-+=6③当4x ≥时,则20x +>,40x -≥ ∴22x x +=+,44x x -=- ∴原式=24x x ++-=22x -综上所述,当2x <-时,24x x ++-=22x -+当24x -≤<时,24x x ++-=6 当4x ≥时,24x x ++-=22x -【巩固】化简12m m m +-+-的值 【难度】3星 【解析】零点分段法【答案】解:令0m =,10m -=,20m -=,则零点为0m =,1m =,2m =则可分四段进行讨论:0m <,01m ≤<,12m ≤<,2m ≥ ①当0m <时,10m -<,20m -<∴m m =-,11m m -=-+,22m m -=-+ ∴原式=12m m m --+-+=33m -+ ②当01m ≤<时,10m -<,20m -< ∴m m =,11m m -=-+,22m m -=-+ ∴原式=12m m m -+-+=3m -+ ③当12m ≤<时,10m -≥,20m -< ∴m m =,11m m -=-,22m m -=-+ ∴原式=12m m m +--+=1m + ④当2m ≥时,10m -≥,20m -≥ ∴m m =,11m m -=-,22m m -=- ∴原式=12m m m +-+-=33m -综上所述:当0m <时,12m m m +-+-=33m -+当01m ≤<时,12m m m +-+-=3m -+ 当12m ≤<时,12m m m +-+-=1m + 当2m ≥时,12m m m +-+-=33m -【巩固】化简:121x x --++.【难度】4星 【解析】零点分段法【答案】解:令10x -=,120x --=,10x +=,∴120x --=,则3x =或1x =-∴零点有1x =-,1x =,3x =∴分四段进行讨论1x <-,11x -≤<,13x ≤<,3x ≥ ①当1x <-时,则10x -<,10x +<,10x --> ∴11x x -=-+,11x x +=--,11x x --=--∴原式=121x x -+---=11x x ----=11x x ----=22x -- ②当11x -≤<时,则10x -<,10x +≥,10x --≤ ∴11x x -=-+,11x x +=+,11x x --=+∴原式=121x x -+-++=11x x --++=11x x +++=22x + ③当13x ≤<时,10x -≥,10x +>,30x -< ∴11x x -=-,11x x +=+,33x x -=-+ ∴原式=121x x --++=31x x -++=31x x -+++=4 ④当3x ≥时,10x ->,10x +>,30x -≥ ∴11x x -=-,11x x +=+,33x x -=-∴原式=121x x --++=31x x -++=31x x -++=22x -综上所述,当1x <-时,121x x --++=22x --当11x -≤<时,121x x --++=22x + 当13x ≤<时,121x x --++=4 当3x ≥时,121x x --++=22x -模块四 绝对值的几何意义的拓展1. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.2. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例8】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离⑴ x 的几何意义是数轴上表示 的点与 之间的距离;x 0-(>,=,<);⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=, 则x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x = .⑸ 当1x =-时,则22x x -++=【难度】3星【解析】绝对值的几何意义【答案】解:⑴x 、原点、=;⑵1;⑶x 、3、4或2;⑷x 、2-、4-或0;⑸设2-、2、x 在数轴代表的点为A 、B 、P ,如图P B A 112则2x PA +=,2x PB -=,∴224x x PA PB AB ++-=+==【例9】 已知m 是实数,求12m m m +-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令0m =,10m -=,20m -=,则零点有0m =,1m =,2m =设0、1、2、m 在数轴上分别用A 、B 、C 、P 表示,如图PC B A①当点P 在点A 左侧时,12m m m +-+-=PA PB PC ++=32PA AB BC ++=33PA + ∴当0PA =时,即点P 与点A 重合时,原式取得最小值为3 ∵点P 在点A 左侧 ∴原式3>PC B A②当点P 在线段AB 上时(不包含点B ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+ ∴当0PB =时,原式取得最小值 ∵此时不包含点B ,∴原式2>P CB A③当点P 在线段BC 上时(不包含点C ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+ ∴当0PB =时,即当点P 与点B 重合时,原式取得最小值,最小值为2PC B A④当点P 在点C 及点C 右侧时,12m m m +-+-=PA PB PC ++=32PC BC AB ++=33PC + ∴当0PC =时,即点P 与点C 重合时,原式取得最小值,最小值为3 综上所述,当点P 与点B 重合时,即1m =时,原式取得最小值为2【巩固】已知m 是实数,求2468m m m m -+-+-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令20m -=,40m -=,60m -=,80m -=则零点有2m =,4m =,6m =,8m =设2、4、6、8、m 在数轴上分别用A 、B 、C 、D 、P ∴2468m m m m PA PB PC PD -+-+-+-=+++①当点P 在点A 左侧时,43241212PA PB PC PD PA AB BC CD PA +++=+++=+> ②当点P 在线段AB 上时,(不包含点B ),2288PA PB PC PD PB BC AD PB +++=++=+> ③当点P 在线段BC 上时(不包含点C ),8PA PB PC PD BC AD +++=+=④当点P 在线段CD 上时(不包含点D ),2288PA PB PC PD PC BC AD PC +++=++=+≥ 当点P 与点C 重合时,取等号⑤当点P 在点D 及点D 右侧时,43241212PA PB PC PD PD CD BC AB PD +++=+++=+≥ 综上所述,当点P 在线段BC 上时,即46m ≤≤时,原式取得最小值为8【例10】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?城市【难度】3星【解析】绝对值的几何意义【答案】解:活动中心应该建在村庄C ,使各村到活动中心的路程之和最短【巩固】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?F EDCBPA7A6A5A4A3A2A1【难度】3星【解析】绝对值的几何意义【答案】解:长途汽车站应该设在点D,如果在点P 又建了一个工厂,那么此时长途汽车站应该设在DE 之间1.4x-的几何意义是数轴上表示的点与表示的点之间的距离,若42x-=,则x=.【难度】2星【解析】绝对值的几何意义【答案】x、4、2或62.化简:212x x x-++-【难度】4星【解析】零点分段法【答案】解:令10x-=,20x+=,0x=,∴零点为1x=、2x=-、0x=∴可分四段讨论:2x<-、20x-≤<、01x≤<、1x≥①当2x<-时,则10x-<,20x+<∴11x x-=-+,22x x+=--,x x=-∴原式=2(1)2()222x x x x x x-+----=-+--+=2x-②当20x-≤<时,则10x-<,20x+≥∴11x x-=-+,22x x+=+,x x=-∴原式=2(1)2()222x x x x x x-+++--=-++++=4课堂检测③当01x ≤<时,则10x -<,20x +> ∴11x x -=-+,22x x +=+,x x =∴原式=2(1)2222x x x x x x -+++-=-+++-24x =-+④当1x ≥时,10x -≥,20x +> ∴11x x -=-,22x x +=+,x x =∴原式=2(1)22222x x x x x x x -++-=-++-=综上所述,当2x <-时,212x x x -++-=2x -当20x -≤<时,212x x x -++-=4当01x ≤<时,212x x x -++-=24x =-+当1x ≥时,212x x x -++-=2x3. 化简124x x --+-【难度】4星【解析】零点分段法 【答案】解:令10x -=,40x -=,12x -=, ∴零点有1x =,4x =,3x =,1x =-则可以分五段来分类讨论:1x <-,11x -≤<,13x ≤<,34x ≤<,4x ≥ ①当1x <-时,10x -<,40x -<,10x --> ∴11x x -=-+,44x x -=-+,11x x --=--∴原式=124x x -+--+=14x x ---+=14x x ---+=23x -+②当11x -≤<时,10x -<,40x -<,10x --≤ ∴11x x -=-+,44x x -=-+,11x x --=+∴原式=124x x -+--+=14x x ---+=14x x +-+=5③当13x ≤<时,10x -≥,40x -<,30x -< ∴11x x -=-,44x x -=-+,33x x -=-+∴原式=124x x ---+=34x x --+=34x x -+-+=27x -+④当34x ≤<时,10x ->,40x -<,30x -≥ ∴11x x -=-,44x x -=-+,33x x -=-∴原式=124x x ---+=34x x --+=34x x --+=1⑤当4x ≥时,10x ->,40x -≥,30x -> ∴11x x -=-,44x x -=-,33x x -=-∴原式=124x x --+-=34x x -+-=34x x -+-=27x -综上所述,当1x <-时,124x x --+-=23x -+ 当11x -≤<时,124x x --+-=5 当13x ≤<时,124x x --+-=27x -+当34x ≤<时,124x x --+-=1当4x ≥时,124x x --+-=27x -1.通过本堂课你学会了 .2.掌握的不太好的部分 .3.老师点评:① .② . ③ .1. 化简:2121x x x -++--【难度】3星【解析】零点分段法 【答案】解:令210x -=,20x +=,10x -=, ∴零点有12x =,2x =-,1x = 则可分四段进行讨论:2x <-,122x -≤<,112x ≤<,1x ≥ ①当2x <-时,210x -<,20x +<,10x -<∴2121x x -=-+,22x x +=--,11x x -=-+∴原式=212(1)x x x -+----+=2121x x x -+--+-=22x --②当122x -≤<时,210x -<,20x +≥,10x -< ∴2121x x -=-+,22x x +=+,11x x -=-+∴原式=212(1)x x x -+++--+=2121x x x -++++-=2课后作业总结复习③当112x ≤<时,210x -≥,20x +>,10x -< ∴2121x x -=-,22x x +=+,11x x -=-+ ∴原式=212(1)x x x -++--+=2121x x x -+++-=4x ④当1x ≥时,210x ->,20x +>,10x -≥ ∴2121x x -=-,22x x +=+,11x x -=- ∴原式=212(1)x x x -++--=2121x x x -++-+=22x +综上所述,当2x <-时,2121x x x -++--=22x -- 当122x -≤<时,2121x x x -++--=2 当112x ≤<时,2121x x x -++--=4x 当1x ≥时,2121x x x -++--=22x +。

七年级同步教案(人教版)-专题02数轴、绝对值、相反数(答案版)

七年级同步教案(人教版)-专题02数轴、绝对值、相反数(答案版)

专题1.2 数轴、绝对值、相反数常见题型题型01 数轴的相关概念 (2)题型02 数轴的画法 ........................................................................................................... 3 题型03 在数轴上的位置确定数 ....................................................................................... 5 题型04 在数轴上解决动点问题 ....................................................................................... 6 题型05 利用数轴解决实际问题 ....................................................................................... 7 题型06 相反数的相关概念 ............................................................................................... 9 题型07 相反数的性质 ..................................................................................................... 10 题型08 在数轴求数的相反数 ......................................................................................... 11 题型09 绝对值的相关概念 ............................................................................................. 11 题型10 求绝对值 ............................................................................................................. 13 题型11 绝对值的非负性 ................................................................................................. 14 题型12 绝对值与最值问题 ............................................................................................. 15 题型13 利用绝对值比较大小 ......................................................................................... 15 题型14 绝对值、相反数、数轴的综合运用 .. (17)【知识梳理】 数轴规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称; 相反数只有符号不同的两个数称为互为相反数;一般地,a 的相反数是-a ;特别地,0的相反数是0;相反数的几何意义:数轴上表示相反数的两个点关于原点对称; a 、b 互为相反数⇔a +b =0;(即相反数之和为0) a 、b 互为相反数⇔1-=b a 或1-=ab;(即相反数之商为-1) a 、b 互为相反数⇔|a |=|b |;(即相反数的绝对值相等) 绝对值一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a |≥0) 一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;绝对值可表示为:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩10a a a =⇔>;10aa a=-⇔<; 有理数的比较在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

湘教版数学七年级上册1.2数轴、相反数与绝对值(含答案)

湘教版数学七年级上册1.2数轴、相反数与绝对值(含答案)

初中数学试卷1.2数轴、相反数与绝对值专题一绝对值的非负性1.小明、小亮、小花、小倩四人是一个学习小组的同学,下面是该小组学习有理数的绝对值时进行的小组讨论:小明说:“﹣a的绝对值是它的相反数a”;小亮说:“如果有理数a的绝对值是它本身,那么a一定是正数”;小花说:“如果a为有理数,那么﹣|a|一定是负数”;小倩说:“你们说得都不对”.你认为这四位同学中谁说错了?谁说对了?错的该怎样改正?2.若a、b、c都是有理数,且|a﹣1|+|b+2|+|c﹣4|=0,求a+|b|+c的值.3.探究题(1)比较下列各式的大小:|﹣2|+|3| |﹣2+3|;|﹣3|+|﹣5| |(﹣3)+(﹣5)|;|0|+|﹣5| |0+(﹣5)|;…(2)通过(1)的比较,请你分析,归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(3)根据(2)中你得出的结论,求当|x|+5=|x﹣5|时,求x的取值范围.专题二数轴、相反数与绝对值的“大融合”4.已知有理数a与b互为相反数,有理数c到原点的距离为1,有理数d为绝对值最小的数,求式子2013(a+b)+c+2013d的值.5.如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G 表示8.(1)点B表示的有理数是,表示原点的是点是.(2)图中的数轴上另有点M到点A,点G距离之和为13,则这样的点M表示的有理数是.(3)若将原点取在点D,则点C表示的有理数是,此时点B与点表示的有理数互为相反数.6.一个有理数x在数轴上对应的点为A,将A点向左移动3个单位长度,再向左移动2个单位长度,得到点B,点B所对应的数和点A对应的数的绝对值相等,求点A的对应的数x是多少?【知识要点】1.规定了原点、正方向和单位长度的直线叫作数轴.任何有理数都可以用数轴上唯一的一个点来表示.2.如果两个数只有符号不同,那么其中的一个数叫作另一个数的相反数.0的相反数是0.3.一个数的绝对值等于数轴上表示这个数的点与原点的距离.正数的绝对值是它的本身;负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.一般地,如果a表示一个数,则:(1)当a(2)当a=0(3)当a a和-a中非负数的那一个.【温馨提示】(针对易错)1.画数轴时必须具备三要素:原点、正方向和单位长度.2.任何一个数都有相反数,两个互为相反数的绝对值相等.3.一个数的绝对值是一个非负数,在求一个数的绝对值时,不能只是去掉绝对值符号,一定要考虑绝对值符号内的式子表示的数是正数还是负数.【方法技巧】1.求一个数的相反数,在这个数的前面加上负号即可.2.求一个数的绝对值时,先分清这个数是正数、0还是负数,再按照相应的情况“对号入座”,即去掉绝对值后是否添上负号.3.几个非负数之和等于零,其中每一个数都等于零.参考答案1.解:小明、小亮、小花都说错了.只有小倩是对的.小明说错了,因为﹣a的绝对值应该分情况进行讨论,小亮说错了,因为﹣a的绝对值等于本身的数除了正数还有0;小花说错了,因为﹣|﹣a|不一定是负数,还可能是0,即﹣|﹣a|≤0.故小倩是对的.2.解:因为|a﹣1|+|b+2|+|c﹣4|=0,所以|a﹣1|=0,|b+2|=0,|c﹣4|=0,所以a=1,b=﹣2,c=4,所以a+|b|+c=1+2+4=7.3.解:(1)因为|﹣2|+|3|=5,|﹣2+3|=1,所以|﹣2|+|3|>|﹣2+3|.因为|﹣3|+|﹣5|=8,|(﹣3)+(﹣5)|=8,所以|﹣3|+|﹣5|=|(﹣3)+(﹣5)|.因为|0|+|﹣5|=5,|0+(﹣5)|=5,所以|0|+|﹣5|=|0+(﹣5)|.故答案为>,=,=.(2)根据(1)中规律可得出:|a|+|b|≥|a+b|.(3)因为|﹣5|=5,所以|x|+5=|x|+|﹣5|=|x+(﹣5)|=|x﹣5|.所以x<0.即当|x|+5=|x﹣5|时,x<0.4.解:因为有理数a与b互为相反数,所以a+b=0.因为有理数c到原点的距离为1,所以c=1 或c=-1.因为有理数d为绝对值最小的数,所以d=0.所以当c=1时,原式=2013×0+1+0=1;当c=-1时,原式=2013×0+(-1)+0=-1.所以原式的值为1或-1.5.(1) ﹣2,C;(2) ﹣4.5或8.5;(3) ﹣2;F 【解析】(1)因为数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G表示8,所以AG=|8+4|=12,所以相邻两点之间的距离==2,所以点B表示的有理数是﹣4+2=﹣2,点C表示的有理数﹣2+2=0.故答案为﹣2,C;(2)设点M表示的有理数是m,则|m+4|+|m﹣8|=13,所以m=﹣4.5或m=8.5.故答案为﹣4.5或8.5;(3)若将原点取在点D,因为每两点之间距离为2,所以点C表示的有理数是﹣2.因为点B与点F在原点D的两侧且到原点的距离相等,所以此时点B与点F表示的有理数互为相反数.6.解:由题意得:点A对应的数为x,则点B所对应的数x﹣3﹣2=x﹣5,又点B所对应的数和点A对应的数的绝对值相等,|x|=|x﹣5|,所以x=2.5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数轴、相反数、绝对值(讲义)➢课前预习1.为了表示相反意义的量,我们可以把其中一个量规定为正的,用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走5 m 可记作+5 m,向西走8 m 可记作m.(2)一种袋装食品标准净重为200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重205 g 记为+5 g,那么食品净重197 g 就记为g.2.正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5 等都是负整数,而-1.5,-1都是负分2数.请将下列各数进行分类:3,-2.5,3.14,-3,-9,100,0.2其中属于整数的有:;其中属于分数的有:;其中属于正数的有:;其中属于负数的有:.3.如图,点A 表示小明的家,动物园在小明家西边500 米,书店在小明家东边500 米,车站在书店东边200 米,小明从动物园出发向东走1 000 米,到达;动物园和书店到小明家的距离都是米;小明从家出发,走了500 米,可以到达;动物园和车站之间的距离为米.1⎨ ⎩ ➢ 知识点睛1.与统称为有理数. 2. 有理数的分类:⎧ ⎧⎧ ⎧ ⎪⎪ ⎪ ⎨⎪⎨ ⎪ ⎪ ⎪⎪ ⎩⎪⎪有理数⎨⎪ ⎧⎪ ⎨⎪ ⎩有理数⎨⎪ ⎪ ⎪ ⎧ ⎪ ⎪ ⎨⎩ ⎩ ⎩3. 非正数:;非负数: . 非正整数:;非负整数: . 4. 数轴的定义:规定了、、的一条叫做数轴.任何一个都可以用数轴上的一个点来表示.5. 数轴的作用:、 、.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越,越往左数越 ,右边的总比左边的 .正数0,负数0,正数负数.7. 相反数的定义:的两个数,互为相反数. 特别地, .互为相反数的两个数,和为 0.8. 绝对值的定义:在上,一个数所对应的点与原点的叫做这个数的绝对值.9. 绝对值法则:正数的绝对值是 ;;.⎧字母表示: a = ⎪⎪ ⎩画数轴时注意以下几点: ①三要素; ②直线;③数字和点的位置. 画数轴:➢精讲精练1.若上升5 m 记作+5 m,则-8 m 表示;如果-10 元表示支出10 元,那么+50 元表示;如果零上5℃ 记作+5℃,那么零下2℃记作;太平洋中的马里亚纳海沟深达11 034 m,可记作海拔-11 034 m(即低于海平面11 034 m),则比海平面高50 m 的地方,它的高度记作海拔,比海平面低30 m 的地方,它的高度记作海拔.2.选出下列不具有相反意义的量()A.气温升高4℃与气温为12℃B.胜3 局与负4 局C.转盘逆时针转4 圈与顺时针转6 圈D.支出5 万元与收入3 万元3.有四包真空小包装火腿,每包以标准克数(450 克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2 B.-3 C.+3 D.+44.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.015.把下列各数填入它所在的集合里:-2,7,-2,0,2 019,0.618,3.14,-1.732,-5,+3.3①正数集合:{ …};②负数集合:{ …};③整数集合:{ …};④非正数集合:{ …};⑤非负整数集合:{ …};⑥有理数集合:{ …}.6. 在数轴上表示下列各数:0,-3.5,11,-1,+3,-22,并2 3比较它们的大小.7.a,b 为有理数,在数轴上的位置如图所示,则下列关于a,b,0 三者之间的大小关系,正确的是()A.0<a<b B.a<0<b C.b<0<a D.a<b<0 8.数轴上表示-2 和-101 的两个点分别为A,B,则A,B 两点间的距离是.9.在数轴上大于-4.12 的负整数有.10.到原点的距离等于3 的数是.11.数轴上,将表示-2 的点向左移动两个单位后得到点A,与点A 距离为3 个单位的点对应的数是.12.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20 米处,玩具店位于书店东边100 米处,小明从书店沿街向东走了40 米,接着又向东走了-60 米,此时小明的位置在()A.玩具店B.文具店C.文具店西边40 米D.玩具店东边-60 米13.填空:+1的相反数是3;-3.5 的相反数是;-(-1) 的相反数是;+(-2) 的相反数是;0 的相反数是.14.A,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是()A. B.C. D.15.下列各组数中,互为相反数的两个数是()A.-3 和+2 B.5 和15C.-6 和6 D.-1和13 216.下列化简不正确的是()A.-(-4.9) =+4.9C.-[+(-4.9)]=+4.9B.-(+4.9) =-4.9D.+[-(+4.9)]=+4.917.下列各数中,属于正数的是()A.+ (-2)C.- (-a)B.-3 的相反数D.-3 的相反数的相反数18.a,b 是有理数,它们在数轴上的对应点的位置如图所示,把a,-a,b,-b 按照从小到大的顺序排列正确的是()A.-b <-a <a <bC.-b <a <-a <b19.填空:B.b >-a >-b >aD.-b <b <-a <a- 3.5 = ;+1=2;--5 = ;若x<0,则x = ,-x = ;若m<n,则m -n = .20. 下列各数:-2,+1,- 3 ,0 ,-+2 ,-(-2),--2 ,其3中是正数的有.21.有理数的绝对值一定是()A.正数B.整数C.正数或零D.非正数22.下列说法正确的是()A.一个数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数23. 若a = 3 ,则a= ;若-3 =a ,则a= ;若-a = 2 ,a<0,则a= .24. 若a =b ,b=7,则a= ;若a =b ,b=7,a≠b,则a= .25. 填空:(1)-- 11= ;3(2)- 4.2 - 4.2 = - = ;(3)-3 ++5 = + = ;(4)+ 2 -- 2 =| - |= ;(5)-3 ⨯ 6.2 = ×= ;(6)-2÷-14= ÷= ×= .3 3⎨ ⎩ ⎩⎩ ⎨ ⎪ ⎩ 【参考答案】 ➢ 课前预习1. (1)-8 (2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14, - 3;2其中属于正数的有:3,3.14,100;其中属于负数的有:-2.5, - 3,-9.23. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数⎧ ⎧正整数 ⎧ ⎧正整数⎪ ⎪ ⎪ ⎪ ⎪整数⎨0⎪正有理数⎨⎪ 2. 有理数⎪⎪负整数 ⎪ ⎪有理数⎨0⎪正分数 ⎪⎧正分数 ⎪分数⎨ ⎪ ⎩负分数 ⎪ ⎪⎩⎪⎧负整数负有理数 ⎪ 负分数 ⎪ ⎪⎩3. 负数和 0;正数和 0;负整数和 0;正整数和 04. 原点、单位长度、正方向、直线;有理数. 5. 表示数比较大小表示距离6. 大,小;大;大于,小于,大于7. 只有符号不同.0 的相反数为 0.8. 数轴,距离9. 它本身;负数的绝对值是它的相反数;0 的绝对值是 0⎧a (a > 0) ⎪⎨0 (a = 0)⎪-a (a < 0) 右侧框内答案框 2:图略 框 3:-a ,a ,-a +b 框 4:正数和 0,负数和 0a =➢ 精讲精练 1.下降 8 m 收入 50 元-2℃ +50 m -30 m2. A3. A4.B5. ①7,2 019,0.618,3.14,+3; ②-2, - 2,-1.732,-53 ③-2,7,0,2 019,-5,+3; ④-2, - 2,0,-1.732,-53⑤7,0,2 019,+3;⑥-2,7, - 2,0,2 019,0.618,3.14,-1.732,-5,+33 6. -3.5 < -2 2 < -1 < 0 < 11< +3 3 2图略;7. B 8. 999. -4,-3,-2,-1 10. ±3 11. -7 或-1 12. B13. - 1 ;3.5,-1,2,0 314. D15. C16. D17. B18. C19. 3.5 12 -5 -x -x -m +n20.+ 1 , -3 ,-(-2) 321. C22. C 23. ±3 3 -224. ±7-7 25. (1) -11;(2)4.2 4.2 0;(3)3 5 8;(4)2 2 0;3(5)3 6.2 18.6;(6) 23 14 2 3 1 .3 3 14 7。

相关文档
最新文档